
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Motivation and Introduction of a System of
Abstraction Layers for Embedded Systems

Martin Feilkas, Alexander Harhurin, Judith Hartmann, Daniel
Ratiu and Wolfgang Schwitzer

�����
���	

��
��

TUM-I0925
September 09

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N



TUM-INFO-09-I0925-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2009

Druck: Institut für Informatik der
Technischen Universität München



About the Document

In this document we introduce a system of abstraction layers as a backbone for a systematic
development process of embedded software systems. We motivate the use of abstraction layers,
describe the role of each layer and which aspects of a system should be modeled at it. However,
this document does not describe which models should be used to represent the layer in detail.

The aim of the document is to give a basic introduction into our vision of a systematic devel-
opment process along different abstraction layers. Although there exist ideas how the concrete
models of different abstraction layers could look like [BFG+08, WFH+06, Pen08, BBR+05],
we intentionally left out the details here. The consolidated definition of a concrete modeling
framework and its domain-specific instances is one of the major goals of work package ZP-AP
1.2. In this sense the document should serve as basis for discussion within the SPES project.

1



Contents

1 Motivation 3

2 Abstraction Layers at a Glance 4

3 The Functional Layer 5

4 The Logical Layer 7

5 The Technical Layer 8

6 Crossing the layers 9

7 Related Work 9

A Guiding Questions for the Feedback 11

References 11

2



1 Motivation

Today, innovative functions realized by software are the key to competitive advantage in various
application domains. Due to the increasing size and complexity of the system functionality and
the interaction and dependencies between different features, the implementation of complex
interdependent functions in software needs to be done in a mature, managed and predictable
way.

Traditionally, the development of complex embedded systems involves the integration of dif-
ferent (relatively independent) electronic components, each containing its own standalone soft-
ware. However, due to the demands for tight integration of functionality, software takes the
primary role in more and more situations. In todays embedded systems, software plays the
central role in assuring the functionality and quality of the product and at the same time
generates the biggest costs and benefits. This situation demands a paradigm shift towards a
technical system development where the development of software plays the primary role. In
the software-centric development, the decomposition of systems along independent hardware
units (containing their software) needs to be replaced by the decomposition along (logical)
functionalities.

As illustrated in Figure 1-left, today’s model-based software development involves the use of
different models at different stages in the process and at different abstraction levels. Unfortu-
nately, the current approaches do not make clear which kinds of models should be used in which
process steps or how the transition between models should be done. Instead of a disciplined
use of models, the choice of a particular modeling technique to be used is done in an ad-hoc
manner and mostly based on the experience of the engineers or on the modeling capabilities
of the tools at hand. This subsequently leads to gaps between models and thereby to lack of
automation, to difficulties to trace the origins of a certain modeling decision along the process,
or to perform global analyses that transceed the boundaries of a single model.

Figure 1: The scope of this deliverable

To master the complexity of todays embedded systems and to assure the seamless integration
of the models of different development steps, we present a system of abstraction layers. These

3



layers and well-defined relations between them provide the basis for a systematic and com-
prehensive modeling framework, as illustrated in Figure 1-right containing models that cover
the different abstraction layers from requirements, to design, and to deployment. The present
report aims at realizing only the first step of the vision of a seameless and domain appropriate
modeling theory presented in [CFF+09] – namely, to present a set of abstraction layers that
seamlessly enable the use of models at different stages in the development process. To make
these layers also domain appropriate is the scope of a future report.

The system of abstraction layers supports the consecutive refinement of model information
from abstract layers down to concrete layers. Thereby, early models can be used to capture
incomplete requirements and are afterwards step-by-step enriched with design and implemen-
tation information. Thus, the gap between (informal) requirements and the implementation is
bridged and a higher degree of automation and a seamless development is enabled. Besides,
since the higher layers abstract from technical details, an extensive reuse of models is sup-
ported. By this, our approach supports the construction of embedded software of high quality,
shortening the development life cycle and decreasing the development costs.

2 Abstraction Layers at a Glance

We propose to describe systems along a set of abstraction layers which are built upon each
other. Hereby, each abstraction layer provides self-contained concepts for the representation of
the information, which is specific for each development phase. At each layer it should be possible
to model all relevant information explicitly. Furthermore, the used models should be based on a
uniform modeling theory in order to assure that the models on different abstraction layers can
be integrated. Therefore, the modeling theory must be rich enough to cover all relevant aspects
of the system under construction.

The abstraction layers are ordered hierarchically starting with (very abstract) high layers and
leading to (very concrete) low layers. During the transition from a higher layer to a more
concrete layer, the model information is enriched; i. e., the completeness of the models – with
regard to the implementation of the system – is increased top down. Thereby, the transition
has to be correct: in spite of the additional information the specification of models at a higher
abstraction layer must be obeyed and completely realized in the lower layer.

The system of abstraction layers is the backbone for the systematic and seameless
model-based development of software for embedded systems.

We propose the description of the system by using the following layers

functional layer,

logical layer,

technical layer.

4



In Figure 2 we intuitively present the three abstraction layers. As we will describe in the rest
of this paper, the different layers are defined such that the specific challenges in developing
software for embedded systems can be addressed. The level of abstraction decreases from the
top to the bottom ranging from the (partial) description of the system based on its requirements
to the description of its deployment on a technical platform. Each layer should make use of
suitable models which allow the description of the relevant development aspects in an adequate
manner. Furthermore, the models should be carefully chosen and seamlessly integrated in order
to support the transition between the layers without loss of information.

Figure 2: Abstraction layers intuition

The functional layer is responsible for a formalization of functional requirements, representing
them hierarchically and additionally illustrating their dependencies. By using formally founded
models, this layer provides the basis to detect undesired interactions between functions at an
early stage of the development process. Due to the high level of abstraction, this layer is a step
towards closing the gap to the informal requirements. Thus, it provides the starting point of
a formally founded model-based development process.

The logical layer addresses the logical component architecture. Here, the functional hierarchy
is decomposed into a network of interacting components that realize the observable behaviour
described at the functional layer. Due to this layer’s independence from an implementation,
the complexity of the model is reduced and a high potential for reuse is created.

The technical layer describes the hardware platform in terms of electronic control units (ECUs)
that are connected to busses. A deployment mapping is specified that maps the logical compo-
nents (defined in the logical layer) onto these ECUs. Thus, a physically distributed realization
of the system is defined and the complete middleware which implements the logical commu-
nication can be generated. Additionally, the interaction between the logical system and the
physical environment via sensors and actuators is modeled.

3 The Functional Layer

The starting point for the functional layer is a set of requirements for the behavior of the system.
These requirements can have different forms, for example the form of a textual documentation
of a set of individual requirements (e. g., text documents in Telelogic DOORS) or of a collection
of Use Cases. Assuming that all requirements to the system have already been collected in an

5



informal way, the functional layer represents the first step in capturing them as models and
thereby is the entry point in the model-based development process.

Functional requirements are captured as function hierarchies consisting of functions and de-
pendencies in-between. Each function realizes a piece of black-box functionality and is defined
by its syntactic interface and its behavioral specification. The syntactic interface comprises the
ports via which the function is connected to the environment, and the behavioral specification
defines the message exchange on these ports.

Aims The central aims of the functional layer are:

Definition of the boundary between the system under consideration and its environment;

Definition of the syntactical interface: abstract information flow between the system and
its environment;

Consolidation of the functional requirements by formally specifying the requirements on
the system behavior from the black-box perspective;

Mastering of feature interaction: detection and resolution of inconsistencies within the
functional requirements;

Reduction of complexity by hierarchically structuring the functionality from the user’s
point of view;

Understanding of the functional interrelationships by collecting and analyzing the inter-
actions between different (sub-)functionalities.

The functional layer provides a hierarchically structured specification of the system behavior
as it is perceived by the user at the system boundary (also known as usage behavior). Hereby,
a user may be a person but also another system. Thus, the system boundary of the entire
system is determined at the functional layer. The functional layer comprises the definition of
the system interface with surrounding systems and users. The behavior of the entire system
will then be specified from the black-box perspective by describing the exchange of messages
between the system and its environment. Hereby, the abstract data flow is specified, namely
the intentional meaning of the exchanged data (as opposed to the concrete message types). By
formally describing the requirements we lay the basis to measure the completeness and detect
inconsistencies of the requirements.

The overall system functionality can be obtained as the combination of sub-functions (with
respect to the dependencies between them). Hereby, the decomposition/structuring is not
guided by architectural or technical aspects but only done along the functional aspects required
by the users.

Thereby, an informal requirement can be realized by one or several functions and a function
is able to realize one or more informal requirements. The formalization of requirements on
the functional layer makes it possible to analyze existing requirements and thus to detect and
solve inconsistencies (e. g., feature interaction) and missing requirements.

6



4 The Logical Layer

The logical layer represents a realization of the functionality (including their dependencies)
defined within the functional layer by a network of communicating logical components. Com-
ponents declare a logical interface in terms of ports that can be connected via channels. The
behavior of a component is either defined directly (for example using an automaton) or in a
composite way by a network of sub-components. Thus, an entire system is specified by a tree
of hierarchical components.

Aims The main aims of the logical layer are:

Provide an architectural view of the system by partitioning the system into logical com-
municating components;

Definition of the total behavior of the system (as opposed to the partial behavior specifi-
cations described at the functional layer);

Simulation of the system based on the internal data flow between components;

Reuse of already existent components;

The functional and logical layers are two orthogonal structures of the system functionality. A
brief comparison of both layers is sketched in Table 1.

Functional Layer Logical Layer
Problem domain Solution domain
Black-box view of the system White-box view of the system
Structured by user’s functions Structured by architectural entities
Used primarily to specify what the system
should do

Used primarily to design the system

Functional specification may overlap and must
be checked for inconsistencies (horizontal de-
composition)

Network of communicating components (ver-
tical decomposition)

Captures the functionality of the system Works as a first cut at design
(Possibly) partial behavioral specification Total behavioral specification

Table 1: Brief Comparison of the Functional and Logical Layers

In contrast to the functional layer, in the logical layer, emphasis is no longer put on the
formalization of the functionality that can be observed at the system boundary but rather
on the structuring and partitioning of the system into logical communicating components.
The entire behavior of these components realizes the behavior determined by the functional
layer. In the broadest sense a logical component represents a unit which provides one or more
functions of the functional layer. Generally, there is a n : m relationship between functions
from the functional layer and components of the logical layer.

At the logical layer, structuring is done by means of the most diverse criteria, such as, for
example, a partitioning according to the hierarchy of the functional layer, according to the
organizational structure within the company, or according to non-functional requirements.

7



However, it is important to note that the logical layer abstracts from implementation details.
Therefore, some (non-functional) requirements should better be addressed in the technical
layer.

The logical layer provides a complete description of the system functionality, however, without
anticipating technical decisions with regard to implementation (e. g., the platform on which
the components will be deployed).

5 The Technical Layer

The technical layer serves as a “target model” for the model-based development of software
for embedded systems. It represents the layer with the lowest level of abstraction. This layer
provides models of the hardware on which the application logic has to run. A deployment
mapping is specified that assigns an ECU to every logical component. The technical layer
represents an abstraction from the details of the hardware that is employed. It focuses on the
aspects relevant for running the software in a distributed environment, e. g., the utilization of
ECUs, communication busses and peripheral devices.

Aims The main aims of the technical layer are

Describing the hardware topology on which the system will run including important char-
acteristics of the hardware;

Describing the actuators, sensors, and the MMI that are used to interact with the envi-
ronment;

Enabling a flexible (re-)deployment of the logical components to a distributed network of
ECUs;

Ensuring that the behavior of the deployed system conforms to the specifications of the
logical layer (e. g., time constraints).

The technical layer describes the topology of the hardware which is employed to execute the
system. A hardware topology consists of one or several ECUs that are connected by bus
systems. Additionally, actuators and sensors are connected to the ECUs. Given a model of the
logical components and a model of a hardware topology a deployment model can be specified.
Such a deployment model defines a mapping for each logical component to exactly one ECU.

After specifying a deployment for the logical components a port mapping model is needed. The
port mapping model defines a mapping of the input and output ports of the logical components
that are deployed onto a specific ECU to the sensors and actuators that are connected to this
ECU. Thus, the port mapping model defines the interaction of the logical behavior with the
physical environment.

The logical components are connected via logical channels to enable communication between
them. Depending on the deployment model these communication connections have to be
implemented as local communication on a single ECU or as remote communication via one
or several bus systems. Based on the specifications of the topology and the deployment, the
complete middleware can be generated.

8



There are several constraints that have to be fulfilled to ensure that the deployed system
behaves as specified in the logical layers: The ECUs must be ‘fast enough’ and provide enough
memory to be able to execute the logical components in time without violating assumptions
made in the logical layer. Also the bus systems must be capable to transfer all the signals in
time. These constraints must be proven correct by a set of static anlysis techniques (such as
schedulability analysis).

6 Crossing the layers

Once the layers are defined, it is important to define a clear and systematic method to bridge
the layers. Ideally, the transition between a more abstract layer and a more concrete one should
be done exclusively by adding more details and without loosing the abstract information. In
this case the concept of refinement can be employed to prove that the models at a more
concrete layer fulfill the requirements of the models at a more abstract layer.

The functional layer models only functional requirements. However, in practice there are
a multitude of other non-functional requirements and constraints that need to be considered.
These influence the transition between the models at different abstraction layers. As illustrated
in Figure 3, the refinement of an abstract model into a more concrete layer can be done in a
multitude of ways – i. e., there are several concrete models that are refinements of the abstract
model and that form the design space. Choosing one or another of these refinements is a
matter of engineering and design trade-offs and is influenced by non-functional requirements
such as reliability, or constraints such as the need to reuse a particular platform.

Figure 3: Crossing the layers intuition

7 Related Work

The presented approach to reduce complexity by a systematic software development for embed-
ded systems along domain-specific architectural layers is not new. In this section, we shortly
sketch approaches that have influenced the presented system of abstraction layers.

9



EAST ADL The EAST ADL (Electronics Architecture and Software Technology – Architec-
ture Definition Language) was developed in 2004 in the scope of the ITEA1 project EAST
EEA [ITE08], consisting of automotive manufacturers, suppliers, software manufacturers and
universities. The EAST ADL had been designed for the automotive domain and describes
software-intensive electric/electronic systems in vehicles on five different abstraction layers
starting from high-level requirements and features which are visible to the user to details
close to implementation, such as constructs of operating systems (e. g., tasks) and electronic
hardware.

The architectural layers of the EAST ADL served as a basis for the presented system of abstrac-
tion layers. With regard to contents and aims the Vehicle Feature Model and the Functional
Analysis Architecture of the EAST ADL can be seen as a counterpart of the functional layer.
The Functional Design Architecture vaguely corresponds to the logical layer and the abstrac-
tion levels of the Function Instance Model, the Platform Model and the Allocation Model
vaguely correspond to the abstraction level, which can be found on the technical layer.

The focus of the EAST ADL is hereby placed on describing the structural aspects and not on
describing the behavior. The description of the behavior mainly results from external tools.
Moreover, a formal basis for the models is missing within the East ADL. In contrast, our aim
is to describe the structure and the behavior of the system in an integrated way based on a
uniform formal basis. Thus, we want to go one step further and intend to create a basis for an
integrated and systematic development process based on a formal fundament.

Model Driven Architecture (MDA) Analogously to our approach, the MDA approach [MM03]
aims at mastering the complexity of todays systems by describing the system on differently
abstraction levels: It starts with an informal description of the system by the Computation
Independent Model (CIM). Based on the CIM, the Platform Independent Model (PIM) defines
the pure system functionality independently from its technical realization and at last the PIM
is translated to one or more Platform Specific Model (PSM) that computers can run.

While we are aiming at a system of abstraction layers which is specific for the development of
embedded systems or even specific domains, the MDA is a general purpose approach. Thus, the
presented system of abstraction layers can be seen as instantiation of the MDA-layers. Besides,
as mentioned in comparison to the EAST-ADL, our aim is to provide a uniform formal basis
for the models used at the different layers. MDA, however, is missing such a formal basis.

Further systems of abstraction layers At the chair of Software and Systems Engineering of
Prof. Broy, there already exists prelimary work on abstraction layers. As a result of the re-
search cooperation “software engineering for the automobile of the future - mobilSoft” between
automotive manufacturers, suppliers and research institutions, a set of automotive-specific ab-
straction layers has been designed and described in [WFH+06]. Also in other projects, e. g., Au-
toMode [BBR+05], VEIA [GHH07] REMSES [Pen08] systems of abstraction layers have been
used to some extend. In [WFH+06], a first step has been made to integrate the existing research
results into an integrated architectural model for engineering embedded software-intensive sys-
tems. We have carefully examined and taken into consideration all existing approaches while
developing the presented system of abstraction layers.

10



A Guiding Questions for the Feedback

In order to get feedback about the adequacy of the abstraction layers for the industry we
propose the following guidelines. Please think of a project that is relevant for the state of the
practice today in your company / application domain. If you think of the models that you are
using please answer the following questions:

How early in the process do you start modeling (since requirements, or design, ...)?

How are you using the models (e. g., only for documentation and communication, for
complex analysis, for code generation, ...)? Which models are you using in each of these
cases (e. g., statecharts, component diagrams, data-flow diagrams, ...)?

Which tools (or modeling dialects) do you use (e. g., UML-based tools, Statemate, ...)?

Which of the models can you map with which abstraction layer?

How do you specify the functionality?

How do you specify the architecture?

How do you specify the technical architecture on which the software is to be deployed?
How do you describe the deployment?

Are there models that cover several abstraction layers?

At which layer don’t you have any model?

Can you map all your models using the defined abstraction layers? If not, which informa-
tion are you missing?

If you are using models at different abstraction levels, how do you realize the transition
between the models?

How do you document the transition between models (e. g., through traceability links)?

Do you find the layers adequate / sensible?

Which layers are superfluous and which are missing?

If you have more feedback to give, please feel free to do so. The above questions represent only
a minimal feedback about the state of the practice in your industry domain with respect to
the abstraction levels. Thank you!

References

[BBR+05] Andreas Bauer, Manfred Broy, Jan Romberg, Bernhard Schätz, Peter Braun, Ul-
rich Freund, Núria Mata, Robert Sandner, and Dirk Ziegenbein. AutoMoDe —
notations, methods, and tools for model-based development of automotive soft-
ware. In Proceedings of the SAE 2005 World Congress, volume 1921 of SAE Special
Publications, Detroit, MI, April 2005. Society of Automotive Engineers.

11



[BFG+08] Manfred Broy, Martin Feilkas, Johannes Grünbauer, Alexander Gruler, Alexan-
der Harhurin, Judith Hartmann, Birgit Penzenstadler, Bernhard Schätz, and
Doris Wild. Umfassendes architekturmodell für das engineering eingebetteter
software-intensiver systeme. Technical Report TUM-I0816, Technische Universität
München, june 2008.

[CFF+09] Alarico Campetelli, Martin Feilkas, Martin Fritzsche, Alexander Harhurin, Judith
Hartmann, Markus Hermannsdörfer, Florian Hölzl, Stefano Merenda, Daniel Ratiu,
Bernhard Schätz, and Wolfgang Schwitzer. Model-based development – motiva-
tion and mission statement of workpackage zp-ap 1. Technical report, Technische
Universität München, 2009.

[GHH07] Alexander Gruler, Alexander Harhurin, and Judith Hartmann. Modeling the func-
tionality of multi-functional software systems. In 14th Annual IEEE International
Conference on the Engineering of Computer Based Systems (ECBS), volume 0,
pages 349 – 358, Los Alamitos, CA, USA, 2007. IEEE Computer Society.

[ITE08] ITEA. EAST-EEA Website. http://www.east-eea.net, January 2008.

[MM03] J. Miller and J. Mukerji. Mda guide version 1.0.1. Technical report, Object Man-
agement Group (OMG), 2003.

[Pen08] Birgit Penzenstadler. Tackling automotive challenges with an integrated re &
design artifact model. In Intl. Workshop on System/Software Architecture, 2008.

[WFH+06] Doris Wild, Andreas Fleischmann, Judith Hartmann, Christian Pfaller, Martin
Rappl, and Sabine Rittmann. An architecture-centric approach towards the con-
struction of dependable automotive software. In Proceedings of the SAE 2006
World Congress, 2006.

12


	TUM-I0925.ps



