
COPE: Coupled Evolution of Metamodels and
Models for the Eclipse Modeling Framework

Markus Herrmannsdoerfer1, Sebastian Benz2, and Elmar Juergens1

1 Institut für Informatik
Technische Universität München

Boltzmannstr. 3, 85748 Garching b. München, Germany
{herrmama, juergens}@in.tum.de

2 BMW Car IT GmbH
Petuelring 116, 80809 München, Germany

sebastian.benz@bmw-carit.de

Abstract. In consequence of changing requirements and technologi-
cal progress, metamodels are subject to change. Manually migrating
models to a new version of their corresponding metamodel is costly,
tedious and error-prone. The coupled evolution of a metamodel and
its models is a sequence of metamodel changes and their correspond-
ing model migrations. These coupled changes are either metamodel-
specific or metamodel-independent. Metamodel-independent changes can
be reused to evolve different metamodels and their models, thus reducing
migration effort. However, tool support is necessary in order to exploit
these reuse opportunities. We propose a language based on the Eclipse
Modeling Framework that allows for decomposition of a migration into
manageable, modular coupled changes. It provides a reuse mechanism
for metamodel-independent changes, but is at the same time expressive
enough to cater for complex, metamodel-specific changes.

1 Introduction

Due to their high level of abstraction, modeling languages are a promising ap-
proach to decrease software development costs by increasing productivity. Sig-
nificant work in both research and practice has been invested into tool support
for the initial development of modeling languages. A very prominent example is
the Eclipse Modeling Framework (EMF)3. As modeling languages are receiving
increased attention in industry, their maintenance is gaining importance. Al-
though often neglected, a language is subject to change like any other software
artifact [1]. EMF and the Graphical Modeling Framework (GMF)4 for instance,
although relatively young, have already been adapted to technological progress
or evolving requirements. A modeling language is evolved by adapting its meta-
model to the new requirements. Existing models have to be migrated so that
they can be used with the evolved modeling language.
3 http://www.eclipse.org/modeling/emf/
4 http://www.eclipse.org/modeling/gmf/

2

To better understand the nature of coupled evolution of metamodels and
models in practice, we performed a study of the evolution history of two real-
world metamodels [2]. The study’s main goal was to determine to which degree
coupled evolution can be automated in practice. Our results showed that there
is substantial potential for reuse of coupled change operations, since more than
three quarters of all coupled changes were not metamodel-specific and the cor-
responding model migration might be reused across different metamodels. A
suitable library of coupled evolution operations hence can provide significant
reduction of evolution effort. On the other hand, the remaining quarter of the
coupled changes were metamodel-specific and therefore required a custom model
migration. The analysis thus indicated that, in order to best support the se-
quence of metamodel-specific and -independent changes that make up language
evolution, suitable tool support must satisfy two central requirements: Reuse of
coupled evolution operations is required to take advantage of the high amount of
recurring metamodel-independent changes. Expressiveness is required to cater
for complex transformations involved in metamodel-specific coupled evolution
operations.

Currently, to our best knowledge, there is no approach that combines both
the desired level of expressiveness and reuse. To alleviate this, we present COPE,
a language for the coupled evolution of metamodels and models that provides
both reuse of recurring coupled evolution operations and the expressiveness to
describe custom evolution steps. COPE offers an expressive language to specify
the adaptation of the metamodel together with its corresponding model migra-
tion as coupled transactions. Generalization of coupled transactions allows for
reuse of recurring coupled changes across metamodels. Coupled transactions are
composeable in the sense that the evolution from one metamodel version to the
next can be composed of manageable, modular transactions, thus allowing for
flexible combination of reusable and custom individual coupled changes.

Outline. In Section 2, we introduce the concepts that form the basis of our
coupled evolution language. In Section 3, we explain in more detail how the lan-
guage concepts are implemented for use with the Eclipse Modeling Framework.
In Section 4, we present the tools that were developed to support the application
of COPE, before we conclude in Section 5.

2 Coupled Evolution of Metamodels and Models

A metamodel is changed in order to adapt to technological progress or changed
requirements. Hence, existing models must be migrated in order to conform to
the adapted metamodel. We refer to the combination of metamodel adaptation
and model migration as coupled evolution. Figure 1 depicts the concept of coupled
evolution, where each metamodel adaptation has a specific model migration.

The metamodel adaptation is usually performed manually in the modeling
tool that is used to edit the metamodel. In contrast, model migration is encoded
as a model transformation that transforms a model such that the new model

3

Metamodel

Model

Adaptation

Migration

Fig. 1. Coupled evolution of metamodel and model

conforms to the evolved metamodel. There are multiple languages for model
transformation that can be used to encode model migrations. In general, we dis-
tinguish between exogenous and endogenous model transformation, depending
on whether source and target metamodel of the transformation are different or
not [3]. Languages for exogenous model transformation usually require to specify
the mapping of all elements from the source to the target metamodel. As typ-
ically only a subset of all metamodel elements are modified during a language
evolution step, an exogenous transformation for model migration contains a high
fraction of identity rules.

2.1 Coupled Transactions

Model migration is thus best served by a language that allows to combine the
properties of both languages for exogenous and endogenous model transforma-
tion: one needs to be able to specify the transformation from a source meta-
model to a different target metamodel, but only for the metamodel elements for
which a migration is required. In order to achieve this, we propose to soften the
conformance between a metamodel and its model during coupled evolution: the
metamodel can first be adapted regardless of its models, and the model can then
be migrated to the evolved metamodel. Therefore, COPE provides a number of
expressive primitives to encode both metamodel adaptation and model migra-
tion independently of each other. However, softening the conformance during
model migration comes at the price that a model may not always conform to its
metamodel. In order to enforce conformance after a certain change to metamodel
and model, we introduce the following notion: A coupled transaction is defined
as an operation that evolves the metamodel and migrates the model such that
the following properties hold:

Consistency preservation: The evolved metamodel is consistent, i. e. fulfills
the constraints defined by the meta-metamodel, if the original one was.

Conformance preservation: The migrated model conforms to the evolved
metamodel, if the original model conformed to the original metamodel.

Note that both consistency and conformance thus have to hold only at trans-
action boundaries, i. e. the metamodel may be inconsistent or the model may
not conform to the metamodel during a transaction. Coupled transactions are

4

composeable by simply sequencing them. A comprehensive migration from one
metamodel version to the next can thus be composed of a number of manageable
coupled transactions. Each coupled transaction is modular, i. e. can be specified
independently of any other coupled transaction.

2.2 Expressiveness and Reuse through Coupled Transactions

Our study of the evolution of industrial metamodels [2] showed that the evolu-
tion of a language can, in principle, be split into individual coupled changes, each
denoting a specific metamodel adaptation and the corresponding model migra-
tion. Coupled transactions offer a formalism to specify such individual coupled
evolution operations. Furthermore, coupled transactions offer an apt way of sat-
isfying the central requirements identified in [2] for efficient tool support for
coupled evolution of metamodels and models:

Expressiveness: In order to cater for arbitrarily complex model migrations,
specification formalisms must be sufficiently expressive.

Reuse: A substantial amount of changes were not metamodel-specific and oc-
curred during the evolution of different metamodels. In order to avoid re-
peated specification of recurring changes, a reuse mechanism for coupled
changes is necessary.

In order to fulfill the stated requirements, we provide two kinds of cou-
pled transactions: reusable and custom coupled transactions. A reusable coupled
transaction allows to reuse recurring coupled evolution operations across meta-
models and has thus to be specified independently of a specific metamodel. We
can define a library of reusable coupled transactions which can be invoked by a
language developer, thus promising to significantly reduce effort associated with
metamodel adaptation and migration encoding. However, not every coupled evo-
lution can be formulated only with reusable coupled transactions available in a
library. For this reason, a custom coupled transaction can be manually defined by
the language developer for complex migrations that are specific to a metamodel.
Through the combination of arbitrarily expressive custom coupled transactions
and reusable coupled transactions, as is depicted in Figure 2, composeability
enables us to combine both expressiveness and reuse.

3 COPE

In this section, we present COPE, our language for the coupled evolution of
metamodels and models based on the Eclipse Modeling Framework. In order to
achieve in-place transformation, COPE softens the conformance of a model to its
corresponding metamodel during coupled evolution. Based on this decoupling of
metamodel and model, COPE provides expressive primitives for both metamodel
adaptation and model migration. These primitives can be combined to encode
custom and reusable coupled transactions.

5

Version 0

Metamodel

Model

Version 1

ReusableCT1(…) RCT2(…) ReusableCT1(…)

ReusableCT1 ReusableCT2

Custom Coupled

Transaction

Fig. 2. Composability of coupled transactions

3.1 Decoupling Metamodel and Model

Figure 3 depicts the relationship between a model and its metamodel. Inside
transaction boundaries, model and metamodel can be modified independently
of each other, whereas conformance is required at transaction boundaries. As
a consequence, we are able to perform in-place transformation, i. e. direct up-
dates of the models. In-place transformation is more efficient than out-of-place
transformation, which requires to rebuild the migrated model from scratch.

A metamodel is defined by means of Ecore, the meta-metamodel of EMF. The
metamodel is consistent if it fulfills the constraints defined by Ecore. A model
consists of a number of instances (Instance). Each instance has a number of slots
(Slot) which are the valuations of either attributes (AttributeSlot) or association
ends (ReferenceSlot). Instances and slots are associated to their corresponding
metamodel elements. However, these associations do not constrain an instance
to always conform to its type in the metamodel. This loose association allows us
to first modify the metamodel without affecting the model and then migrating
the model to the evolved metamodel. Since this decoupling can lead to states
where the model does not conform to its metamodel, conformance is checked at
transaction boundaries by means of a validator.

3.2 Primitives for Metamodel Adaptation and Model Migration

COPE provides both expressive primitives to specify metamodel adaptation and
to specify model migration.

Metamodel adaptation. For metamodel adaptation, COPE provides the following
primitives to query the metamodel:

6

Metamodel EStructuralFeature

Model Instance Slot

values [*]: Object

AttributeSlotReferenceSlot

abstract: EBoolean

EClass

EAttribute

containment: EBool...

EReference

1 metamodel

*

instances

*

slots

*

eClassifiers

*

eStructuralFeatures

EClassifierEPackage

1 type

* values

* ePackages

1 eAttribute1 eReference

0..1

eOpposite

name: EString

ENamedElement

lowerBound: EInt

upperBound: EInt

ETypedElement
1

eType

*

eSuperTypes

M
e

ta
m

o
d

e
l
L

a
y
e

r
M

o
d

e
l
L

a
y
e

r

Fig. 3. Association between metamodel and model

– <qualifiedName> to access a metamodel element by means of its qualified
name, i.e. a package, class or feature.

– <element>.<featureName> to access the value of a feature of a metamodel
element as defined by the meta-metamodel.

COPE provides the following primitives to modify the metamodel in-place:

– <package>.newClass(...), <class>.newAttribute(...) or <class>.

newReference(...) to create a new class, attribute or reference.
– <element>.delete() to delete a metamodel element.
– <element>.<featureName> = <value> to modify the value of a feature

of a metamodel element.

Model migration. For model migration, COPE provides the following primitives
to query a model:

– <class>.instances to access all instances of a class.
– <class>.allInstances to access all instances of a class or any of its sub-

classes.
– <instance>.get(<feature>) or <instance>.<featureName> to ac-

cess the value of a feature of an instance (the short form can be used if
the feature with that name is available in the instance’s type).

COPE provides the following primitives to modify the model in-place:

7

– <class>.newInstance() to create a new instance of a class.
– <instance>.delete() to delete an instance from the model.
– <instance>.migrate(<class>) to change the type of an instance to a

different class.
– <instance>.set(<feature>, <value>) or <instance>.<featureName

> = <value> to modify the value of a feature of an instance.
– <instance>.unset(<feature>) to unset and return the value of a feature

of an instance.

These primitives are constructed in a way that they also allow to access
model information which currently does not conform to the metamodel.

3.3 Coupled Transactions

The primitives can be invoked from within the general-purpose scripting lan-
guage Groovy5 in order to take advantage of its expressiveness. The interpreter
of COPE ensures that a coupled transaction can only be successfully completed
in case it preserves consistency and conformance.

Signature

Port

inPort * * outPort

Signature

Port

inPort * * outPort

InPort OutPort

Signature

Port

* port

InPort OutPort

s:Signature

inPort outPort

p1:Port p2:Port

Metamodel Adaptation

Model Migration

s:Signature

inPort outPort

p1:InPort p2:OutPort

s:Signature

port port

p1:InPort p2:OutPort

Version 0 Version 0.1 Version 1

Fig. 4. Coupled evolution of example metamodel and model

Custom coupled transaction. Custom coupled transactions are coupled transac-
tions that are specific to a certain metamodel. A custom coupled transaction is
specified by the language developer as a script that uses a number of primitives
to specify both metamodel adaptation and model migration. Figure 4 depicts
a simple example metamodel and the two coupled changes we plan to perform.
The metamodel allows to express Signatures of components which consist of input

5 http://groovy.codehaus.org/

8

and output Ports (references inPort and outPort). In version 0 of the metamodel,
a port does not by itself know whether it is an input or output port. In order
to introduce the missing information in version 0.1, we refine the class Port into
specialized subclasses InPort and OutPort and make it abstract. Instances of Port
have to be migrated depending on whether they are input and output ports of
the signature. As there is not yet a reusable coupled transaction for this coupled
evolution, we have to manually encode both metamodel adaptation and model
migration in a custom coupled transaction that is shown in Listing 1.

Listing 1. Custom coupled transaction
// metamodel adaptation
Signature.inPort.eType = newClass("InPort", [Port])
Signature.outPort.eType = newClass("OutPort", [Port])
Port.’abstract’ = true
// model migration
for(signature in Signature.instances) {
for(port in signature.inPort) port.migrate(InPort)
for(port in signature.outPort) port.migrate(OutPort)

}

Reusable coupled transaction. We use Groovy’s reuse mechanism of procedures
in order to declare reusable coupled transactions. Reusable coupled transactions
can be instantiated by simply invoking the corresponding procedure. The appli-
cability of a reusable coupled transaction can be restricted by constraints in the
form of assertions. Since we have introduced specialized classes for input and
output ports, we no longer need to distinguish them through the references from
Signature in version 1 of the metamodel (see Figure 4). We can now merge the
two references into a single reference which is performed by means of an existing
reusable coupled transaction from a library. The declaration of the reusable cou-
pled transaction that merges one reference into another, is depicted in Listing 2.
Listing 3 shows how to instantiate the reusable coupled transaction in order to
merge the references inPort and outPort into the reference port created before.

4 Tool Support

In order to ease the application of COPE, we have integrated it to the meta-
model editor provided by EMF. A screenshot of the extended metamodel editor
is shown in Figure 5.6 The user interface provides facilities to perform the cou-
pled evolution of metamodel and model. A reusable coupled transaction can

6 A screencast demonstrating the capabilities of the tool is available at http://

wwwbroy.in.tum.de/~herrmama/cope/pmwiki.php?n=Demo.Main.

9

Listing 2. Declaration of a reusable coupled transaction
merge = {EReference toMerge, EReference mergeTo −>
def contextClass = toMerge.eContainingClass
// constraints
assert contextClass.eAllStructuralFeatures.contains(mergeTo)
assert toMerge.many && mergeTo.many
assert toMerge.eReferenceType == mergeTo.eReferenceType | |
toMerge.eReferenceType.eAllSuperTypes.contains(toMerge.

eReferenceType)
// metamodel adaptation
toMerge.delete()
// model migration
for(instance in contextClass.allInstances) {
instance.get(mergeTo).addAll(instance.unset(toMerge))

}

Listing 3. Instantiation of a reusable coupled transaction
Signature.newReference("port", Port, 0, −1, true)
merge(Signature.inPort, Signature.port)
merge(Signature.outPort, Signature.port)

be invoked through the operation browser. The browser is context-sensitive, i. e.
offers only those reusable coupled transactions which are applicable to the ele-
ments currently selected in the metamodel editor. The browser allows to set the
parameters of a reusable coupled transaction, and gives feedback on its applica-
bility based on the constraints. When a reusable coupled transaction is executed,
its invocation is tracked in an explicit language history. In case no reusable cou-
pled transaction is available for the coupled evolution at hand, the language
developer can perform a custom coupled transaction. First, the metamodel is
directly authored in the EMF editor. The tool automatically tracks the meta-
model changes in the history. A migration can later be attached to the sequence
of metamodel changes by encoding it in the language presented in Section 3. The
browser provides a release button to create a major version of the metamodel.
After release, the language developer can initiate the automatic generation of a
migrator that allows for the batch migration of models.

5 Conclusion

Just as other software artifacts, modeling languages evolve. To allow for effi-
cient language evolution in practice, tool support must allow the specification
of both expressive and reusable metamodel adaptation and model migration op-
erations. In this paper, we have outlined a language that allows to compose a
comprehensive migration from one metamodel version to the next of modular,

10

Metamodel

Language History

Custom

Coupled

Transaction

Reusable

Coupled

Transactions

Metamodel

Adaptation

Model

Migration

Fig. 5. Editor integration

coupled transactions. Reuse is provided by an abstraction mechanism that al-
lows to encapsulate recurring migration knowledge. Composeability allows to
easily combine reusable coupled transactions with custom coupled transactions,
combining high migration development productivity and expressiveness. We im-
plemented versioning for the coupled evolution of metamodel and models, and
integrated the language implementation into the EMF metamodel editor. We
are currently planing to contribute the language implementation, the versioning
mechanism and the editor integration to the Eclipse Modeling Project.

References

1. Favre, J.M.: Languages evolve too! changing the software time scale. In: IWPSE.
(2005)

2. Herrmannsdoerfer, M., Benz, S., Juergens, E.: Automatability of coupled evolution
of metamodels and models in practice. In: MODELS. (2008)

3. Mens, T., Van Gorp, P.: A taxonomy of model transformation. (2005)

