
Automating Language Evolution

Markus Pizka, Elmar Jürgens
Technische Universität München

Institut für Informatik
Germany – 85748 Garching
{pizka,juergens}@in.tum.de

Abstract

The design and implementation of complex software systems
inherently spans multiple levels of abstractions. The concepts of
each level of abstractions and their interplay are represented by
formal languages that are either implicitly known or explicitly
defined. Achieving high productivity in software development
and maintenance is thus strongly connected with ruling the com-
plexity of multi-level language design and evolution. This paper
explains the necessity for automating multi-level language evo-
lution, discusses its challenges and proposes concepts as well
as a prototypical tool that support the incremental co-evolution
of a staged language and program generation architecture. This
approach reduces the cost of language maintenance and paves
the ground for an incremental and bottom-up oriented way of
developing domain specific languages providing effective pro-
ductivity improvements.

1 Increasing Productivity Through DSLs?

Albeit three decades of intense research and significant
progress in research and practice, the development and main-
tenance of software systems still constitutes a time-consuming,
costly and risky endeavor. The reduction of software develop-
ment and maintenance costs thus remains a research topic of
paramount importance to software engineering. A basic idea
behind many approaches that attempt to reduce these costs is to
increase the productivity of software developers. One approach
to raise productivity that has received increased attention in re-
cent years, are domain specific languages.

1.1 Productivity Through Specialization

A domain-specific language (DSL) is a programming lan-
guage or executable specification language that offers, through
appropriate notations and abstractions, expressive power fo-
cused on, and usually restricted to, a particular problem domain
[40]. The key characteristic of domain specific languages is their
specialization to a problem domain. This specialization allows
them to offer language constructs and abstractions tailored to
the class of problems from this domain. DSLs typically allow
these problems to be described very directly and concisely, re-
quiring less developer effort than general purpose programming

languages. DSLs thus have the potential to increase produc-
tivity and decrease costs of software development. Particularly
prominent examples for the benefits of DSLs are found in the
compiler construction field with specialized languages and gen-
erators amongst others for hashing (e. g. gperf), scanners [17],
and parsers [9]. Tools for the interactive design of graphical
user interfaces, the query language SQL, interface definition
languages like WSDL [44], object-relational mapping tools like
Hibernate [14], or modeling languages like MATLAB/Simulink
add further examples for the benefits of DSLs, i. e. purpose-built
languages with powerful generators.

Besides reduced development time and cost, DSLs are a
promising mean to decrease the maintenance cost of software
because of the reduced code size and increased comprehensibil-
ity, both due to the higher expressiveness of DSLs compared
to general-purpose languages. The decrease of maintenance
costs is particularly important since 80% of the costs of soft-
ware are usually not devoted to development but to maintenance
[24, 34, 31].

However, DSLs only help to reduce overall maintenance
costs, as long as the costs for development and maintenance of
the DSL itself can be amortized. If unanticipated changes to
a domain require changes to the DSL definition, maintenance
costs can be high, as noted in [6].

1.2 Limitations

However, the success of DSLs is clearly still limited to few
niches. To the extent of our own practical experiences and that
of our commercial partners, the bulk of code that gets written
world wide and day by day, whether information systems in fi-
nancial institutions or flight control systems for commercial air-
crafts, makes little use of DSLs if any. Languages like Risla for
Financial Products [6] are rare exceptions to the rule.

We state that there are at least three major reasons for this
which we will explain more precisely in the following para-
graphs. First are the costs of designing and implementing DSLs.
Second, the limited capabilities of one-step generation and third,
the constant need to evolve DSLs.

The multi-level language evolution concept and tool-support
presented in this paper largely increases the applicability of
DSLs by overcoming exactly these three current core difficul-
ties in DSL design and implementation.

2 DSL Challenges

The goal of the concept and tool-set presented in this paper is
to increase the long-term applicability of DSLs by supporting an
evolutionary and bottom-up oriented style for DSL design and
implementation. The rationale for this approach is the need to
overcome three major obstacles that we detail in the following
paragraphs.

2.1 DSLs Are Expensive to Build

Though DSLs promise substantial gains in productivity the
development of DSLs itself is expensive and troublesome. [26]
summarizes the difficulties of building DSLs adequately as fol-
lows:

DSL development is hard, requiring both domain
knowledge and language development expertise. Few
people have both. Not surprisingly, the decision to
develop a DSL is often postponed indefinitely, if con-
sidered at all, and most DSLs never get beyond the
application library stage.

Clearly, one of the primary contributions of DSLs is en-
abling reuse, i. e. reuse of abstractions and reuse of the knowl-
edge about how to implement these abstraction in different con-
texts. As such, DSLs must cope with the same economic chal-
lenges like any other reuse oriented approach [35]. Building
reusable components requires a costly analysis of the domain
and its variability followed by an even more expensive imple-
mentation of reusable components1. The costs of planning and
building such generalized components are usually a multiple of
the costs of building a concrete solution to a particular problem
[35, 3]. Hence, building DSLs only pays-off after repeated suc-
cessful use of the DSL. However, due to the constant change of
requirements and the execution environment [23], the future use
of a DSL is uncertain and building DSLs is economically risky.
Note, that this risk increases with the degree of specialization
respectively the potential benefit.

Requirement 1 (Stepwise Bottom-Up Generalization)
To reduce the uncertainty of the benefit of DSL design and imple-
mentation, DSLs should be built in an incremental and bottom-
up oriented manner instead of the currently predominant top-
down and big-bang like approach. To support this style of DSL
development, means for the step-wise generalization of existing
concepts and solutions as needed are required.

If DSL can be built by gradually abstracting and flexibilizing
existing solutions (including DSLs) as needed, then the cost of
building a DSL will never exceed the costs of developing the de-
sired new solution from scratch significantly but often provide
immediate pay-offs. No effort has to be put into speculation
about future requirements and there is no need for risky in ad-
vance investment into flexibility that could possibly be needed
in the future.

2.2 Generators are no Oracles

A DSL usually requires a generator that reads a word of the
domain specific language and produces a word in the desired tar-

1In case of DSLs represented through the domain language and a code gen-
erator.

A S L2L1

Generator G

Figure 1. Generator basics

get language. Obviously, program generators for DSLs are noth-
ing but program transformation systems providing a translation
from a higher to a lower level language, which is also called
synthesis or compilation [41]. Hence, program generators are
subject to the same inherent limitations like conventional com-
pilers that translate from C to Assembler or Java to Byte-code
though they usually operate on a higher level of abstraction.

Figure 1 illustrates the basic structure of a program generator
G. G reads words v ∈ L1 and produces words w ∈ L2 by
first performing an analysis A of v and then synthesizing (S)
result w. The whole benefit of this strategy corresponds to the
distance between the level of abstractions of the input and the
output languages that is A(L1) and A(L2). Basically2, there are
three different possibilities:

A(L1) = A(L2): The DSL L1 and its generator G are useless
from a productivity perspective. G does not contribute any
decisions to the implementation. All details of the output
w are already specified in the input v. G only rephrases v
which might increase readability of v compared to w but
not reduce its complexity.

A(L1) > A(L2): This means that some details of w are not de-
scribed in v but G decides on the implementation of these
details. Examples are the allocation of memory for local
variables in C compilers or the optimization of an SQL
query. Here, the gains for the user of L1 are obvious. By
leaving some decisions on how to implement w up to G,
v becomes shorter and more declarative, by describing G
what to implement.

A(L1) >> A(L2): Unfortunately, the possibility to stretch the
distance between A(L1) and A(L2) is very limited because
of computational complexity. Even basic decisions, like
the allocation of registers, turn out as being NP-hard [4].
Though not proved, yet, it can be assumed that mapping
higher level descriptions such as a financial service speci-
fication to Java classes and objects will have to cope with
similar complexity issues. Usually this complexity is cir-
cumvented by accepting suboptimal decisions and thereby
reduced quality of the output. The wider the gap between
A(L1) and A(L2) gets, the less information will be avail-
able to the decision maker G resulting in a weaker result
w in terms of performance, reliability, usability and so
on. Clearly, reduced quality is counterproductive for reuse.
McIlroy stated in 1968 “No user of a particular member
of a family should pay a penalty in unwanted generality”
[25]. E. g. current Object-Relational mapping tools suffer
from this trade-off.

This leads to the following contradictory observation:

1. The benefit that can be gained from a single generator is in-
herently and severely limited. We are convinced that there

2Ignoring reverse engineering, where A(L1) < A(L2), since it cannot in-
crease productivity

2

will not be a single flexible DSL for some high-level busi-
ness domain with a generator that maps it to high-quality
Java code!

2. To gain a significant advantage from a DSL the gap be-
tween the level of abstractions of the input and the output
has to be wide (see A(L1) > A(L2)).

The concept and tool-set presented in this paper aims at solving
this concept by fulfilling the following requirement.

Requirement 2 (DSL Layering)
The design and implementation of a DSL should not be lim-
ited to a one-step compilation but support layers of DSLs and
a staged generation process with additional user input at each
stage.

Note, that staging further increases the complexity and costs of
building and maintaining the DSL as discussed in 2.1 because
changes on one stage might affect other stages, too. Again,
ruling this complexity requires a tool-set that aids in gradually
adapting the DSL hierarchy as needed (see requirement 1).

2.3 Language and Word Evolution

While building a DSL is costly, building layered DSLs is
even more expensive and maintaining a single or even layered
DSL is probably costliest simply because nothing is more con-
stant than change entailing a constant need for evolution [23].

The design and implementation of a DSL trivially depends on
the requirements of the domain. With the exception of DSLs that
model a technical domain, such as regular expressions or SQL,
the requirements are directly connected with the business pro-
cesses in this domain. Unfortunately, nothing is more volatile
then business processes [29] simply because business process
agility is the mean to achieve competitive advantages. Due to
the Frame-Problem [27], most of the future changes can not be
anticipated in advance.

This poses a serious difficulty for DSLs. On the one hand,
a DSL should be high-level or in other words as close to the
business processes as possible to provide increased productivity
compared to a general purpose language. On the other hand,
the tighter the DSL is connected with the business processes,
the more fragile it gets and the more often it will have to be
changed which in turn reduces the benefits of possible reuse.

A non-trivial change to an existing DSL L leading to a new
DSL version L′ requires the following three major steps:

1. Change of the definition of L – its syntax and semantics.

2. Adaption of all tools processing L; at least the correspond-
ing compiler or generator but maybe also syntax aware ed-
itors (e. g. highlighting), debugger, etc.

3. Transformation of all already existing words (programs)
w ∈ L into language L′.

As an alternative to step 3 one could also maintain older versions
of DSLs so that words in older versions of the language could
still be used and changed independently of newer versions of the
language. However, this would create a complicated configura-
tion management problem and in addition to this, users of older
versions of the language could not benefit from any advantages

of newer versions and new tools. In practice, this drawbacks
forces users to migrate their words to the new version.

Hence, most DSLs will have to evolve over time including
the tools that process these DSLs and words written in these
languages. Without adequate tool-support, DSL evolution is
a complex, time-consuming, and error-prone task that severely
hampers the long-term success of a DSL.

Requirement 3 (Automated Co-Evolution) DSL maintenance
is inevitable for most realistic domains and requires adequate
tool support. The transformation of existing words and the
adaptation of language processing tools according to changes
of the language has to be automated as far as possible.

Note that this requirement complements requirement 1 be-
cause the tool-supported co-evolution of language, tools and
words is a contribution to stepwise bottom-up generalization as
formulated in requirement 1.

3 Related Work

The work presented in this paper combines DSLs [40] and
generative programming [7] with elements of program trans-
formation [41] and compiler construction, as well as software
evolution [23]. Within this general context, the evolution con-
cept has strong relations with Grammar Engineering, document
transformation and language evolution as described in the fol-
lowing paragraphs.

3.1 Grammar Engineering

In [18], Klint, Lämmel and Verhoef argue that although
grammars and related formalisms play a pervasive role in soft-
ware systems, their engineering is insufficiently understood.
They propose an agenda that is meant to promote research on
Grammarware and state research challenges that need to be ad-
dressed in order to improve the development of grammars and
dependent software.

One of these challenges is the development of a framework
for grammar transformations and the co-evolution of grammar-
dependent software. The Grammar Evolution Language pro-
posed in this paper offers such grammar transformation oper-
ations and the automatic generation of compilers from DSL
definitions with static validation of path expressions aims at
the desired co-evolution of one important instance of grammar-
dependent software, namely the compiler.

In [20], Lämmel proposes a comprehensive suite of gram-
mar transformation operations for the incremental adaptation of
context free grammars. The proposed operations are based on
sound, formal preservation properties that allow to reason about
the relationship between grammars before and after transfor-
mation. [22] and [19] present systems that implemented these
evolution operations to incrementally transform LLL and SDF
grammars.

Lämmel’s grammar adaptation operations inspired the design
of the Grammar Evolution Language used in our approach as
a mean to automate language evolution. However, this paper
focuses primarily on the coupled evolution of grammars and
words of the language described by these grammars. Compared
to the operations suggested by Lämmel, the Grammar Evolu-
tion Language sacrifices the formal basis to allow for simpler

3

coupled evolution operations. It would be desirable to combine
the coupled evolution capabilities proposed in this paper with
the formal preservation properties proposed by Lämmel in fu-
ture versions of our tool Lever.

3.2 Document Structure Transformations

If the structure of a class of documents changes, all document
instances have to be transformed to conform to the new struc-
ture. Document structure transformations aim at automating the
transformation of document instances according to changes of
the document structure which is similar to language and word
evolution as described in requirement 3 above.

Document structure transformations for XML documents
based on operators for DTD transformation and induced com-
pensating transformations for documents instances are de-
scribed in [21]. Su et al. propose a taxonomy for XML evo-
lution operations. They suggest a complete, minimal and sound
set of evolution primitives for DTDs and XML documents and
show that they preserve validity and well-formedness of DTDs
and XML document instances [36].

Both approaches perform coupled evolutions of XML
schemes (in the form of DTSs) and documents and show com-
pleteness and soundness of the proposed primitives. However,
both approaches are only complete in the sense that they allow
arbitrary document structure transformations. They do not al-
low for arbitrary transformations of XML instance documents
in order to compensate changes to the DTDs. Thus, information
contained in documents may be lost as a consequence of DTD
evolution.

The design of the language evolution operations in this paper
refrains from achieving minimality in order to allow for lossless
word transformations.

3.3 Evolution of Language Specifications

TransformGen is a system that generates converters that
adapt programs according to changes of the language specifi-
cation [33, 11]. While TransformGen automatically produces
converters for local3 changes, non-local transformations must
be specified manually. Furthermore, non-local transformations
cannot be reused between recurring evolution operations.

TransformGen only targets the adaptation of words but does
not take language processing tools into account. The tool Lever
presented in this paper goes one step further by semi-automating
the adaptation of compilers, too. Moreover, Lever supports
reuse of coupled transformations.

3.4 Object Oriented Language Specifications

In [12], Hedin describes an object-oriented notation for at-
tribute grammars that heavily inspired the object oriented at-
tribute grammar system implemented in Lever. Hedin et al.
present further, more sophisticated object oriented attribute
grammar formalisms in [13] and [8], which go beyond the at-
tribute grammar system implemented in Lever. Future ver-
sions of Lever could incorporate inheritance between nonter-
minal grammar symbols and rewriting of syntax tree nodes, as
proposed in [12] and [8].

3Local transformations are restricted to the boundary of a grammar produc-
tion.

3.5 Schema Evolution in OO Databases

Regarding a data base schema as a language and the infor-
mation contained in a data base as the words of this language
allows to relate schema evolution with program transformation.
Clearly, co-evolution of language and words is of predominant
importance to this field and studied in various works.

In [2], Banerjee proposes a methodology for the devel-
opment of schema evolution frameworks for object oriented
databases (OODB) that was used in the ORION OODB system.
The methodology suggests invariants for consistent database
schemes and evolution primitives for incremental changes to the
database. The evolution primitives perform coupled updates of
both the schema and the objects in the database. Similar schema
invariants and update primitives were proposed in [30] for Gem-
Stone OODB. The DSL Dictionary invariants that we use in our
approach were inspired by these ideas.

4 Language Evolution Concept

The core concepts of the proposed approach to construct
multi-level DSLs (see 4.1) incrementally are a grammar, word,
and language evolution languages (4.3), and a generator archi-
tecture that is built around DSL histories (4.4).

4.1 Divide and Conquer

According to requirement 2 of section 2, layering DSLs is a
key design principle for building powerful DSLs that map high
level specifications to their implementation. Figure 2 illustrates
the difference between one-step generation and the layering pro-
posed in this paper.

G1

G2

G3

t

i1

i2

i3

G1

G2

G3

t

G

I = I1 ° I2 ° I3 ° I4

Figure 2. Staged versus one-step generation

On a theoretical level, staging the compilation process as
shown on the left into three generators G1, G2, and G3 that pro-
duce the output t in a sequence, seems identical with one-step
generation of a composed generator G as shown on the right
hand side; with the technical exception that inputs i1, i2 and i3
are not fed into the generation process at once but at the be-
ginning of each stage. In fact, the concatenation of the various
inputs i = i1◦i2◦i3 could be regarded as a word of the language

4

I that results from concatenating the input languages I1, I2, and
I3.

However, there are strong differences between the staged or
the one-step generation model when it comes to the implemen-
tation of the DSL. Note, that not only the input fragments i2 and
i3 depend on i1 respectively i2 ◦ i1 but also every language In

depends on all inputs previous to stage n. Technically speak-
ing, In corresponds with the information needed by Gn to fur-
ther drive with the generation process in the situation created by
i0, . . . , in1 . Now, specifying the unified language I of all possi-
ble input sequences would theoretically be possible but techni-
cally impractical. It would yield a undesirable DSL with numer-
ous semantical conditions and exceptions allowing and restrict-
ing the use of language elements within a word of the language
depending on arbitrary prefixes of the word.

In addition to the improved structuring of DSL, the staged
model also indicates a feasible way of implementing complex
generation process by dividing the task into separate steps with
individual inputs at those points where it is needed. Though this
might seem surprising for DSL design and implementation, this
is exactly the strategy that system level software uses success-
fully to map high-level applications to system-level representa-
tions for execution. E. g. the C++ source code i1 gets compiled
with the C++ compiler G1. The link-loader G2 further sets the
memory layout according to whether the user wants to execute
the code as a stand-alone application or a shared library as speci-
fied in i2. The operating system kernel G3 then maps the results
of these steps to main memory pages, CPU cycles, and so on
according to the priorities of the user (i3). Imagine the same
process without staging. It would surely be possible but either
hard to comprehend or less flexible.

Therefore, we clearly favor to divide and conquer the gener-
ation process.

4.2 Generator Transformation

Obviously, maintaining such a sequence of dependent gen-
erators is highly complex by itself and only practical with ade-
quate tool-support. For example, if the top level DSL I1 must
be changed to accommodate a new feature, there is a high prob-
ability that the output of G1 changes too, entailing the need for
changing I2, G2, and so on. All of these changes of languages
(In) and programs (Gn) can themselves be treated as language
and program transformations. Hence, the evident tool to main-
tain a staged DSL is itself a DSL for the domain of DSL manip-
ulation.

Figure 3 depicts this interrelation. A software architect or do-
main analysts uses the language evolution language DSL of the
meta-level generator H to specify transformations of the DSLs
I1, . . . , In. An application developer uses the resulting language
and generator sequence G1, . . . , Gn to produce solutions on tar-
get platform t

The crucial element of this overall architecture is the top-
level language evolution language and the meta-level generator
H . Our tool called Lever4 presented in section 5 implements
significant parts of such a meta-level generator based on a gram-
mar and word evolution input language.

4Language evolver.

Domain Analyst
SW-Architect

Developer

Gen-Gen H

 Generator G1, ..., Gn

Language Evolution
Language

I1, I2, I3, I4, ..., In

transforms

t

Figure 3. Generator-generator

4.3 Language Evolution Operations

The three proposed evolution languages for the manipulation
of DSL specifications are displayed in Figure 4.

DSL

Specification

Syntax

Tree

instance- of

Grammar

Evolution

Language

Word

Evolution

Language

Language

Evolution

Language

Figure 4. Evolution languages

Grammar Evolution Language (GEL) transforms the syntax
and static and translational semantics of a DSL. GEL op-
erations can be used for both creating the initial version as
well as modifying it in order to yield subsequent versions
of a DSL.
The GEL is complete in the sense that its statements can
be used to transform any DSL syntax (and semantics) into
any other DSL syntax (and semantics).

Word Evolution Language (WEL) statements work on the
syntax trees of DSL words. During language evolution,
they are used to perform syntax tree transformations to
compensate changes of the underlying grammar.
WEL is complete in the sense that its statements can be
used to transform any syntax tree into any other syntax tree
and thus to compensate arbitrary changes to the DSL spec-
ification.

From the point of view of expressiveness, the combination
of these two evolution languages allows the specification of all

5

possible transformations that might arise during the evolution-
ary development of a DSL.

However, from the point of view of usability, a third evo-
lution language is desirable: the grammar and word evolution
languages merely provide a low level of abstraction. Even sim-
ple coupled evolution operations, such as renaming a keyword
in the syntax and all existing words, require at least two evolu-
tion operations – one from each language. Furthermore, coupled
transformation knowledge cannot be reused to simplify recur-
ring evolution operations. This gap is filled by the third evolu-
tion language.

Language Evolution Language (LEL) statements perform
coupled evolution of both the grammar and the syntax
tree. They provide a higher level of abstraction to users
and enable reuse of coupled transformation knowledge.
LEL builds on the GEL and WEL to implement its
transformations.

LEL can be conceived as a procedure mechanism that uses
GEL and WEL statements in the bodies of LEL procedures.

4.4 Evolution Architecture

Figure 5 shows the central components of the architecture of
our language evolution tool Lever.

All evolution operations applied during the construction and
evolution of a DSL are stored in the DSL History. The DSL
History thus contains transformation information that specifies
the delta between consecutive versions of a DSL. This transfor-
mation information is used to automatically adapt both the DSL
compiler and existing DSL words to conform to the latest lan-
guage version.

Lever

DSL

History

DSL

Word

instantiation

parsing

DSL

Specification

Syntax

Tree

semantic

processing

Target

Code

generation

instance- of

Figure 5. Lever architecture

DSL History contains evolution operations that define specifi-
cations for all versions of a DSL: The first evolution op-
erations create the DSL specification for the initial version
of a DSL. Subsequent evolution operations transform the
DSL specification to yield later DSL versions.

DSL Specification is a comprehensive, declarative specifica-
tion of the syntax and static and translational semantics of

a single version of the DSL. It is explicitly available at run-
time and drives the compilation process.

Syntax Tree is the in-memory representation of DSL words. It
is an abstract syntax tree that is decorated with concrete
syntax and semantic attributes.

DSL Word is the input for the compilation process. DSL
words are versioned to allow the identification of the DSL
version in which the word was written.

Target Code is the result of the compilation process.

4.4.1 Compiling Words of Arbitrary Versions

The information contained in the DSL history allows to trans-
late DSL words written in any version of the DSL. During the
compilation process, the following steps are performed:

1. Identification of the DSL word’s language version.

2. Execution of the evolution operations from the DSL history
in order to create a DSL specification in the corresponding
language version.

3. Generation of a parser from the information in the DSL
specification. The parser is then used to instantiate the syn-
tax tree from the DSL word.

4. Transformation of DSL specification and syntax tree to the
latest language version. Versions of the DSL dictionary and
the syntax tree are compared with this latest DSL version.
If needed the DSL history is used to transform both the
DSL specification and the syntax tree to the latest version.

5. Semantic processing: according to the DSL semantics con-
tained in the DSL specification, target code for the syntax
tree is computed and written to the output.

5 Implementation: Lever

The proposed evolution operations and evolution architecture
is implemented prototypically in our tool Lever.

5.1 DSL Specification Formalism

Lever uses an object oriented interpretation of attribute gram-
mars5 [28] as specification formalism for both syntax and se-
mantics of a DSL. In Lever, DSL specifications are called DSL
Dictionaries, since they define the syntax and semantics of ev-
ery word a language comprises.

In DSL dictionaries, semantic rules specify how target code
gets generated from the data contained in the syntax tree. In or-
der to cleanly separate target code fragments, code generation
logic and syntax tree access from one another, DSL dictionar-
ies use code generation templates as semantic rules. Access to
the syntax tree from within code generation templates runs via
XPath [43] expressions.

Every access to the syntax tree from within a semantic rule
introduces a dependency between the rule and the syntax tree.

5Context free grammars extended with semantic attributes and rules for their
computation.

6

Language evolution operations may change the shape of the syn-
tax tree and thus potentially break these dependencies. In order
to support DSL architects, Lever can statically validate all XPath
expressions against the DSL dictionary and thus detect broken
dependencies during language evolution.

5.2 Evolution Operations in Lever

The Grammar Evolution Language (GEL) comprises state-
ments to declare nonterminals, to create, rename and delete pro-
ductions, to add, modify and remove (literal, terminal or non-
terminal) production components and (inherited or synthesized)
attribute declarations, to set semantic rules, to change the order
of production components and to influence priorities and asso-
ciativity of productions. Every GEL statement operates on a
single DSL Dictionary element.

The Word Evolution Language (WEL) has been inspired by
XUpdate [39], a language for updating XML documents. It
comprises statements that use XPath expressions to select, in-
sert, update and remove nodes from the syntax tree. Further-
more, it contains statements to declaratively construct syntax
tree fragments and change the dictionary element a syntax tree
node instantiates.

The Language Evolution Language (LEL) comprises state-
ments for recurring coupled evolution operations, such as the
introduction or removal of literal or terminal symbols, the en-
capsulation or in-lining of production components or the renam-
ing of productions or literals (i.e. keywords).

Example

Figure 6 depicts a DSL dictionary for a simple expression lan-
guage that translates sums to stack machine code, and a syntax
tree for the expression 1+2. The corresponding syntax tree is
shown in 7. Some of the GEL statements that create the DSL
dictionary are shown in listing 1

Figure 6. DSL dictionary in infix notation

Listing 2 shows the evolution operations that transform the
expression language from infix to a postfix notation that sur-
rounds every subexpression with angular brackets. (The expres-
sion 1+2 gets transformed to <1 2 +>.) It shows the higher
level of abstraction that LEL statements provide over the use
of separate GEL and WEL statements: lines 32-36 insert the
opening < bracket into every sum. Line 38 performs the same
operation for the closing > bracket, using only a single LEL
statement.

Figure 7. Syntax tree in infix notation

17 # Cre a t e prod . Sum : ” l h s : Exp ’+ ’ r h s : Exp −>
Exp”

18 g c r e a t e p r o d u c t i o n (”Sum” , ”Exp”) ;
19 g append nonterminal (” l h s ” , ”Exp”) ;
20 g a p p e n d l i t e r a l (” p l u s ” , ”+”) ;
21 g append nonterminal (” r h s ” , ”Exp”) ;
22 g s e t a s s o c i a t i v i t y (” l e f t ”) ;
23 g s e t s e m a n t i c r u l e (” code ” , ” . . . ”) ;

Listing 1. Simple GEL statement example

Figure 8. DSL dictionary after transformation to
postfix notation

Figure 9. Syntax tree after transformation to
postfix notation

7

29 g move symbol before (” r h s ” , ” p l u s ” , ”Sum”) ;

31 # I n s e r t ”<” − GEL and WEL s t a t e m e n t s
32 g a p p e n d l i t e r a l (” po ” , ”<” , prod=”Sum”) ;
33 g move symbol before (” po ” , ” l h s ” , ”Sum”) ;
34 open = c o n s t r u c t (”<” , ”Sum . po ”) ;
35 i n s e r t (” / / . [D i c t i o n a r y E l e m = ’Sum ’] ” , ” po ” , open)

;

37 # I n s e r t ”>” − LEL s t a t e m e n t
38 l i n s e r t l i t b e h i n d (” c l o s e ” , ”>” , ” r h s ” , ”Sum”)

;

Listing 2. Transformation from infix to postfix

5.3 Technical Implementation

Lever is implemented in Java. Figure 10 shows its compo-
nents.

Lever

DSL

History

DSL

Word

DSL

Dictionary

Attributed

Syntax

Tree

Target

Code

generation

instance- of

Jython

SDF

Grammar

Parse

Table

SGLR

Jython
 Velocity
 XPath

Figure 10. Lever implementation

Evolution Operations are implemented as a set of Jython pro-
cedures6. This way, the Jython interpreter can be used to
execute the evolution operations from the DSL history. 7

Parsing is done by the Scannerless Generalized LR parser
(SGLR) [5], which recognizes the entire class of context
free languages. This allows concrete and abstract syntax
to be integrated into a single grammar, since no grammar
modifications are necessary in order to make the grammar
recognizable by conventional parsers using LL or LR pars-
ing techniques. The SDF grammar that drives the SGLR
parser is generated automatically from DSL dictionaries.

6Jython [16] is a 100% Java implementation of the Python [32] scripting
language with a very tight integration into Java.

7Note that the evolution languages themselves can be conceived as domain
specific languages for DSL construction, and as such profit from a bottom-up
development using Lever. In the current version, this approach has not been
taken in order to avoid the bootstrapping problem, which arises when Lever is
used to develop a part of itself. We intend to develop them using Lever in the
future, though.

Semantic Processing uses a dynamic attribute evaluation algo-
rithm [15] in order to compute the semantic attributes that
contain the target code. Semantic rules for static seman-
tics are written in Jython. Semantic rules for translational
semantics use the Velocity Template Language. Lever uses
the Velocity Template Engine [37], the Jython interpreter
[16] and the JXPath component from the Jakarta Apache
project [38] to evaluate semantic rules.

Visualization uses dot from the graph drawing package
GraphViz [1] to generate visual representations of DSL
dictionaries and syntax trees to support developers during
DSL development.

5.4 Limitations

The current version of Lever only automates the adaptation of
the DSL compiler. Additional tools, such as a debugger, pretty
printer or syntax aware editor still have to be maintained manu-
ally.

Furthermore, Lever currently only targets textual DSLs.
However, it is our conviction, that the stated problems also hold
for visual DSLs and we believe that the concepts this paper pro-
poses can also be applied to them.

6 Case Study: Catalog Description Language

As a proof of concept, Lever was applied to develop a spec-
ification language for product catalog management systems in
an evolutionary way. The results show the feasibility of the pro-
posed approach to DSL development.

Due to space constraints, this case study only demonstrates
language evolution in a single stage scenario. On a conceptual
level, this can be justified, since the conceptual distance between
the DSL and the target code framework is small enough to al-
low for generation of high-quality Java code. It should be evi-
dent that this simple example could be extended to a multi-level
scenario by adding for example layout specifications along with
an only partially compatible list of options for the desired GUI
framework.

6.1 Domain

Product catalogs are collections of structured product docu-
ments. Each document belongs to a product family. Typically,
all documents within a product family share the same structure,
whereas different families have different document structures.

Catalog management systems are used to create, manage and
publish product catalogs. This comprises the creation, manipu-
lation and deletion of documents by users, and the persistence
and export of catalog data to different media. Catalog manage-
ment systems are data-centric. Thus, solution domain artifacts
that implement editors, display forms, persistence and data ex-
port depend on the structure of the documents the implemented
catalog comprises. Implementing each artifact by hand—for
every single document structure contained in a catalog—is te-
dious, error prone and costly.

The goal of the Catalog Description Language (CDL) is to
provide a declarative specification language for product cata-
logs, from which these structure-dependent artifacts can be gen-

8

erated. This increases the level of abstraction of catalog man-
agement system development, by using generation to replace
stereotype implementation activities.

6.1.1 Target System

The Catalog management systems generated from CDL speci-
fications comprise two types of code: generic framework code,
which implements functionality common to all catalog manage-
ment systems, and catalog specific code, which gets generated
from CDL specifications.

As suggested by the Generation Gap pattern [42], inheritance
is used to separate generic framework code (which resides in
base classes) from catalog specific, generated code (which re-
sides in generated subclasses).

Figure 11. Framework architecture

The catalog management systems use a simple Model View
Controller [10] architecture (compare Figure 11): A central
Model stores all documents of a catalog. DocumentViewers (that
serve both as viewers and controllers) are used to display and
edit documents. Common functionality resides in the abstract
base classes Document, Display and Editor in the framework
package.

The document structure specific code resides in classes in the
generated package, which derive from the abstract base classes.
For each document family specified in a CDL document, a doc-
ument class, a display class and an editor class are generated.8

Figure 12 shows the different conceptual layers of the catalog
management system ordered by their level of abstraction. The
higher an artifact appears in the figure, the higher its specializa-
tion and potential fitness to solve a domain problem and thus the
lower its reusability to other problems in the domain.

6.1.2 Initial Language Version

Listing 3 shows an exemplary specification9 for a tool catalog
written in the initial version of CDL. The file specifies docu-
ment structures for two product families: Wrenches consist of a

8The current version uses serialization as a generic persistence mechanism
and does not support data export. In a future version, persistence and export
code will also be generated from document structure specifications.

9simplified due to space constraints

Factories

Tongs

Tongs

Editor

Tongs

Display

Wrench

Wrench

Editor

Wrench

Display

Drill

Drill

Editor

Drill

Display

Swing
 Serialization
 Collections
 ...

Model
 DocumentView
 Controls
 ...

Generated

Code

Catalog

Browser

Framework

Java

Library

Byte Code for Java Virtual Machine

Catalog Description Language File

CDL Compiler

Java Compiler

Figure 12. CDL stack

single multi-line text field Description, whereas Drills comprise
one single-line text field Headline and two multi-line text fields
Description and Shipment. The captions depict field labels dis-
played in editor forms.

Due to space constraints, the complete specification of CDL
and the evolution operations applied during its evolution have
been omitted. Refer to [Removed due to anonymization] for
a complete reference of the implementation and evolution of
CDL.

1 v e r s i o n 1
2 Wrench {
3 m u l t i l i n e D e s c r i p t c a p t i o n ” D e s c r i p t i o n ” ; }

5 D r i l l {
6 s i n g l e l i n e H e a d l i n e c a p t i o n ” Family ” ;
7 m u l t i l i n e D e s c r i p t c a p t i o n ” D e s c r i p t i o n ” ;
8 m u l t i l i n e Shipment c a p t i o n ” Shipment I n f o ” ; }

Listing 3. CDL file in version 1

6.2 Evolving the Language

As is typical for incremental development, the first language
version only comprises a small set of core language elements.
Instead of designing the complete language up-front, we will
grow it in small steps. This saves us from the effort and cost
of performing a domain and variability analysis for our DSL.
Furthermore, as we employ the first version of CDL to create
catalog specifications, our understanding of the domain grows
and we get feedback on our language design. Based on this
feedback, we can make founded decisions on how to evolve the
language.

In the following, we present two exemplary evolution steps:
A relatively simple transformation that changes the concrete
syntax, and a more complex transformation that restructures the
language in a non-local way.

9

6.2.1 Local transformation

As a first change, we decide to make the concrete syntax of
CDL more expressive, by adding the keywords catalog, doc-
ument and field and encapsulating the documents of a catalog in
curly braces. Since this change only affects the concrete syn-
tax of our language and leaves its abstract syntax unchanged, no
semantic rules have to be updated.

Listing 4 depicts the required evolution operations. Line 2
contains a Language Evolution Language statement that inserts
the keyword catalog into the production Cat in the DSL Dic-
tionary. lbl is the label of the new catalog keyword, docs is the
label of the dictionary element before which the new keyword
gets inserted. 10 The statements in lines 3-10 behave accord-
ingly for the braces and remaining keywords.

These evolution statements offer a high level of abstraction
to the DSL developer, since they transform both the DSL Dic-
tionary and the syntax tree. Listing 5 shows the CDL file after
transformation. The new keywords introduced by the evolution
operations are depicted in bold font.

1 # Add c a t a l o g keyword and b r a c k e t s
2 i n s e r t l i t b e f o r e (” l b l ” , ” c a t a l o g ” , ” docs ” , ” Cat ”

) ;
3 i n s e r t l i t b e h i n d (” open ” , ”{” , ” l a b e l ” , ” Cat ”) ;
4 i n s e r t l i t b e h i n d (” c l o s e ” , ”}” , ” docs ” , ” Cat ”) ;

6 #Add document keyword
7 i n s e r t l i t b e f o r e (” l a b e l ” , ” doc ” , ”name” , ”Doc”

) ;

9 #Add f i e l d keyword
10 i n s e r t l i t b e h i n d (” l a b e l ” , ” f l d ” , ” t y p e ” , ” F i e l d ”

) ;

Listing 4. Evolution operations for version 2

1 v e r s i o n 2
2 c a t a l o g {
3 document Wrench {
4 m u l t i l i n e f i e l d D e s c r i p t c a p t i o n ” D e s c r i p t i o n ” ; }

6 document D r i l l {
7 s i n g l e l i n e f i e l d H e a d l i n e c a p t i o n ” Family ” ;
8 m u l t i l i n e f i e l d D e s c r i p t c a p t i o n ” D e s c r i p t i o n ” ;
9 m u l t i l i n e f i e l d Shipment c a p t i o n ” Shipment I n f o ” ; }

10 }

Listing 5. CDL file in version 2: local change of
concrete syntax

6.2.2 Non-local transformation

At this stage of development, we receive the requirement that a
catalog management system must support users that speak dif-
ferent languages. As a consequence, catalog descriptions must
be extended to support field labels in multiple languages. We

10In Lever, every part of a DSL Dictionary is labeled—language evolution
operations can thus refer to the DSL Dictionary elements they work on by their
names.

decide to extract the field captions from the field definitions in
order to preserve readability in the presence of many languages.

Listing 6 shows the CDL file after transformation. Lines 11-
19 have been created by the evolution operations. Now that the
labels have been extracted into a captions region, further cap-
tions regions can be added for additional languages.

This evolution scenario is an example for a non-local restruc-
turing. It cannot be specified completely using high-level Lan-
guage Evolution Language Statements alone. Rather, statements
from the low level grammar and word evolution languages have
been used to perform this evolution step. 11

1 v e r s i o n 2
2 c a t a l o g {
3 document Wrench {
4 m u l t i l i n e f i e l d D e s c r i p t ; }

6 document D r i l l {
7 s i n g l e l i n e f i e l d H e a d l i n e ;
8 m u l t i l i n e f i e l d D e s c r i p t ;
9 m u l t i l i n e f i e l d Shipment ; }

11 c a p t i o n s e n g l i s h {
12 Wrench {
13 D e s c r i p t ” D e s c r i p t i o n ”; }

15 D r i l l {
16 Headl ine ” Family ” ;
17 D e s c r i p t ” D e s c r i p t i o n ”;
18 Shipment ” Shipment In fo ” ; }
19 }}

Listing 6. CDL file in version 3: non-local
restructuring

7 Conclusion

DSLs are a promising approach to increase the productivity
of software development through raising the level of abstraction
and providing powerful generative techniques. However, DSLs
are very expensive to build and even more expensive to main-
tain. The concepts and implementation techniques presented in
this paper allow a new style of DSL development and mainte-
nance by incremental step-wise evolution. This strategy ren-
ders the critical task of domain analysis less time-consuming
and critical and greatly reduces the costs of changing a DSL by

1. automatically transforming all existing words in previous
versions of the DSL and

2. providing tool-support for the adaptation of the DSL com-
piler.

As shown with the sample product catalog language, DSL archi-
tects are enabled to introduce flexibility into the DSL as needed
at any time. The key to this flexibility is the transformation tool
Lever (language evolver) that implements itself a powerful DSL
for grammar, word, and coupled transformation for the consis-
tent manipulation of DSLs.

As shown in this paper, a tool like Lever contributes to the
construction of more powerful DSLs that span several levels of

11The evolution script comprises about 20 evolution operations and has been
left out of this paper for brevity.

10

abstractions because this can only be done realistically by struc-
turing the compilation process into a sequence of generation
steps with a corresponding set of DSLs. Building and main-
taining such a sequence of DSLs without tool supported and
coupled transformation of grammars and words seems highly
impractical.

Clearly, this work leaves room for interesting future work.
One open question is how to further automate the adaption of
the compiler and other language processing tools according to
chances of the language. Another question that we will further
investigate in the future is the actual construction of realistically
applicable multi-level DSLs with the tool Level implemented as
part of the work presented in this paper.

References

[1] ATT Research. Graphviz - Graph Vizualization Software.
http://www.graphviz.org/, 2006.

[2] J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth. Seman-
tics and implementation of schema evolution in object-oriented
databases. In SIGMOD ’87, San Francisco, 1987. ACM Press.

[3] K. Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 2000.

[4] G. Chaitin. Register allocation and spilling via graph coloring.
SIGPLAN Not., 39(4):66–74, 2004.

[5] CWI. SGLR. http://www.cwi.nl/htbin/sen1/
twiki/bin/view/SEN1/SGLR, Jan. 2006.

[6] A. Deursen and P. Klint. Little languages: little maintenance?
Technical report, Amsterdam, The Netherlands, 1997.

[7] U. W. Eisenecker and K. Czarnecki. Generative Program-
mierung. Addison-Wesley, München, 2002.

[8] T. Ekman and G. Hedin. Rewritable reference attributed gram-
mars. volume 3086, pages 147–171, January 2004.

[9] Free Software Foundation. GNU Bison. http://www.gnu.
org/software/bison/, Oct. 2005.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vissides. Design pat-
terns : elements of reusable object-oriented software. Addison
Wesley, 1995.

[11] D. Garlan, C. W. Krueger, and B. S. Lerner. Transformgen:
automating the maintenance of structure-oriented environments.
ACM Trans. Program. Lang. Syst., 16(3), 1994.

[12] G. Hedin. An object-oriented notation for attribute grammars.
In ECOOP ’89, BCS Workshop Series, pages 329–345, Notting-
ham, U.K., 1989. Cambridge University Press.

[13] G. Hedin. Reference Attributed Grammars. In D. Parigot and
M. Mernik, editors, WAGA’99, pages 153–172, Amsterdam, The
Netherlands, March 1999. INRIA rocquencourt.

[14] J. Inc. Hibernate – relational persistence for java and .net. World
Wide Web, May 2006. http://www.hibernate.org/.

[15] F. Jalili. A general linear-time evaluator for attribute grammars.
SIGPLAN Not., 18(9):35–44, 1983.

[16] Jython Home Page. http://www.jython.org/, Jan. 2003.
[17] G. Klein. JFlex - The Fast Scanner Generator for Java. http:

//jflex.de/, July 2005.
[18] P. Klint, R. Lämmel, and C. Verhoef. Toward an engineering

discipline for grammarware. ACM Trans. Softw. Eng. Methodol.,
14(3):331–380, 2005.

[19] J. Kort and R. Lämmel. The grammar deployment kit - system
demonstration. In Proc. of the 2nd Workshop on Language De-
scriptions, Tools and Applications. Elsevier Science, 2002.

[20] R. Lämmel. Grammar Adaptation. In Proc. Formal Methods
Europe 2001, LNCS. Springer-Verlag, 2001.

[21] R. Lämmel and W. Lohmann. Format Evolution. In Proc. 7th
Intern. Conf. on Reverse Engineering for Inform. Sys. (RETIS
2001), books@ocg.at. OCG, 2001.

[22] R. Lämmel and G. Wachsmuth. Transformation of SDF syntax
definitions in the ASF+SDF Meta-Environment. In LDTA-01.
Elsevier Science, Apr. 2001.

[23] M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M.
Tursky. Metrics and laws of software evolution - the nineties
view, 1997.

[24] B. P. Lientz, P. Bennet, E. B. Swanson, and E. Burton. Software
Maitenance Management. Addison Wesley, Reading, 1980.

[25] M. McIlroy. Mass produced software components. In P. Naur
and B. Randell, editors, Software Engineering, pages 138–155,
Garmisch, Germany, Oct. 1968. NATO Science Committee.

[26] M. Mernik, J. Heering, and A. Sloane. When and how to develop
domain-specific languages. Technical Report SEN-E0517, CWI,
Dec. 2005.

[27] S. E. of Philosophy. The frame problem. World Wide Web, 2004
Feb.

[28] J. Paakki. Attribute grammar paradigms a high-level method-
ology in language implementation. ACM Comput. Surv.,
27(2):196–255, 1995.

[29] T. Panas, W. Löwe, and U. As̈mann. Towards the unified recov-
ery architecture for reverse engineering. In SERP’03, volume 1,
pages 854–860, Las Vegas, NV, June 2003. CSREA Press.

[30] D. J. Penney and J. Stein. Class modification in the gemstone
object-oriented dbms. In OOPSLA ’87, pages 111–117, New
York, NY, USA, 1987. ACM Press.

[31] T. M. Pigoski. Practical Software Maintenance. Wiley Computer
Publishing, 1996.

[32] Python Software Foundation. Python Programming Language.
http://www.python.org/, 2006.

[33] B. J. Staudt, C. W. Krueger, and D. Garlan. A structural approach
to the maintenance of structure-oriented environments. In SDE
2, Palo Alto, CA, 1987. ACM Press.

[34] STSC. Software Reengineering Assessment Handbook v3.0.
Technical report, STSC, U.S. Department of Defense, Mar. 1997.

[35] R. Stützle. Wiederverwendung ohne Mythos. PhD thesis.
[36] H. Su, D. Kramer, L. Chen, K. T. Claypool, and E. A. Runden-

steiner. XEM: Managing the evolution of XML documents. In
RIDE-DM, pages 103–110, 2001.

[37] The Apache Software Foundation. Velocity. http://
jakarta.apache.org/velocity/, 2005.

[38] The Apache Software Foundation. JXPath - JXPath Home.
http://jakarta.apache.org/commons/jxpath/
index.html, 2006.

[39] The XML:DB Initiative. XUpdate - Xml Update Language.
http://xmldb-org.sourceforge.net/xupdate/,
2003.

[40] A. van Deursen, P. Klint, and J. Visser. Domain-specific
languages: An annotated bibliography. SIGPLAN Notices,
35(6):26–36, 2000.

[41] E. Visser. A survey of strategies in program transformation sys-
tems. Electronic Notes in Theoretical Computer Science, 57,
2001.

[42] J. Vlissides. Generation Gap. http://www.research.
ibm.com/designpatterns/pubs/gg.html, Dec. 1996.

[43] W3C. XSL Transformations (XSLT). http://www.w3.org/
TR/xpath, Nov. 1999.

[44] W3C. Web services description language (wsdl) 1.1. World Wide
Web, Mar. 2001. http://www.w3.org/TR/wsdl.

11

