Interpreter Verification
for a Functional Language

Manfred Broy, Ursula Hinkel, Tobias Nipkow*, Christian Prehofer ™,
Birgit Schieder

Technische Universitat Minchen™**

Abstract. Starting from a denotational and a term-rewriting based op-
erational semantics (an interpreter) for a small functional language, we
present a correctness proof of the interpreter w.r.t. the denotational se-
mantics. The complete proof has been formalized in the logic LCF and
checked with the theorem prover Isabelle. Based on this proof, conclu-
sions for mechanical theorem proving in general are drawn.

1 Introduction

Compiler and interpreter verification is a key component in the correctness ar-
gument for any software system written in a high-level language. Otherwise the
carefully verified high-level programs might be compiled or interpreted incor-
rectly. Proving the correctness of machine oriented programs [3] instead may be
inevitable for some applications, but is methodologically a step backwards.

Verification of compilers and interpreters is also challenging from a theoretical
point of view because complex semantical questions are involved [5, 6]. These
comprise the formalization of semantical definitions and proof methods that are
powerful enough to show the equivalence between quite different definitions of
the semantics of programming languages.

When proving compilers correct, one of the difficulties is the treatment of re-
cursion, which is handled by the fixpoint operator in the denotational semantics
of the source language and by a stack discipline and gotos at the level of machine
programs. This problem is dealt with in [4]. In the verification of interpreters
similar problems have to be solved: here, recursive definitions are treated by un-
folding at the level of syntax. Technically, the operational semantics defined by
an interpreter 1s formalized by a recursive function transforming syntactic terms
of the source language. This paper describes the correctness proof of an opera-
tional with respect to a denotational semantics for a small functional language.
The main contributions are:

— The complete proof has been machine checked with the help of Tsabelle [16],
a generic theorem prover.

* Research supported by ESPRIT BRA 6453, TYPES
** Research supported by DFG grant Br 887/4-2, Deduktive Programmentwicklung
*** Institut fiir Informatik, 80290 Miinchen, Germany.
E-mail: {broy,hinkel,nipkow,prehofer,schieder}@informatik.tu-muenchen.de

— Our notion of correctness of an interpreter is significantly stronger than
most correctness conditions considered in other machine-checked compiler
or interpreter proofs. We prove that whenever the outcome of a program is
defined according to the denotational semantics, the operational semantics
leads to a terminating computation with the same outcome. Thus we prove
partial and total correctness by a single verification condition.

The paper is structured as follows. In Section 2 the syntax of the functional
language, its denotational semantics, the definition of the interpreter and the
basic correctness condition are given. In Section 3 the verification support sys-
tem Isabelle/LCF is explained by describing its syntax, its basic type concept
and its induction proof principle. In Section 4 the proof task is formalized in
Isabelle/LCF. In Section 5 the structure and size of the proof is described. In
Section 6 general aspects of machine support for large proofs are discussed.

2 The Interpreter and its Correctness

We define syntax and denotational semantics of FOFL, a first-order functional
language, and an interpreter for it. Then we outline a correctness proof of the
interpreter. FOFL is purposely kept small in order to focus on the main non-
trivial aspect: proving the interpretation of recursively defined functions correct.
Our interpreter is given as a recursively defined function, whereas in the litera-
ture, e.g. [19, 8], operational semantics is often given by means of inference rules.
Therefore our verification task differs from those in the literature.

Syntax FOFL contains function application, conditional expressions, and re-
cursive function definitions. Let @ be a set of predefined function symbols with
at least two constants true, false € @, let I’ a set of user-definable function
symbols, and let V' a set of variables. Each function symbol has a fixed finite
arity.

The set T of terms is defined inductively:

— z €T for every variable z € V.

— p(t1,...,ty) € T is an application of a predefined function symbol ¢ € & of
arity n to terms ty,...,t, € T.

— f(t1,...,ty) € T is an application of a user-definable function symbol f € F/
of arity n to terms ty,...,t, € T.

— if {y then ¢, else t5 fi € T for all terms tg,tq,1o € T

— (fix f(z1,...,2n) = to)(t1,...,ts) € T is the application of a recursively
defined function f € F' (with formal parameters z1,...,2, € V and body
to) to terms ty, ..., ¢, € T.

The set P of programs consists of all closed terms (that is, terms without free
variables). FOFL is first-order because functions cannot have functions as argu-
ments or return them as results.

Denotational Semantics We follow the standard theory of denotational se-
mantics, see e.g. [12]. Let D be a set of data values equipped with a flat order.

The algebra A assigns a continuous function ¢4 to each predefined function sym-
bol ¢ € @. Env is the set of environments that assign data values to variables,
and functions to user-defined function symbols. The functions lookupvar and
lookupfct yield the values assigned to variables and functions, respectively, by
an environment 7. The operator FIX yields the least fixpoint of a functional. We
write IF . THEN . ELSE . FI for the conditional on the meta-level. The notation
[./.] is overloaded and denotes substitution as well as update of functions. It is
used as a postfix operator.

The denotational semantics i1s defined by a function 7 : 7" — Env — D
specified as follows:

T [«]n = lookupvar z 5

Tle(ts, .. ta)ln = o (T[taln, ..., T[ta]n)

TIf(t1, ..., tn)n = (lookupfetf n)(T[ti]n, ..., T[tu]n)

T[if to then ty else is fi]n = IF Tio]lp THEN T[t1]n ELSE T t2]n Fl

TI(fix f(z1,...,20) =to)(t1,. .., ta)]n = (FIX)T [tidn, - -, T[taln)
where 7 = Ag. Ady, ..., dn. Ttolnldi/x1, ..., dn/2xn, g/ f]

The Interpreter Let I be the set of all closed terms over @. Let a continuous
boolean function normal be given, which yields true on a subset of W. The terms
of this subset are called normal forms. Among them are true and false. The
continuous function eval evaluates each term of W to its unique normal form.
If t is a term in W, we write ¢4 for its interpretation in the algebra A.

The interpreter is based on the function reduce, which performs a single
reduction step on a program ¢ € P:

t € W = reduce[t] = eval[t]
oty .. ty) @ W = reduce[p(ty, ..., tn)] = p(reducelti], .. ., reduce[t,])
—normal[ty] = reducefif ty then t; else t5 fi] =

if reduce[to] then ¢, else t» fi

reduce[if true then ¢, else t5 fi] = {3

reduce[if false then t; else 5 fi] = {5

reduce[[(fix f(x1,...,2n) =to)({t1,.. ., tn)] =
tol(fix fmy,...,2n) =t0)/fit1/e, .. tn/@n)

The interpreter is recursively defined by the function wal, which applies reduce
to a program ¢ until a normal form is reached:

val[t] = IF normalt] THEN ¢t ELSE val[reduce[t]] FI

Interpreter Correctness Proof We call an interpreter correct with respect
to a denotational semantics if the following property holds: whenever the de-
notational semantics assigns a defined value to a program, then the interpreter
terminates with the same value. If a program has the undefined value under the
denotational semantics, then its interpretation may terminate with any value

or not terminate at all. Since the data domain D carries a flat order, we can
state interpreter correctness formally as follows, where void denotes the empty
environment:

Yt € P : T[t]void C wal[t]* (1)

A proof by structural induction over ¢ looks promising, but there is a problem.
In the case of function definitions the induction hypothesis is not applicable for
two reasons: the function body need not be a closed term and the environment
in which 1t is evaluated is not empty. Hence we face a typical problem of proofs
by induction: the induction hypothesis is not strong enough and must therefore
be generalized.

The main difficulty consists in finding a suitable generalization of the cor-
rectness condition. As we have seen, we need inequations of the form T [¢]n C
val[u]*, where t is not necessarily closed, 1 not necessarily empty, and u a closed
term. Since this inequation does certainly not hold for all such ¢, 5, and u, we
must find a relation ~ between terms and environments on the one hand, and
interpreted programs on the other hand, such that ~ has the following proper-
ties:

1. The implication (t,n) ~ u = 7 [t]n C val[u]? is provable by structural
induction over ¢.
2. For all closed terms t we have (¢, void) ~ ¢.

Proposition (1) follows directly from these conditions.

We will not give the exact definition of ~, but describe it only informally.
We say that (t,7) ~ u holds if u is obtained from ¢ by a substitution with the
following two properties:

— For each free variable & of term ¢ the following holds: the environment 75
assigns a value to x that is less or equal to the result of interpreting the term
that is substituted for x in w. This property will be called WV (weaker in
variable) in Sect. 5.

— For all user-definable function symbols f the following holds: if the environ-
ment 7 assigns a function to f, then this function is less or equal to the
result of interpreting the declaration that is substituted for f in w. If n does
not assign a function to f, then f is not substituted in w. This property will
be called WF (weaker in function) in Sect. 5.

The generalized correctness condition reads:
Yt € T,¥n € Env,Yu € P : (t,n) ~ u = T[t]n C val[u]* (2)

We prove this generalized correctness condition by structural induction over ¢.
The most difficult case is application of a function definition (fix f(z1,...,z,) =
to)(t1,...,tn). We must find and prove an auxiliary property: the least fixpoint
of the functional associated with the declaration is less or equal to the result of
interpreting the function definitions. This property is proved by fixpoint induc-
tion inside the structural induction.

The remaining cases of ¢ are not difficult to prove, but require a lot of tech-
nical lemmata. These lemmata primarily concern invariance of ~, and substi-
tutions. The whole hand-written proof consists of about 70 pages. More details
can be found in [18].

3 Isabelle/LCF

The proof described in the previous section does not make use of a specific logical
system but relies on general notions from domain theory, e.g. L, C and fixpoints.
The obvious choice for a machine-assisted version of the proof is LCF [7], a Logic
for Computable Functions, which formalizes standard domain theory. Having
fixed the precise logic, we still had a choice between two theorem provers sup-
porting this logic: Cambridge LCF [15] and Isabelle/LCF. Cambridge LCF is
dedicated solely to theorem proving in LCF whereas Isabelle [16] is a generic
theorem prover which supports a host of other logics apart from LCF, e.g. First-
Order Logic (FOL), Zermelo-Fraenkel set theory (ZF) and Higher-Order Logic
(HOL). Tsabelle can be instantiated with the syntax and proof rules of the object
logic; Isabelle/LCF is the LCF instantiation of Isabelle.

Isabelle offers many principles for interactive theorem proving not present
in Cambridge LCF: schematic variables (“logical variables” in Prolog parlance),
higher-order unification and proof search via backtracking. These features give
rise to powerful proof procedures which are a definite advance in automation over
what Cambridge LCF has to offer. Thus we opted for Isabelle/LCF, which is an
extension of Isabelle/FOL and follows the logic LCF as described by Paulson [15]
as closely as possible. We will therefore concentrate on the differences between

LCF and Isabelle/LCF.

Syntax Due to Isabelle’s flexible front-end, the only syntactic difference is
that curried application f x y, where f : 7 — 79 — 73, is written f(z,y).
Correspondingly, 71 — 79 — 73 may be written [y, 73] — 73.

Types Isabelle’s type system is fairly close to that of LCF, namely ML-style
polymorphism. However, LCF has both continuous functions, which are iden-
tified with Isabelle’s built-in function type, and predicates. Predicates are for-
malized in Isabelle as functions with result type o, the type of formulae. Thus
Isabelle/LCF needs to support two kinds of functions, because predicates need
not be continuous. Otherwise one could define X = FIX(AP.—P) and derive
the contradiction X «— —X.

This problem can be solved using Isabelle’s type classes, an overloading
scheme similar to the one in the functional programming language Haskell [10,
13]. In Isabelle/LCF we simply declare a new class cpo, which is the class of all do-
mains. We can now restrict certain constants to be available only at types which
are of class epo: L : Vaiepo.ar, C : Vaiepo. o, o] — o, FIX Vaepo.(a — a) — a.
In all three cases the type variable o ranges only over types of class epo. The
type o is not of class cpo, thus ruling out the term X above. If a type is declared
to be in class cpo, e.g. nat : cpo, this means we can write formulae like L C 0.
Of course the behaviour of C on nat has to be axiomatized explicitly and does

not follow automatically from nat : cpo.

Finally we need to say that 71 — 75 is of class epo provided both 7 and
7o are. However, this is only true if all terms of type 7 — 75, where 71,7 :
cpo, are constructed from continuous functions by abstraction and application.
Unfortunately one can construct Az.f(¢(x)), where g :m — o, f:0 —mando
is not a domain, and hence the composition of f and g need not be continuous.
Fortunately, this situation can be ruled out quite easily:

1. All types except o are required to be domains, i.e. of class cpo.
2. There are no functions of type 0 — 7 where 7 : epo.

These restrictions correspond exactly to the ones in LCF where all types must
be domains (there is no type of formulae), and there are no functions taking
formulae as arguments.

The restriction that all types must be domains is a fairly severe one and
causes many complications. Regensburger [17] solves this dilemma by a semantic
embedding of LCF in Isabelle/HOL which allows to construct a separate space
of continuous functions.

Induction The only induction principle for LCF is fizpoint induction:
P(L) Vae.P(z)— P(f(x))
Va.P(x)

where P(x) must be admissible [15]. In Cambridge LCF, the test for admissibility
1s an ML function which checks certain sufficient syntactic conditions. Most of

these can be expressed as inference rules and have thus found their way into
Isabelle/LCF. In this respect Isabelle/LCF is a little weaker than Cambridge
LCF, which turns out not to be a problem in practice.

Paulson [15] shows how to derive structural induction from fixpoint induction
and Cambridge LCF automates this derivation. Since Isabelle/LCF does not
provide this automation, structural induction schemata were added explicitly.

4 The Specification

The abstract syntax of FOFL, its denotational and operational semantics, and
the relation necessary for the correctness proof are all formalized as extensions
of Isabelle/LCF.

The syntax of FOFL is represented by the type T'. Its constructors correspond
to the different syntactic forms of the language. Isabelle’s mixfix notation enabled
us to use the following readable syntax:

T = var(a) | cst(g) | ecstf g [T] | fun f [T] | cons[T,T]
| if T then T else T fi | fix f(x) = T [T]

This syntax is based upon the types V of variables, F' of user-definable function
symbols and @ of predefined function symbols. These auxiliary types are not
specified any further. Let us examine the different cases in detail.

var(x) 1s the variable z : V.

cst(g) is the predefined constant g : @.

cstf ¢ [t] is the application of the unary predefined function ¢ : @ to an
argument ¢.

fun f [#] is the application of the user-defined function f:F to an argument ¢.

cons[ty,12] is the pair (¢1,12).

fix f(x) = ty [t1] isthe application of the recursive function f:F with formal
parameter z : V and body %y to an argument ¢;.

Since we have constants, unary functions and pairs, we can express arbitrary
n-ary functions. Isabelle/LCF provides no automation for the definition of data
types like T'. Hence the necessary induction and freeness axioms were asserted
explicitly.

As an example of a FOFL program we present the recursively defined func-
tion length computing the length of a list and apply it to some argument list
cons[cst(a), cst(b)]. The function symbols 0, succ, is_empty and tail have
their usual fixed interpretation.

fix length(xs) = if cstf is_empty [var(xs)] then cst(0)
else cstf succ [fun length [cstf tail [var(xs)]]]
[cons[cst(a), cst(b)]]

For the specification of the denotational semantics it was essential that Isa-
belle offers higher order constructs and A-abstraction. We introduce the function
den (7T in Sect. 2) which evaluates a term relative to two environments:

den : [T, (V, D)ymap,(F, D — D)map] — D

The type constructor (e, 3)map realizes finite functions from « to 5. Its def-
inition 1s not shown. The two environments provide semantic values for free
variables: (V, D)map maps first-order variables V' to data values D and (F, D —
D)map maps user-defined function symbols F' to functions from D to D.

The translation of the different clauses for 7 in Sect. 2 is fairly straightfor-
ward. As an example we look at the case of fix. First we define a functional

tau : [F,V,T,(V, Dymap, (F, Dymap] — (D — D) — (D — D)

which corresponds to the term 7 in Sect. 2 and is parameterized by the name of
the recursive function, the name of its formal parameter, its body, and the two
environments:

tau(f, x, t0, envV, envF) = (Ag d. den(t0, envV[d/x], envF[g/f]))

The functional tau realizes one step in the approximation of the recursive func-
tion. LCF’s fixpoint operator F'IX is used to define the denotational semantics
of recursive functions in FOFL:

tl # 1 ==> den(fix £(x) = t0 [t1], envV, envF) =
FIX (tau(f, x, t0, envV, envF)) (den(t1, envV, envF))

The premise t; # L is necessary because we have chosen to define all constructors
of T to be strict, i.e. (fix f(z) = tg [L]1)= L.

The remaining clauses for den and the definition of the operational semantics
in Isabelle closely follow the original specification in Sect. 2.

The overall specification defines 45 functions with 138 axioms. Most of the
complexity comes from the full formalization of substitution. Fortunately, Isa-
belle’s type system offers parametric polymorphism, which enabled us to define
finite sets and maps once (following Paulson [14]) and use them repeatedly. Both
the denotational (den above) and the operational semantics rely heavily on en-
vironments, 1.e. maps, of all kinds.

5 The Correctness Proof in Isabelle

Next we discuss the mechanical verification of the interpreter. Starting from
the proof in Sect. 2, it took a student with no previous experience with proof
assistants approximately four months [9] to redo the whole proof in Isabelle,
including the time to formalize the specification.

The guiding principle was a top down development of the proof. We first
studied the top level of the proof of the generalized correctness condition (2):

((t, envV, envF) REL u) --> den(t, envV, envF) C ipret(val(u))

The definition of REL (see below) corresponds to the definition of ~ in Sect. 2,
the function ipret denotes the interpretation of terms.

The proof of the main theorem is based on a large body of lemmata about
substitution and the interpreter function val. Rather than developing theories
for substitutions and val first, we isolated the required lemmata during the proof
of the main theorem, asserted them as additional axioms, postponing their proof
until later. Except for one, all theorems concerning the function val were proved
by fixpoint induction. The lemmata can be divided into independent classes:

| Purpose of Lemmata |Number of Lemmata|
general purpose 156
substitution 46
free variables, closed terms 52
properties of the interpreter, i.e. val 33
main theorem 24

As very large formulae are employed in the proofs we introduced abbrevia-
tions in order to hide details. Such abbreviations are of the form ¢ == u and can
be expanded and folded during a proof. Two important abbreviations used are

denot_less_oper(t) ==
ALL envV envF u.

((t, envV, envF) REL u) --> den(t, envV, envF) C ipret(val(u))

and

((t, envV, envF) REL u) ==
(t # L &u# L &is_ct () &
(EX substV :: (V,T)map. EX substF :: (F,decl)map.
(substV # 1 & substF # L & u = subst(t, substV, substF) &
(ALL x.(x: FV_x(t) = TT) --> WV(substV, envV, x)) &
(ALL f.(f: FV_f(t) = TT) --> substF def f = TT & is_cdecl(substF @ f))
(ALL f. (envF def f = FF --> substF def f = FF) &
(envF def f = TT --> WF(substF, envF, £))))))

where WF and WV are further abbreviations not shown here. Not only can the
main theorem can now be stated concisely as ALL t. denot_less_oper(t) its
inductive proof is also greatly simplified because the induction hypothesis is still
readable.

Tactics Theorem proving in Isabelle is an interactive process. The user states
the desired theorem to Isabelle and guides the proof by choosing the proof
techniques and envoking appropriate tactics. Tactics are user-definable proof
strategies and can be anything from the application of a single inference rule
(single-step) to full-blown decision procedures. Altogether our proof consists of
approximately 2400 user interactions. These can be analyzed as shown below.

|Tactic |Number of Applications|
Simplification 680
Single-step 920
Classical prover 173
Other 555
Total approx. 2400

The Isabelle tactics [16] in the above table, e.g. the classical prover, are ex-
plained and discussed in the following. The order in the above table roughly
reflects the user effort involved. For instance, the simplifier is fast and easy to
use, whereas the (automatic) classical prover is slow and its success is hard to
predict.

Isabelle’s simplifier goes beyond classical first-order term rewriting. Its many
enhancements, such as local assumptions and conditional equations, together
with its flexiblity explain its extensive use to some degree. Isabelle provides sev-
eral commands for single-step forward or backward reasoning, all of them vari-
ations on resolution. For instance structural and fixpoint induction are envoked
by a backward resolution step. In many cases Isabelle’s higher-order unification
finds the correct assumption automatically. In only 15% of all applications of res-
olution we had to provide explicit instantiations to guide the search. Isabelle’s
classical prover is an automatic tactic for predicate calculus.

The tactics for term rewriting and resolution are very fast — they normally
return within seconds compared to the automatic tactics which sometimes take
up to minutes. Executing the whole proof takes 40 minutes (on a Sun Sparc 10).

Isabelle encourages users to construct new tactics by composing existing tac-
tics via tacticals, thus customizing the prover for their particular application.

Once found, they allow for shorter and more abstract proofs. This was particu-
larly important for us, because our proofs were undergoing frequent change, and
small proofs are easier to maintain than large ones.

6 Proving in the Large

In this section we discuss some general aspects of large verification tasks. Let us
first recall some often stated properties of interactive proof:

— Proofs can grow to a huge size, and it is a serious problem to extract the
important information from a proof (state).

— Interactive proofs are produced incrementally, which has implications for the
kinds of proof procedures that are useful.

— Proofs have to meet a range of sometimes conflicting criteria, among them:
efficiency, elegance, readability, robustness under change, reusability, etc.

With these observations in mind, we discuss the theorem prover support.

Structuring Proofs Ideally, one would like to structure a proof in many ab-
stract definitions and small lemmata until the proofs are easy. This is typically
done in math books. We believe, however, that this is very hard in software
verification where the details are overwhelming. First of all, this divide and con-
quer approach usually takes many attempts, often by skilled people, to find the
right structuring. Although structuring is essential, mechanical verification re-
quires a much more detailed and careful decomposition than typical proofs on
paper. For instance, mathematicians often achieve elegant proofs by simply leav-
ing most things implicit and by changing the perspective, which is hard to model
formally. We identified the following concepts to alleviate this problem:

— Definitions and abbreviations are essential for structuring and decomposing

larger proofs. With large systems, properties (e.g. invariants) of systems
easily grow to pages. As in mathematics finding the right definitions and
notation is often essential.
Usually, abbreviations are global, but they may be also local to a proof. For
instance, theorems in math books often have local abbreviations. Definitions
not only need expanding but also contracting. This is often ignored because
it requires higher-order rewriting: the left-hand side of a definition is a first-
order term, whereas the right-hand side can be considerably more complex.
For instance the abbreviation denot_less_oper above contains quantifiers
on the right-hand side, which means that matching modulo a-conversion is
required.

— Structuring large proofs vertically: divide and conguer. Apart from abbrevia-
tions, the only effective tool for structuring large verifications is the division
into subtheories and lemmata. Generally, a clear and systematic design is is
essential for successful verification. Case studies with functional programs [1]
suggest writing a program in small units, in the hope that properties of these
are easier and more compact to state.

— Structuring large proofs horizontally: intermediate lemmata. It is frequently
necessary to introduce intermediate lemmata which are superfluous from a
human point of view but are necessary to convince the theorem prover of the
correctness of a proof step. In contrast to vertical structuring, these lemmata
are tailored only towards a particular theorem and/or theorem prover. Most
of them are tedious to find and obscure. Theorem provers with a high degree
of automation and a low degree of user control, e.g. Boyer-Moore [2] and
Ontic [11], often require such intermediate lemmata to guide the search.

Of course vertical structuring is to be preferred over horizontal structuring, which
turned out to be essential for this case study. Yet for several proofs horizontal
structuring by intermediate lemmata was used, although a detailed and well
structured proof on paper was available. One reason was that many seemingly
simple lemmata required a large number of interactive steps, which made inter-
mediate lemmata necessary.

Automated Proof Support For interactive verification, strong and incre-
mental automated proof support is necessary. Ideally, the user only has to give
very abstract input to the prover, such as “do rewriting”, or “use decision proce-
dures”. For instance, the Boyer-Moore system [2] is designed for automatic proof
without any input from the user, except for providing some “hints”. However,
in our case studies we found that finer control is frequently necessary. Now the
problem is that in many proof systems there i1s a wide gap between the automatic
facilities and the low-level stepwise facilities: for lack of a middle ground, the user
is often forced to work at an unnaturally low level. The following different levels
of user control seem very natural, but are rarely fully supported:

1. In the first refinement, the user gives the prover hints on what to use, e.g.,
suggesting certain rewrite rules, lemmata or proof strategies.

2. The user sometimes wants to have more control over where to use a tactic.
For instance, one might want to apply simplification only to a particular
premise of the goal.

3. Even more control can be exercised by specifying how a step should be done,
e.g., by providing explicit substitutions for instantiating a lemma.

For instance, in our case study higher-order unification combined with back-
tracking was used as a schematic method to compute desired instantiations of
logic variables. This often relieves the user of the burden to provide concrete
substitutions. Thus tactics can be expressed more abstractly, e.g. a tactic may
roughly express “apply rule & in such a way that rule y applies afterwards”. This
1s useful to avoid low-level proofs in situations where fully automatic support
fails.

Abstract high-level proof methods facilitate reuse, as shown in our work: we
first completed the verification for one language. Changing the syntax of the
language invalidated most proofs, but redoing the proofs was a matter of days.
Similarly, we added new constructs to the language, while being able to reuse
most of the proof successfully.

Acknowledgments. We thank Konrad Slind for his contributions to Section 6.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M. Aagaard and M. Leeser. Verifying a logic synthesis tool in Nuprl: A case study
in software verification. In K. G. Larsen, editor, Proc. 4th Workshop Computer
Aided Verification, volume 663 of Lect. Notes in Comp. Sci. Springer-Verlag, 1992.

. R. S. Boyer and J. S. Moore. A Computational Logic Handbook. Academic Press,

1988.

R. S. Boyer and Y. Yu. Automated correctness proofs of machine code programs
for a commercial microprocessor. In D. Kapur, editor, Proc. 11th Int. Conf. Au-
tomated Deduction, volume 607 of Lect. Notes in Comp. Sci., pages 416-430.
Springer-Verlag, 1992.

M. Broy. Experiences with software specification and verification using LP, the
Larch proof assistant. Technical Report SRC 93, DIGITAL Systems Research
Center, 1992.

. B. Buth, K.-H. Buth, A. Franzle, B. v. Karger, Y. Lakhmeche, H. Langmaack, and

M. Miller-Olm. Provably correct compiler developement and implementation. In
U. Kastens and P. Pfahler, editors, Compiler Construction, volume 641 of Lect.
Notes in Comp. Sci. Springer-Verlag, 1992.

. P. Curzon. A verified compiler for a structured assembly language. In M. Archer,

J. J. Joyce, K. N. Levitt, and P. J. Windley, editors, Proc. 1991 Int. Workshop on
the HOL Theorem Proving System and its Applications. IEEE Computer Society
Press, 1992.

M. Gordon, R. Milner, and C. Wadsworth. Fdinburgh LCF: a Mechanised Logic
of Computation, volume 78 of Lect. Notes in Comp. Sci. Springer-Verlag, 1979.
C. A. Gunter. Semantics of Programming Languages. MIT Press, 1992.

U. Hinkel. Maschineller Beweis der Korrektheit eines Interpreters. Master’s thesis,
Institut fur Informatik, TU Minchen, 1993. In German.

P. Hudak, S. P. Jones, and P. Wadler. Report on the programming language
Haskell: A non-strict, purely functional language. ACM SIGPLAN Notices, 27(5),
May 1992. Version 1.2.

D. A. McAllester. Ontic: A Knowledge Representation System for Mathematics.
MIT Press, 1989.

P. D. Mosses. Denotational semantics. In J. v. Leeuwen, editor, Formal Models
and Semantics, Handbook of Theoretical Computer Science, volume B. Elsevier,
1990.

T. Nipkow and C. Prehofer. Type checking type classes. In Proc. 20th ACM Symp.
Principles of Programming Languages, pages 409-418. ACM Press, 1993. Revised
version to appear in J. Functional Programming.

L. C. Paulson. Deriving structural induction in LCF. In G. Kahn, D. B. Mac-
Queen, and G. Plotkin, editors, Semantics of Data Types, volume 173 of Lect.
Notes in Comp. Sci., pages 197-214. Springer-Verlag, 1984.

L. C. Paulson. Logic and Computation. Cambridge University Press, 1987.

L. C. Paulson. [Isabelle: A Generic Theorem Prover, volume 828 of Lect. Notes in
Comp. Sci. Springer-Verlag, 1994.

F. Regensburger. HOLCF: Fine konservative Frweiterung von HOL um LCF.
PhD thesis, Technische Universitat Munchen, 1994. To appear.

B. Schieder. Logic and Proof Method of Recursion. PhD thesis, Institut fir Infor-
matik, TU Minchen, 1994. To appear.

G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

