Modeling Faults of
distributed, reactive Systems *

Max Breitling

Institut fiir Informatik us
Technische Universitdt Miinchen
D-80290 Miinchen, Germany
http://www.in.tum.de/ breitlin

Abstract. Formal methods can improve the development of systems
with high quality requirements, since they usually offer a precise, non-
ambiguous specification language and allow rigorous verification of sys-
tem properties. Usually, these mainly abstract specifications are idealistic
and do not reflect faults, so that faulty behavior - if treated at all - must
be specified as part of the normal behavior, increasing the complexity of
the system. It is more desirable to distinguish normal and faulty behav-
ior, making it possible to reason about faults and their effects.

In this paper the notions of faults, errors, failures, error detection, error
messages, error correcting components and fault tolerance are discussed,
based on a formal model that represents systems as composition of inter-
acting components that communicate asynchronously. The behavior of
the components is described by black-box properties and state transition
systems, with faults being modeled by modifications of the properties or
transitions.

1 Introduction

One of the goals of software engineering is the development of correct software.
Correctness needs to be defined, usually by a specification that describes the
system to be constructed in a precise and unambiguous way. The most rigor-
ous approach to establishing the correctness of the system under consideration
are formal methods, which allow us to prove that the system indeed meets its
specification.

Nevertheless, systems developed using formal methods can still fail: subcom-
ponents can be unreliable, some (possibly undocumented) assumptions turn out
to be invalid, or the underlying hardware simply fails. It can be argued that
this was caused by mistakes introduced during the formal development, e.g. by
making too idealistic assumptions about the environment. In this paper, we ex-
plore another approach: We embed the notion of a fault in the context of formal
methods, targeting two major goals:

— Support for the development of fault-tolerant systems, requiring a precise
definition of faults and errors.

* This work is supported by the DFG within the Sonderforschungsbereich 342/A6.



— Reduction of the complexity of formal development by allowing a method-
ological separation of normal and faulty behavior. After the fault-free version
of the system is developed, the possible faults and appropriate countermea-
sures can be integrated seamlessly in the system.

To model faults already at the level of specifications could sound contradictory,
because the specification is intended to describe the desired behavior, and no-
body wants faults! But in an early development phase it is normally unknown
which faults can occur in a system, simply because it is even still unknown
what components will be used and how they can fail. Nevertheless, certain kinds
of faults can be anticipated already during system development in general, as
e.g. by experience or for physical reasons: a transmission of a message can, for
instance, always fail. If these faults can be treated already at an abstract level by
a general fault handling mechanism, it is sensible to describe the faults already
within the specification, and not postpone it to a later phase in the development
process.

In this paper, we enrich the model of FOCUs with the notions of faults, errors,
failures and fault-tolerance and discuss their connections and use. Since Focus
offers methodological support for specifying and verifying reactive systems in-
cluding a formal foundation, description techniques, a compositional refinement
calculus and tool support, we expect benefits when FocCus is combined with re-
sults from the area of fault-tolerance. While most other approaches are concerned
mainly with foundations of fault tolerance, we try to keep an eye on the applica-
bility for users that are not experts in formal methods. Therefore, our long-term
target - not yet reached - are syntactic criteria for certain properties instead of
logical characterizations, diagrams instead of formulas, and easy-to-use recipes
how to modify systems to their fault-tolerant versions.

In the next section, we describe very briefly our system model of distributed,
interacting, reactive components. In Section 3 we introduce faults as modifica-
tions of systems. Section 4 contains a discussion how the formal definitions can
be used to describe fault assumptions, and detect, report and correct faults. In
the last section we conclude and discuss future work.!

2 System Model

Our system model is a variant of the system model of Focus [5,6]. A system
is modeled by defining its interface and its behavior. The system’s interface is
described by the (names of the) communication channels with the types of the
messages that are sent on them. The (asynchronous) communication along all
channels is modeled by (finite or infinite) message streams. The behavior of a
system is characterized by a relation that contains all possible pairs of input and
output streams. This relation can be described in (at least) two ways on different
abstraction levels.

! Due to lack of space, all examples are omitted but can be found in an extended
version of this paper on the author’s homepage.



A Black Box Specification defines the behavior relation by a formula @ with
variables ranging over the input and output streams. The streams fulfilling these
predicates describe the allowed black-box-behavior of a system. We can use sev-
eral operators to formulate the predicates, as the prefix relation C, the concate-
nation of streams — and the expression s.k for the k-th element of a stream s,
to mention just a few [5].

A more operational State-Based View is offered by State Transition Systems
(STS) that describe the behavior in a step-by-step manner: Depending on the
current state, the system reads some messages from the input channels, and
reacts by sending some output and establishing a successive state. A STS is
defined by its internal variables with their types, an initial condition, a set T
of transitions and T of environment transitions, precisely formalized in [3].
The possible behaviors of a system are described by the set ((S)) containing all
executions £ of the system. Executions are defined in the usual way as sequences
of states cv. A STS can be defined in a graphical or tabular notation.

Both views on systems can be formally connected: An infinite execution of
a STS defines least upper bounds for the message streams that are assigned to
the input/output channels, and therefore establishes a black-box relation. In [3,
4] the language, semantics and proof techniques are investigated in detail.

Focus offers notions for composition and refinement supporting a top-down
development of systems. The behavior of a composed system &; ® S» can be
derived from the behavior of its components. The interface refinement S; fuk fo
S, states that the executions of Sy are also executions of §; with modifications
at the interface described by the relations Ry, Ro. Compositionality ensures that
refining a systems component means refining the overall system.

3 Modifications and Faults

Intuitively, faults in a system are connected with some discrepancy between an
intended system and an actual system. To be able to talk about faults, their
effects and possible countermeasures, we need a clear definition of the term
fault. We suggest to identify faults with the modifications needed to transform
the correct system to its faulty version.

In this section, we define modifications of systems, both for the black-box
and the operational view, and base the notions of fault, error and failure on
these modifications.

3.1 Modifying a System

In the process of adapting a specified system to a more realistic setting containing
faults, we have to be able to change both the interface and the behavior.

Interface modifications We allow the extension of a type of a channel and the
introduction of new channels. The behavior stays unchanged if the specification
is adjusted so that it ignores new messages on new input channels, while it may
behave arbitrarily on new output channels. For development steps towards a



fault-tolerant system it is normally expected that the behavior does not change
in the case faults do not occur. Therefore we are interested in criteria for be-
havior maintenance that are easy to be checked. For interface modifications,
these criteria can be defined syntactically according to the description technique
used, as e.g. black-box formulas, tables or state machines. We do neither allow
the removal of channels nor a type restriction for a channel, because this could
easily lead to changes of the behavior. A change of the types for the channels
follows the idea of interface refinement. Under certain conditions, these changes
maintain (the properties of) the behavior. In this paper, we will not investigate
this topic.

Behavior modifications A fault-affected system normally shows a different be-
havior than the idealistic system. Instead of describing the fault-affected system,
we focus on the difference of both versions of the system and suggest a way to
describe this difference for black-box views and state machines.

Having @ as the black-box specification of the fault-free system, we need to
be able to strengthen this predicate to express further restrictions, but also to
weaken it to allow additional I/O-behaviors. We use a pair of formulas M =
(Pg,Pr) and denote a modified system by

SAM (read: ® modified by M)
whose black-box specification is defined by
(@ A ¢E) vV &

The neutral modification is denoted by (true, false), and the modification towards
an arbitrary ¥ is expressed by (false, ¥).

For a state-based system description, we express modifications of the behavior
by modifications of the transition set (as e.g in [1,9, 12]). Obviously, we can add
or remove transitions and define a behavior-modification M by a pair (E, F') of
two sets of transitions. The set E contains transitions that are no longer allowed
in an execution of the modified system. The set F' contains additional transitions.
The transitions in F' can increase the nondeterminism in the system, since in
states with both old and new transitions being enabled, the system has more
choices how to behave. We can use F' to model erroneous transitions the system
can spontaneously take. The executions of a modified system are defined by

(SaM) Z{e| (Ek, (Ek+1) e(T\E)UF U T}

i.e. a non-environment transition has to be in F or in T but not in E. In this
formalism, (&, @) is the neutral modification, and choosing E to contain all
transitions and F' as arbitrary set of transitions shows that this formalism is
again expressive enough.

It is an interesting but open question if and how both notions for modifica-
tions can be connected. If @ is a property of a STS S, and both are modified in
a similar way, then @A (P, P ) should be the modified property of the modified
system SA(E, F). Similar approaches and partial results are discussed in [2,7,
13].



3.2 Combining Modifications

To explore the effect of multiple modifications, we define the composition of
modifications. For black-box specifications, the operator + combines two modi-
fications (@Y, ®%) of a system (i = 1,2), assuming ¢}, = ¢3, and &3, = &}, to
one modification by

(P, ) + (2%, 9%) = (P A 8%, Py V F)

We reuse the operator + for transition systems, and define for (E;, F;), assuming
EyNFy;, =@ and E; N F; = @, the combination

(Er, F1) + (B2, Fy) = (By U By, F1 U Fy)

The assumptions avoid confusion about executions resp. transitions that are
added by one modification but removed by the other, and asserts the following
equalities, with S representing @ resp. S:

SAM; + My) = (SAM)AMy = (SAM2)AM;

We can use this operator to express combinations of faults for defining the notion
of fault-tolerant systems.

For a composite system S = S! ® S? we can derive the modification of this
system from the modifications of its constituents, and can calculate the impact
of a fault of a component upon the overall system. For black-box specifications,
we define the derived modification of the system by

by =D NP3, bp = (D' ND3) V (D% A D)) V (P A DT,)

For modifications of the transition sets of the components, we can define M =
(E, F) with (A denotes the pairwise conjunction of elements of both sets)

EZSE AT UTiAE, and FEZFATs U TfAF

With the same assumptions for the component’s modifications as above, this
results for both formalisms in

SAM = (§1AM1) ® (SeAM>)

3.3 Faults, Errors and Failures

In the literature the meaning of the terms fault, error and failure is often de-
scribed just informally (e.g. [10,11]). In our setting, we can define these notions
more precisely.

The faults of a system are the causes for the discrepancy between an intended
and actual system. Therefore, it makes sense to call the transitions of a mod-
ification M the faults of a system. What is called a fault of a system cannot
be decided by looking at an existing system alone; this normally depends on



the intended purpose of the system, on an accepted specification and even on
the judgment of the user or developer. What one person judges as fault, the
other calls a feature. The definition of modifications given in the previous sec-
tions is intended to offer a possibility to document that decision, and explicitly
represent the faults in a modified system. Of course, the modified system could
be described by one monolithic specification without reflecting the modifications
explicitly, but it is exactly this distinction between “good” and “bad” transitions
that allows our formal definitions.

A fault can lead to an erroneous state, if an existing faulty transition is taken
during an execution of the system. We define a state < to be an error (state) if
this state can only be reached by at least one faulty transition. The set of errors
of a system S under the modifications M = (E, F) is defined as

ERROR(S,M) £ {a |Vk € N, € (SAM)) o
Ck=a=3l<ke(tle(l+1)eF}

Note that all unreachable states are error states, and the set E enlarges the
set of unreachable states. The set of correct states can be defined as the set of
valuations that can be reached by normal transitions (in T') only. As long as
we do not require F N T = &, it is possible that states are both correct states
and error states. We cannot sensibly define errors for the black-box view, since
neither states nor internals do exist in that context.

A failure is often defined as a visible deviation of the system relative to some
specification. Since we can distinguish the inside and outside of systems, we can
also reflect different visibilities of errors. Our definition of a failure depends on the
kind of specification: If we regard a black-box specification @ as the specification
of a system, a failure occurs in a state «v if the property gets violated in that
state. But we can also define a failure if the unmodified STS S is understood as
specification, and SAM as faulty system. An error state v is additionally called
a failure if all states with the same visible input/output behavior are error states:

FAILURE(S,M) £ {a. |V e f'Z o= 3 € ERROR(S, M)}

Two valuation v and /3 coincide on a set of variables V, if they assign the same
value to all variablesin V,ie.a =3 e Vve Vea.v=[.v.

3.4 Internal vs. External Faults

Up to this point, we focused on internal faults: The behavior deviation resp.
the faulty transitions occurred inside the system. But a system can also suffer
from faults taking place outside a system, i.e. in its environment. A discussion
of failures of the environment requires explicit or implicit assumptions about its
behavior. An explicit assumption can be formulated in the context of black-box
views by a formula that describes the assumed properties of the input streams.
If this assumption is not fulfilled, the system’s behavior is usually understood
to be not specified so that an arbitrary, chaotic behavior may occur. We think



this situation relates to an external fault, and should be treated by a reasonable
reaction of the system instead of undefined behavior. We need further method-
ological support offering notions of refinement for these cases: Given an assump-
tion/guarantee specification A/ G, we need to be able to weaken A and adapt G
so that the original behavior stays untouched if no external faults occur, but a
sensible reaction is defined if they do.

The type correctness of the input messages can be regarded as another ex-
plicit assumption about the environment. If the interface is changed so that new
messages can be received, we have to refine the behavior of the system in an
appropriate way.

If the system is specified by a STS, but no explicit environment assumptions
are defined, we can nevertheless try to find implicit assumptions. If the system
is in a certain state, it is normally expected that at least one of the transitions
should be eventually enabled. It some cases, it can indeed be meant that a system
gets stuck in certain situations, but normally a weak form of liveness is wanted:
The inputs should finally be consumed, and a state where a system gets stuck
is a kind of error state with invalidated liveness. We regard these questions and
the distinction of internal and external faults as an interesting area for future
research.

4 Dealing with Faults

Introducing a formal framework for formalizing faults needs to be accompanied
with some methodological advice how the formalism can be used. In this section,
we discuss how fault occurrences and dependencies between fault models can be
expressed by virtual components, mention requirements for error detection and
the introduction of error messages and define fault-tolerance.

4.1 Refined Fault Models

To describe a system with certain faults, we can modify a system accordingly by
adding fault transitions. In specific cases, these modifications could change the
behavior too much, since these transitions can be taken whenever they are en-
abled. Sometimes, we want to express certain fault assumptions that restrict the
occurrence of faults. For example, we would like to express that two components
of a system can fail, but never both of them at the same time, or we want to
express probabilities about the occurrence of faults, e.g. state that a transition
can fail only once in n times, for some n.

To be able to formalize these fault assumptions, we suggest to introduce ad-
ditional input channels used similar to prophecies. The enabledness of the fault
transitions can be made dependent on the values received on these prophecy
channels. We can then add an additional component that produces the prophe-
cies that represent the fault assumption. During the verification, these virtual
components and prophecy channels can be used as if they were normal compo-
nents, even though they will never be implemented.



4.2 Detecting Errors

Error detection in our setting consists, in its simplest case, of finding an expres-
sion that is true iff the system is in an error state. The system itself must be able
to evaluate this expression, so that this expression can be used as a precondition
for error-correcting or -reporting transitions.

An easy way to detect errors is a modification of the fault transitions so
that every fault transition assigns a certain value to an error-indicating variable.
For example, a fault transition can set the variable fault to true, while normal
transitions leave this variable unchanged, as suggested in [12]. But this approach
assumes the fault transitions to be controllable, which is in general not the case:
The faults are described according to experiences in the real world, e.g. messages
are simply lost from a channel without any component reporting this event. We
could change this lossy transition to one that reports its occurrence, but this
new variable fault may only be used in proofs for investigating the correctness
of the detection mechanism, but this is not a variable that is accessible by the
system itself. We have to deal with given faults described by modifications that
we must accept untouched, but nevertheless we want to detect them.

We suggest a way to handle errors that can be detected by finding inconsis-
tencies in the state of the system. The consistency can be denoted as a formula
¥ that is an invariant of the unmodified system. It can be proved to be an in-
variant by the means of [3]. We can then remove all transitions with = ¥ as
precondition (via E) and add a new error reacting transition with an intended
reaction (via F'). Normally, a system occasionally contains transitions that are
enabled if = ¥ simply because a set of transitions can be indifferent to unspec-
ified properties. Such a modification does not change the original system, but
allows the specification of reactions, e.g. by sending an error message.

This approach is conceptually the easiest way, since error detection is imme-
diate, but it is not always realistic. In [1] a more general approach is presented,
that also allows delayed error detection. We have to integrate this idea also
in our stream-based setting, being specially interested in a notion of a delayed
detection that still occurs before an error becomes a failure.

4.3 Error Messages

Once we enabled a system to detect an error, we want it to react in an appropriate
way. If errors cannot be corrected, they should at least be reported. Sending and
receiving of error messages has to be integrated in the system without changing
its fault-free behavior.

In Section 3.1 we already saw that by adding an additional output channel,
with arbitrary messages sent, the behavior will only be refined. So, extending a
system to send error reporting messages is easy: We can add a transition that
sends an error message in the case an error is detected while it leaves all other
variables in ¥ unchanged, and we refine the other transitions to send no output
on this channel.



We also want to react to error messages from other components. Therefore,
we must be able to extend a component by a new input error message channel,
and adapt the component to read error messages and react to them. A further
transition in the system that reads from the new channel and reacts to it can
easily be added while other transitions simply ignore the new channel.

4.4 Correcting Faults

We described ways how a system can be modified to contain anticipated faults
already at the abstract level of specifications. The deviations of such a modified
system can show different degrees of effect: The effects of the faults are harmless
and preserve the properties of a specification, or the faults show effects that vio-
late the specification, but they are correctable, or the faults lead to failures that
are not correctable. The first case is of course the easiest since no countermea-
sures have to be taken for the system to fulfill its specification. In the last case,
faults can only be detected and reported, as described in the previous sections.

For correctable faults the system usually must be extended by mechanisms
that enable the system to tolerate the faults. Several mechanisms are known,
implementing e.g. fail-stop behavior, restarts, forward or backward recovery,
replication of components, voters and more. All of these are correctors in the
sense of [1].

A methodology supporting the development of dependable systems should
offer patterns that describe when and how these mechanisms can be integrated
in a specified system, together with the impact on the black-box properties. For
example, a fail-stop behavior can be modeled by introducing a new trap state
that was not yet reachable before, and that does not consume or generate any
messages, while safety properties are not compromised.

There is a special case of (local)correction of faults that can be done by new
components in a system that catch the effect of faults of a component before
they spread throughout the system. These new components, that we call drivers,
are placed between the fault-affected component and the rest of the system.
Depending on the characteristics and severity of the faults, the driver controls
just the output of the component, or controls the output with the knowledge of
the input, or even controls input and output, as showed in the following figure.
The last variant is the most general one, and could tolerate arbitrary failures by
totally ignoring the faulty component and simulating its correct functionality.

— S T3 - - S -

Since we already know how to specify components and how to compose compo-
nents to systems, fault correction can be integrated as an ordinary development
step, so that results concerning methodology [5], tool support [8] and proof sup-
port [3,4] can be used.




4.5 Fault-tolerance

Usually, fault-tolerance is interpreted as the property of a system to fulfill its
purpose despite the presence of faults in the system, but also in their absence (as
pointed out e.g. in [9]). In our formalism, this could be expressed by the following
monotonicity property, stating that all partial modifications of a system should
maintain a certain property.

V(E',F'Ye E'CEANF CF = SA(E,F)=®

We think this condition is too strong, since too many partial modifications
have to be considered. Assume a fault - being tolerable - that can be modeled
by a change of a transition, expressed by removing the old and adding the new
transition. If we just add the new one, but do not remove the old transition, we
have a partial modification that could never happen in practice but results in a
system with intolerable faults. Partial modifications are too fine-grained if they
are based on single transitions.

We suggest that a statement about fault-tolerance must be made explicit by
specifying the faults and combinations of faults for which the system should have
certain properties. As opposed to other approaches [9,12], a modification (with
a nonempty E) can change a system so that it cannot show any execution of the
original system. So, if a property is valid for the modified system, it is possibly
not valid for the unmodified system.

In our setting, explicit fault-tolerance can be expressed by generalizing our
expressions to allow sets of modifications. The following expression is defined to
be valid if Vi e SAM; E &.

SA{Mo,Ml,Mz, .. } |: [

For a statement about fault-tolerance, the empty modification (&, &) has to be
contained in the modification set, and the desired combinations of modifications
must be explicitly included. The induced number of proof obligations needs
further methodological support.

5 Proving Properties

The additional effort imposed by the use of formal methods for formalizing a
system is rewarded by the possibility to prove that the systems have certain
properties. While many formalisms offer this possibility theoretically, it is also
important to offer methodology to find the proofs. In [3, 4] we presented a way
of proving properties for our system model, using proof rules, quite intuitive
diagrams and tool support.

It is crucial for a successful methodology that proofs can be found with
reasonable effort. For fault-tolerance, it is desirable that proof obligations can be
shown in a modular way. Results for an unmodified system should be transferred
to modified results for the modified system. If properties of the correct system

10



are already shown, this result should not be invalidated totally by modifying the
system so that the verification has to start again from scratch. The existing proof
should only be adapted accordingly, reflecting the modifications, using already
gained results.

So it seems to be an interesting research topic to find notions for modifying a
proof. Since a proof can be represented by a proof diagram, it can be promising
to investigate modifications of proof diagrams. If a transition is removed (by E),
a safety diagram stays valid also without this transition. In a liveness diagram,
new proof obligations emerge in this case, since the connectivity of the graph
must be checked again. Adding a transition via F' will - in most cases - destroy
the validity of a safety diagram, and will even introduce new nodes. These new
nodes have to be checked relative to all other transitions of the system, and they
will also appear in the liveness diagram, leading to a bunch of additional proof
obligations there. Nevertheless, parts of the diagram stay unchanged and valid,
representing a reuse of the existing proof.

6 Conclusions

This paper discusses how faults can be modeled in the context of distributed
systems, composed of components that interact by asynchronous message pass-
ing. We have shown how the behavior of such systems can be specified, using an
abstract black-box view or an operational state-based view. Faults of a system
are represented by the modifications that must be applied to the correct system
to obtain the faulty system. Modifications can change both the interface and
the behavior. For a modified system we can characterize its error states and
failures. Once the faults resp. modifications of a system are identified, the ways
how errors can be detected, reported, corrected and tolerated are also discussed,
mostly informally, in this paper.

Future Work The topic of the formal development — including the specifica-
tion, verification, and stepwise refinement — of fault tolerant systems is not yet
explored to a satisfying degree with concrete help for developing systems with
faults. It is a challenging task to combine various results found in literature
with this paper’s approach based on message streams and black-box views. An
ideal formal framework combines the benefits of different approaches, and offers
solutions to several aspects as formal foundation, methodology and verification
support.

For a framework to be formal, precise definitions for all notions must be de-
fined. We need a formal system model that is enriched by notions for faults and
their effects, errors, failures, changes of interfaces and internals, fault assump-
tions, adaption of properties to modifications of the system, composition and
refinement of faults. But a language to express statements about fault-affected
or -tolerant systems is not enough, some methodological advice for its use is also
needed, offering ideas how to use this language: When and why should faults
be described, how can we refine a system to stay unchanged in the fault-free

11



case, but improve its fault tolerance in the presence of faults? Formal methods
allow for formal verification. This has to be supported by suitable proof rules,
but even this is not enough: We also need description techniques for proofs and
tool support for generating proof obligations and finding and checking proofs.
Finally, only convincing case studies are able to show a recognizable benefit of
the idea to formally develop fault-tolerant systems.

References

10.

11.

12.

13.

. Anish Arora and Sandeep Kulkarni. Detectors and correctors: A theory of fault-

tolerance components. IEEE Transactions on Software Engineering, 1999.

Max Breitling. Modellierung und Beschreibung von Soll-/Ist-Abweichungen. In
Katharina Spies and Bernhard Schéatz, editors, Formale Beschreibungstechniken
fur verteilte Systeme. FBT’99, pages 35—44. Herbert Utz Verlag, 1999.

Max Breitling and Jan Philipps. Step by step to histories. In T. Rus, editor,
AMAST2000 - Algebraic Methodology And Software Technology, LNCS 1816, pages
11-25. Springer, 2000.

Max Breitling and Jan Philipps. Verification Diagrams for Dataflow Properties.
Technical Report TUM-I0005, Technische Universitat Miinchen, 2000.

Manfred Broy and Ketil Stglen. Specification and Development of Interactive Sys-
tems - FOCUS on Streams, Interfaces and Refinement. Springer, 2000. To appear.
Homepage of FOCUS. http://www4.in.tum.de/proj/focus/.

Felix C. Géartner. A survey of transformational approaches to the specification and
verification of fault-tolerant systems. Technical Report TUD-BS-1999-04, Darm-
stadt University of Technology, Darmstadt, Germany, April 1999.

Franz Huber, Bernhard Schétz, Alexander Schmidt, and Katharina Spies. Auto-
Focus - A Tool for Distributed Systems Specification. In FTRTFT’96, LNCS 1135,
pages 467—-470. Springer, 1996.

Tomasz Janowski. On bisimulation, fault-monotonicity and provable fault-
tolerance. In 6th International Conference on Algebraic Methodology and Software
Technology. LNCS, Springer, 1997.

J.C. Laprie. Dependability: Basic Concepts and Terminology, volume 5 of Depend-
able Computing and Fault-Tolerant Systems. Springer, 1992.

P.A. Lee and T. Anderson. Fault Tolerance - Principles and Practice. Springer,
second, revised edition, 1990.

Zhiming Liu and Mathai Joseph. Specification and verification of recovery in asyn-
chronous communicating systems. In Jan Vytopil, editor, Formal Techniques in
Real-Time and Fault-Tolerant Systems, pages 137 — 166. Kluwer Academic Pub-
lishers, 1993.

Doron Peled and Mathai Joseph. A compositional framework for fault-tolerance
by specification transformation. Theoretical Computer Science, 1994.

Acknowledgments 1 am grateful to Ingolf Kriiger and Katharina Spies for inspiring
discussions and their comments on this paper, and thank the anonymous referees for
their very detailed and helpful remarks.

12



