
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Proceedings of OOPSLA 2003: 1st Workshop on
Open-Source Software in an Industrial Context

(OSIC’03)

Marc Sihling (Ed.)

TUM-I0319
Dezember 03

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-12-I0319-100/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
�
2003

Druck: Institut für Informatik der
Technischen Universität München

Table of Contents

W. Scacchi:
Modeling Open Source Software Development Processes: Issues and
Experiences . 5

S. Kawaguchi, P.K. Garg, M. Matsushita, and K. Inoue:
Automatic Categorization Tool for Open Software Repositories11

A. Sillitti, G. Succi, T. Vernazza:
A Software Production Infrastructure for the New Millenium 17

J. Erenkrantz, R. Taylor:
Supporting Distributed and Decentralized Projects: Drawing Lessens from the
Open Source Community . 21

D. Cruz, S. Vogel:
Towards a Method to instantiate a Product Model for Open Source Software
Developement in a Commercial Environment . 31

H. Cohen:
Open Source Software Case Study – Buddy Library . 37

C. Jensen:
Applying a Reference Framework to Open Source Process Discovery39

J. Garland:
Using Open Source Industrial Projects . 43

3

4

Modeling Open Source Software Development
Processes: Issues and Experiences

Walt Scacchi

Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3425 USA

949-824-4130, 949-824-1715 (fax)
Wscacchi@uci.edu

http://www.ics.uci.edu/~wscacchi

Overview
This study presents selected analyses and
findings from a multi-year study into the
development processes, work practices, and
community dynamics that arise in open source
software development (OSSD) projects.
Previous results from this study have identified
socio-technical development processes that
shape OSSD projects [13]; the use of software
informalisms as both OSSD artifacts and
communication media in developing the
requirements for OSSD projects [14];
investigation of the comparative advantages
that arise in OSSD versus traditional software
engineering [15]; and others [1, 16-18].

browser, and in particular, the NetBeans
integrated development environment (IDE)
project as an example of an OSSD project in an
industrial context.

It is important to qualify the findings reported
here in ways that have previously lacked
adequate attention. In particular, it is important
to recognize that efforts like Apache and
Mozilla are composite projects that consist of
many loosely-coupled component system
development projects. For example, the
Apache Software Foundation consists of a
dozen or so top level projects such as the
HTTP Server, ANT, Cocoon, and Jakarta,
while each of these contains their own sub-
projects. For instance, the Jakarta project,
focusing on the creation of commercial-quality,
server-side solutions using Java, contains about
two dozen sub-projects, such as Tomcat and
Lucene. The Apache HTTP Server also has
multiple system component sub-projects.
Therefore, what is observed and reported as
findings in one sub-project may not be
indicative of the practices or processes found in
other sub-projects within its parent projects, or
the overall composite project. Such a condition
therefore merits consideration when examining
the results from studies of large composite
projects that have been published elsewhere, so

In this paper, emphasis is directed to presenting
preliminary findings as to the kinds issues that
arise in the modeling of the techno-social
processes found in different OSSD projects.
We highlight results from the examination,
discovery, and modeling of software
engineering processes [15] within the Apache
HTTP (Web) server, Mozilla Web

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. 1st Workshop on Open Source
in an Industrial Context (OSIC’03), October, 2003, Anaheim,
CA. Copyright 2003.

5

http://www.ics.uci.edu/~wscacchi

Instead, if one seeks to understand and perform
OSSD processes, then these processes must be
discovered either through ad hoc trial-and-error,
or by systematic investigation, Web site
navigation, coding, and modeling. The former
choice offers no leverage, while the latter
implies labor-intensive research methodology,
such as virtual ethnography [3, 14, 19]. The
latter approach is taken here.

as to appropriately gauge or qualify the scope
of the reported findings.

In the remainder of this paper, attention is
focused to issues and findings from an effort
to empirically discover and model software
engineering processes that can be observed
arising in particular OSSD. In this case, the
choice is to examine issues arising in the
NetBeans IDE projects. NetBeans is more of a
large-scale (monolithic) OSSD project that we
find in many ways resembles traditional
distributed software engineering projects,
compared to common small-scale OSSD
projects, or to the composite OSSD projects
like Apache, Mozilla, and Linux.

To capture and code the results from such an
inquiry, it is necessary to organize and
associate (e.g., hyperlink) observed
development roles, tools, and development
tasks. One such method for doing this is to
employ a rich picture [7] to visualize the
observed associations in the context of a
specific project. In the rich picture of the
NetBeans OSSD project shown in Figure 1,
project participants play roles including Users,
CVS administrator, Web site administrator, the
Release Manager, The Board, SUN
Microsystems, etc. Associated with each
participant role are their stakeholder concerns
or interests (indicated in the bubble clouds),
development activities (download release,
report bugs, etc.), tools (CVS, etc.) and
associated artifacts (software version release,
bug reports, etc.) as hyperlinked Use Cases
(not shown).

OSSD Process Discovery
Previous studies that report on OSSD projects
like Apache Web server and Mozilla Web
browser [6, 12] provide informal narrative
descriptions of the overall software
development process that typify
how these systems are developed. However,
they do not treat these processes in terms that
associate tools or the roles that people play in
performing different development tasks.
Similarly, they do not identify which project
or Web site repositories are employed to store
the artifacts that document or embody these
systems [cf. 14]. Finally, neither Apache,
Mozilla, NetBeans, or any other

Together, the rich picture and the Use Cases
serve to capture and depict contextual features
of the NetBeans development effort in terms of
the processes, concerns, and overall structure
of relations that serve as a prelude to
construction of a formal model. Aspects of the
resulting model are described in the next
section.

OSSD projects that have been examined
provide documents on their project Web sites
that explicitly describe what development
processes are employed in the projects, nor
how they are to be performed. As a result,
any software engineer or developer seeking to

 either join one of these projects, or to start an
independent OSSD project, cannot find explicit
descriptions or models of the software

Beyond this, a companion effort describes
recent progress in the development of
automated mechanisms to support and
streamline this process discovery effort [4].

processes that are performed to support the
production of OSS systems.

6

Figure 1. A rich picture depicting relationships between developer (agent) roles, artifacts,
and tools associated with the software release process observed in the NetBeans project.

Figure 2. A partial view of a Protégé-based model of objects (artifacts, tools, roles) and activities
(links) that form a formal model of the software release process for the NetBeans OSSD project.

7

OSSD Process Modeling
The available studies of Apache and Mozilla
projects noted above also do not provide either
a visual flow or a formal computational model
of these processes. As such, the available
narrative descriptions of these processes can
not be easily analyzed, compared, visualized,
computationally enacted, or transferred for
(re)use in other projects [cf. 9,14].

The goal of this study is to discover
and codify empirically observed OSSD
processes as formal, computationally
enactable models using the PML process
modeling language [9]. Software processes
modeled in PML employ the ontology of a
process meta-model as their semantic
foundation [5], and this foundation has been
installed and configured to operate within a
semantic object modeling framework called
Protégé [10]. Figure 2 displays a partial view
of a formal model of the software release
process within the NetBeans OSSD project that
conforms to this process meta-model [2, 11].

Among other things, Protégé can be
programmed to capture (manually), edit, and
transform models of software processes into
notational forms like PML, as well as XML
and SQL. Further, it should be noted that
Protégé is itself an OSS tool for creating
knowledge base models and ontologies.

Overall, one of the principal goals for modeling
software engineering processes is to establish
informal narrative, semi-structured hypermedia
(i.e., a Web-based rich picture image map), and
formal computational renderings that can be
analyzed, compared, and shared within both the
research and practice communities. Modeling
also provides the foundation for continuous
process improvement. The OSSD community
has up to this time not recognize the potential
value or use of "open source" software process
models. As a result, OSSD projects like

NetBeans must rediscover or reinvent software
engineering processes, rather than follow the
practice of open sharing, modification
(improvement), and redistribution of these
processes in ways that should enhance the
productivity and quality of OSSD projects. The
effort introduced in this study perhaps marks a
first step in this direction.

Conclusions
This paper introduces and examines some of
the issues that arise when seeking to discover
and computationally model the software
engineering processes that arise in a sample
of different open source software development
projects. Capturing and modeling of these
processes may help developers new to an
established composite OSSD project, or
starting a new OSSD project, to more rapidly
learn and become productive in the enactment
of these processes. The discovery and
modeling of these processes can also be an
effective enabler of continuous process
improvement techniques, as well as serve as
another coordination resource that globally
distributed developers can employ to stabilize
and synchronize their loosely couple software
development activities, roles and artifacts.

Acknowledgements
The research described in this report is
supported by grants from the National Science
Foundation #IIS-0083075, #ITR-0205679 and
ITR#0205742. No endorsement implied.
Contributors to work described in this paper
include John Georgas, who tailored the Protégé
tool for use in software process modeling;
Mark Ackerman at the University of Michigan
Ann Arbor; Les Gasser at the University of
Illinois, Urbana-Champaign; John Noll at Santa
Clara University; Margaret Elliott, Chris
Jensen, Mark Bergman, and Xiaobin Li at the
UCI Institute for Software Research; and Julia
Watson at The Ohio State University are also
collaborators on the research project described
in this paper.

8

References
1. ELLIOTT, M. and SCACCHI, W.: Free
Software Development: Cooperation and Conflict
in A Virtual Organizational Culture, to appear in S.
Koch (ed.), Free and Open Source Software
Development, IDEA Press, 2004.

2. GEORGAS, J.: Software Process Modeling
with Protégé, Institute for Software Research, UC
Irvine, May 2002.

3. HINE, C.: Virtual Ethnography, SAGE
Publishers, London, 2000.

4. JENSEN, C. and SCACCHI, W.: Simulating an
Automated Approach to Discovery and Modeling
of Open Source Software Development Processes,
Proc. Software Process Simulation and Modeling
Workshop (ProSim’03), Portland, OR, May 2003.

5. MI, P. and SCACCHI, W.: A Meta-Model for
Formulating Knowledge-Based Models of
Software Development. Decision Support
Systems, 17(4), 313-330, 1996.

6. MOCKUS, A., FIELDING, R. and
HERBSLEB, J.: Two Case Studies on Open Source
Software Development: Apache and Mozilla, ACM
Trans. Software Engineering and Methodology,
11(3), 309-346, 2002.

7. MONK, A. and HOWARD, S.: The Rich
Picture: A Tool for Reasoning about Work Context,
Interactions, 21-30, March-April 1998.

8. NOLL, J. and SCACCHI, W.: Supporting
Software Development in Virtual Enterprises, J.
Digital Information, 1(4), February 1999.

9. NOLL, J. and SCACCHI, W.: Specifying
Process-Oriented Hypertext for Organizational
Computing, J. Network and Computer Applications,
24(1), pp. 39-61, 2001.

10. NOY, N.F., SINTEK, M., DECKER, S.,
CRUBEZY, M., FERGERSON, and R.W. MUSEN,
M.A.: Creating Semantic Web contents with

Protege-2000, IEEE Intelligent Systems, 16(2), 60-
71, Mar/Apr 2001.

11. OZA, M., NISTOR, E., HU, S., JENSEN, C.,
and SCACCHI, W.: A First Look at the Netbeans
Requirements and Release Process, Institute for
Software Research, UC Irvine, June 2002.

12. REIS, C.R. and FORTES, R.P.M.: An
Overview of the Software Engineering Process and
Tools in the Mozilla Project, Proc. Workshop on
Open Source Software Development, Newcastle,
UK, February 2002.

13. SCACCHI, W.: Software Development
Practices in Open Software Development
Communities, Proc. 1st. Workshop on Open Source
Software Engineering, Toronto, Ontario, May 2001.

14. SCACCHI, W.: Understanding the
Requirements for Developing Open Source
Software Systems, IEE Proceedings - Software,
149(1), 24-39, 2002a.

15. SCACCHI, W.: Process Models in Software
Engineering, in J. Marciniak (ed.), Encyclopedia of
Software Engineering, Second Edition, 993-1005,
Wiley, 2002b.

16. SCACCHI, W.: Open EC/B: A Case Study in
Electronic Commerce and Open Source Software
Development, technical report, Institute for
Software Research, UC Irvine, July 2002c.

17. SCACCHI, W.: Free/Open Source Software
Development Practices in the Computer Game
Community, (submitted for publication), 2003.

18. SCACCHI, W.: When Is Open Source Software
Development Faster, Better, and Cheaper than
Software Engineering? to appear in S. Koch (ed.),
Free and Open Source Software Development,
IDEA Press, 2004

19. VILLER, S. and SOMMERVILLE, I.:
Ethnographically Informed Analysis for Software
Engineers, Int. J. Human-Computer Studies, 53,
169-196, 2001.

9

10

Automatic Categorization Tool for Open Software
Repositories

Shinji Kawaguchi† Pankaj K. Garg††

†Graduate School of Information Science and
Technology, Osaka University

1-3 Machikaneyama, Toyonaka, Osaka
560-8531, Japan

{s-kawagt, matusita,
inoue}@ist.osaka-u.ac.jp

Makoto Matsushita† Katsuro Inoue†

††Zee Source
1684 Nightingale Avenue, Suite 201
Sunnyvale, California, 94807, USA

garg@zeesource.net

ABSTRACT
The world of Open Source software has demonstrated the remark-
able appeal ofcommunal software development.Large number of
software projects can leverage, reuse, and coordinate their work
through Internet and web-based technology. For example, Source-
Forge currently hosts about sixty thousand software systems. Sim-
ilar strategies have been suggested for corporate software develop-
ment, through notions like Corporate Source and Progressive Open
Source [6, 7]

When used in a corporate setting, infrastructures for project infor-
mation sharing present new opportunities. For example, one would
like to know all projects that have something in common, so that
the project groups can collaborate and share their work. With thou-
sands of projects, manually locating related projects can be diffi-
cult. Hence, we propose to use automatic software categorization
to find clusters of related software projects, using only the source
code from projects. Our experiments with a small set of C pro-
grams demonstrates potential for automatic categorization of soft-
ware systems without human aid.

1. INTRODUCTION
The rapid use of Internet and Web-based technology has given rise
to a novel, global software archiving service, pioneered in the Open
Source community through SourceForge [17]. More recently, sev-
eral large corporations are realizing the benefits of such services
for their own, proprietary software development. For example,
Hewlett-Packard Company, IBM, Motorola, Nokia, and Xerox, are
some of the corporations that are known to have deployed such
archival service for their own internal corporate network.

For large software archives, categorizing their contents for brows-
ing and searching is essential for effective utilization of the soft-
ware archive. Automatic categorization would be helpful in several

ways:

• Severalsimilar software can be grouped together in a cat-
egory for ease of browsing. For example, SourceForge [17]
categorizes software according to their function (editors, databases,
etc.), and also has the notion ofsoftware foundriesfor related
software.

• Developers working on a software system may be informed
about related software. Finding related software systems has
following advantages.

1. Developers can learn “best practices” and programming
idioms from existing software systems. From related
software systems, they can get strategies or hints for
software evolution. They can even evolve their soft-
ware systems based on related software systems, and
not have to create it from scratch.

2. Developers can leverage each other’s work and promote
more reuse. This becomes specially useful in situations
like Corporate Source [7], where global groups in com-
panies may not be aware of the relationship among their
work [9].

In the past, such relationships have been determined by hand. Man-
ual categorization generally requires deep understanding of not only
the target software system, but also other software systems and their
classification policy. With the increase in the number of software
systems, e.g., SourceForge now has over sixty thousand software
systems registered and continues to evolve, such manual identifica-
tion is not enough.

Automatic categorization of software systems is a novel and in-
triguing challenge on software archive evolution. Past work in soft-
ware engineering (e.g., see [4, 16]), has focused on determining
intra-component relationsof one given software system. We, how-
ever, propose findinginter-component relationsof many software
systems.

In this paper, we propose software automatic categorization system
based on Latent Semantic Analysis(LSA). LSA is a method for ex-
tracting and representing the contextual-usage meaning of words by
statistical computations applied to a large corpus of text [11]. LSA

11

has found a variety of uses ranging from understanding human cog-
nition [11] to data mining [5]. Also, it is used for clustering compo-
nents in a software system [14] and recovering document-to-source
links [15].

We apply LSA for determining categories of software systems. We
implemented the proposed method, and report on experimental re-
sults.

2. RELATED WORKS
Maarek et al. applied free-text indexing approach for software clas-
sification [13, 8]. They retrieved information from Unix man pages
and classified Unix tools.

While quality and granularity of Unix man pages are highly uni-
form, the amount and quality of documents differ with software
systems. Some software may have complete documentation, while
others may have no or few documentation for their implementa-
tions.

From the viewpoint of retrieving information from source code,
some existing clustering methods cluster one software into some
functional parts for program understanding. Such software cluster-
ing methods use Latent Semantic Analysis [14], Self-Organizing
Map [2], file structure and file names [1] or structure of program
like call graph [3, 12].

In our previous work [10], we have tried measurement methods of
software similarities. The hope was that we will relate “similar”
systems together, and determine orthogonal categories like “edi-
tors,” “databases,” and so forth. We applied LSA to software sys-
tems and found that software similarity values are reflected only
by most influential aspectsof software systems. For example, the
similarity value between database software with GTK interface and
editors using GTK is very high. Although this phenomenon is not
what we had hoped for, as be report in the rest of the paper, it is not
necessarily bad.

3. CATEGORIZATION METHOD
The result of our previous work cited above indicates that software
systems have multiple ’functional aspects’. Functional aspects are,
for example, “compiler”, “editor”, “database”, “runs on Windows”,
“supporting regular expression,” and so forth. Consider an editor
on Windows. This editor has not only “editor” functional aspect,
but also “runs on Windows” functional aspect.

The software systems can be categorized with functional aspects on
a nonexclusive basis. If a categorization is mutually exclusive, the
categorization may capture only a few functional aspects.

We focus on identifiers (variable name, function name and so on)
included in source code to retrieve a functional aspect. For ex-
ample, “gtk_window ” identifier represents some window, and
source codes near the identifier would contain GUI operation.

As stated above, identifiers may represent a part of functions im-
plemented in the program. If relationship between identifiers are
found, they would represent one functional aspect. To determine
relationships between identifiers, we use Latent Semantic Analy-
sis(LSA), an information retrieval method explained below.

3.1 Latent Semantic Analysis (LSA)

Latent Semantic Analysis, LSA, is a practical method for the char-
acterization of word meaning. LSA produces measures of word-
word, and passage-passage relations which are well correlated with
semantic similarity [11]. The method creates a vector description
of documents. This representation is used for comparing and in-
dexing documents, and various similarity measures can be defined.

Consider the six simple documents in Figure 1. In LSA, these doc-
uments are represented by a matrix shown in Table 1. Each column
means a document and each row represents a word which may ap-
pear in the documents. Cell entries show the occurrence of the word
in the document.

c1: Human machine interface for ABC computer applications
c2: A survey of user opinion of computer system response time
c3: Relation of user perceived response time to error measurement
m1: The generation of random, binary, ordered trees
m2: Graph minors IV: Widths of trees and well-quasi-ordering
m3: Graph minors: A survey

Figure 1: Example Input Documents

c1 c2 c3 m1 m2 m3
computer 1 1 0 0 0 0
user 0 1 1 0 0 0
response 0 1 1 0 0 0
time 0 1 1 0 0 0
survey 0 1 0 0 0 1
trees 0 0 0 1 1 0
graph 0 0 0 0 1 1
minors 0 0 0 0 1 1

Table 1: An Example of LSA Matrix

Each row vector of this matrix indicates the characteristics of the
word through the whole documents occurrences. This row vector
can be used to determine the similarity of two words. A simple
similarity definition used here iscosine of two vectors.

In LSA, single value decomposition (SVD) is applied to the matrix.
SVD is a form of factor analysis and acts as a method for reduc-
ing the dimensionality of the matrices. Why does LSA apply such
translation? This is because a simple term-by-document matrix
does not capture relationship among terms. Two documents show
high similarity only when the documents have some same words;
however, there are many synonyms. Thus similar documents do
not always share completely same words. They may contain many
synonyms. Using SVD, LSA can retrieve such undirectional rela-
tionship among documents. For more details, please refer [11].

3.2 Overview of Classification Method
Our method consists on 7 parts, explained in brief below:

1. Extract identifiers.

First, we extract all identifiers from source code of software
systems. We don’t use reserved words in programming lan-
guage and words in comments. Reserved words are mean-
ingless from the viewpoint of function. Comments are ab-
stract description, but amount and quality of comments in
each software systems vary widely. Thus we cut out reserved
words and comments.

12

2. Create identifier-by-software matrix.

We create an identifier-by-software matrix, similar to the word-
by-document matrix of Table 1.

3. Remove meaningless identifiers.

Before performing LSA, we remove identifiers that appear
in only one software system, or in more than half of soft-
ware systems. Identifiers appearing in only one software are
not meaningful in LSA. And, identifiers appearing in more
than half of software systems are probably a general term
and have no affect on categorization.

4. Perform LSA.

We perform LSA for the identifier-by-software matrix with-
out meaningless identifiers.

5. Computecosine of each identifiers and perform cluster anal-
ysis.

From the matrix of LSA result, we computecosine values of
each identifiers. Thereafter, we apply cluster analysis using
calculated similarities. Cluster analysis is statistical analysis
method that cluster individuals into clusters based on simi-
larity among individuals.

6. Make software clusters from identifier clusters.

From each identifier clusters, we retrieve software systems
that contain one or more identifiers in the cluster, and make
them a corresponding software cluster.

7. Make titles of software clusters.

We obtain software clusters by previous steps, however, each
software cluster needs description that explains what soft-
ware systems are included. As titles, we use the ten highest
score identifiers in the clusters.

4. EXPERIMENTS
As an implementation of our method, we created a prototype sys-
tem. We experimented categorization of software systems using
the prototype. The overall goals of our experiment were: Does our
prototype categorize proper by target systems compared with ex-
isting manual categorization? Can our prototype categorize by the
libraries use in the system?

4.1 Experiment Process
We collect sample data from SourceForge. We selected 41 C pro-
grams in five categories from SourceForge. The list of categories
and software systems are in Table 2. Then we ran our categoriza-
tion tool on the 41 programs.

4.2 Result
Table 3 shows a part of the categorization result by our method.
Each row represents one cluster.

We got 40 clusters in total. The target systems in 18 clusters fall in
the same categorization as SourceForge categorization. There are
8 clusters in which all software systems depend on same library or
have same architecture. In top 20 clusters, 17 clusters fall in the
same categorization in SourceForge or same library.

For example, cluster 3, 8 or 9 are clustered since the software sys-
tems in those clusters use the same library. Cluster 3 contains
software systems using YACC(Yet Another Compiler-Compiler).

Cluster 8 and 9 contains software systems using GTK. In the same
manner, we can get the following clusters.

Cluster 22 Software systems using regular expression pattern match-
ing library.

Cluster 25 Software systems implementing JNI(Java Native Inter-
face).

Cluster 30 Software systems using getopt, a function which parses
a command line argument.

Cluster 32 Software systems implementing Python/C.

Cluster 35 Software systems using YACC(Yet Another Compiler-
Compiler).

On the other hand, there are 12 software systems that are not clas-
sified into any categories.

4.3 Discussion
Comparing with existing categorization, many clusters of our result
follow existing categorization however, our result does not cover
whole existing categorization. This is because our result has soft-
ware systems that are not classified any categories. Our method cat-
egorizes based on appearance frequency of identifiers. This makes
software systems that have few tokens tend to be not classified any
categories.

We verify that our method can retrieve new categorization that are
not considered by existing categorization. Such categorizations are:
(1) by libraries (GTK, yacc, etc.), and (2) by depending architec-
ture (JNI, Python/C, etc.). Our method does not need any human
knowledge. Thus, if a new library appears, our method can follow
such change automatically.

About cluster titles, there are some unidentifiable titles like cluster
1; however, cluster 4 and 6 have clear-cut titles “AVI” and “board,
ply”. The clusters with software systems using same library tend to
have clear-cut titles.

5. CONCLUSION
In this paper, we have proposed automatic categorization method
for many software systems. Our method finds categorization clus-
ters and classifies software systems based on the clusters. We have
shown this method can classify without any knowledge about target
software systems.

For future work, we will seek how to determine parameters and
retrieving intuitive cluster titles. Furthermore, we will add large-
scale experimentation. To do this, we need to improve system per-
formance and scalability.

6. REFERENCES
[1] N. Anquetil and T. Lethbridge. Extracting concepts from file

names; a new file clustering criterion. InInternational
Conference on Software Engineering,(ICSE’98), pages
84–93, Apr 1998.

[2] A. Chan and T. Spracklen. Discoverying common features in
software code using self-organising maps. InInternational
Symposium on Computational Intelligence (ISCI’2000),
Kosice, Slovakia, August 2000.

13

Category Software

boardgame Sjeng-10.0, bingo-cards, btechmux-1.4.3, cinag-1.1.4, faile1 4 4, gbatnav-1.0.4, gchch-1.2.1, ics-
Drone, libgmonopd-0.3.0, netships-1.3.1, nettoe-1.1.0, nngs-1.1.14, ttt-0.10.0

compilers clisp-2.30, csl-4.3.0, freewrapsrc53, gbdk, gprolog-1.2.3, gsoap2, jcom223, nasm-0.98.35, pfe-0.32.56,
sdcc

database centrallix, emdros-1.1.4, firebird-1.0.0.796, gtmV43001A, leap-1.2.6, mysql-3.23.49, postgresql-7.2.1
editor gedit-1.120.0, gmas-1.1.0, gnotepad+-1.3.3, molasses-1.1.0, peacock-0.4

videoconversion dv2jpg-1.1, libcu30-1.0, mjpgTools, mpegsplit-1.1.1
xterm R6.3, R6.4

Table 2: The list of sample software systems

[3] K. Chen and V. Rajlich. Case study of feature location using
dependency graph. In8th International Workshop on
Program Comprehension (IWPC’00), pages 231–239,
Limerick, Ireland, June 2000.

[4] S. C. Choi and W. Scacchi. Extracting and restructuring the
design of large systems.IEEE Software, 7(1):66–71, Jan
1990.

[5] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnas, and R. A. Harshman. Indexing by latent semantic
analysis.Journal of the American Society of Information
Science, 41(6):391–407, 1990.

[6] J. Dinkelacker and P. Garg. Corporate Source: Applying
Open Source concepts to a corporate environment (Position
Paper). InProceedings of the 1st ICSE workshop on Open
Source software engineering, Toronto, Canada, 2001.

[7] J. Dinkelacker, P. Garg, D. Nelson, and R. Miller. Progressive
Open Source. InProceedings of the International Conference
on Software Engineering, Orlando, Florida, 2002.

[8] W. B. Frakes and T. Pole. An empirical study of
representation methods for reusable software components.
IEEE Transactions on Software Engineering, 20(8):617–630,
1994.

[9] J. Herbsleb and A. Mockus. An Empirical Study of Speed
and Communication in Globally-Distributed Software
Development.IEEE Transactions. Software Engineering,
2003.

[10] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue.
Automatic categorization algorithm for evolvable software
archive. In2003 International Workshop on Principles of
Software Evolution(IWPSE 2003), Sep 2003.

[11] T. K. Landauer and S. T. Dumais. Latent Semantic Analysis
and the Measurement of Knowledge. InEducational Testing
Service Conference on Natural Language Processing
Techniques and Technology in Assessment and Education,
princeton, 1994.

[12] G. A. D. Lucca, A. R. Fasolino, F. Pace, P. Tramontana, and
U. D. Carlini. Comprehending web applications by a
clustering based approach. InProc. of 10th International
Workshop on Program Comprehension(IWPC’02), pages
261–270, Paris, France, June 2002.

[13] Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An information
retrieval approach for automatically constructing software
libraries.IEEE Transactions of Software Engineering,
17(8):800–813, 1991.

[14] J. I. Maletic and A. Marcus. Using latent semantic analysis
to identify similarities in source code to support program
understanding. In12th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI’00), pages 46–53,
November 2000.

[15] A. Marcus and J. I. Maletic. Recovering
documentation-to-source-code traceability links using latent
semantic indexing. InProceedings of the 25th International
Conference on Software Engineering(ICSE2003), pages
125–135, Portland, OR, May 2003.

[16] R. Schwanke. An intelligent tool for re-engineering software
modularity. InProc. of 13th International Conference on
Software Engineering, pages 83–92, Austin, Texas, USA,
May 1991.

[17] SOURCEFORGE.net.http://sourceforge.net .

14

http://sourceforge.net

No. Title of cluster Software The number of tokens

1 AOP, emitcode, ICRESULT, IC LEFT, aop, aopGet, ICRIGHT, pic14emitcode,
iCode, etype

compilers/gbdk, compilers/sdcc 8597

2 CASE IGNORE, CASEGROUND STATE, screen, CASEPRINT,
CASE BYP STATE, Widget, TScreen, CASEIGNORE STATE,
CASE PLT VEC, CASEPT POINT

xterm/R6.3, xterm/R6.4 2160

3 YY BREAK, yyvsp, yyval, DATA, yycurrentbuffer, tuple, yycurrentstate,
yy c buf p, yy cp, uint32

compilers/gbdk, database/mysql-3.23.49,
database/postgresql-7.2.1

223

4 AVI, cinfo, OUTLONG, avi t, AVI errno, hdrldata, OUT4CC, nhb, ERREXIT,
str2ulong

videoconversion/dv2jpg-1.1, videoconversion/libcu30-1.0,
videoconversion/mjpgTools

177

5 domainname, msgid1, binding, msgid2, domainbinding, pexp,builtin expect,
transmemlist, codeset, codesetp

boardgame/gbatnav-1.0.4, boardgame/gchch-1.2.1 165

6 board, nummoves, ply, pawnfile, npiece, pawns, moves, whiteto move, moves,
promoted

boardgame/Sjeng-10.0, boardgame/cinag-1.1.4,
boardgame/faile1 4 4

154

7 xdrs, blob, DB, UCHAR, XDR, mutex, keylength, logp, pageno, bdb database/firebird-1.0.0.796, database/mysql-3.23.49 118
8 domainname, N, binding, gchar, GtkWidget, PARAMS, codeset, gpointer,

loadedl10nfile, argz
boardgame/gbatnav-1.0.4, boardgame/gchch-1.2.1,
editor/gnotepad+-1.3.3, editor/peacock-0.4

118

9 GtkWidget, gchar, gpointer, gint, widget, gtkwidget show, N, g free, dialog,
g return if fail

boardgame/gbatnav-1.0.4, editor/gedit-1.120.0, editor/gmas-
1.1.0, editor/gnotepad+-1.3.3, editor/peacock-0.4

104

10 AOP, emitcode, esp, ICRESULT, IC LEFT, obstack, aop, mov, aopGet,
IC RIGHT

compilers/clisp-2.30, compilers/gbdk, compilers/sdcc 100

11 tuple, uint32, plan, int32, lsn, elm, rec, interp, TCLERROR, finfo database/mysql-3.23.49, database/postgresql-7.2.1 79
12 xdrs, blob, DB, UCHAR, XDR, mutex, keylength, logp, pageno, bdb database/firebird-1.0.0.796, database/mysql-3.23.49 73
13 UCHAR, relation, stmt, trigger, yyvsp, yyval, tdata, plan, dbname, USHORT database/firebird-1.0.0.796, database/postgresql-7.2.1 68
14 fout, interp, TCLERROR, typ, YYRULE SETUP, List, DATA, Tcl Interp, id,

YY BREAK
compilers/freewrapsrc53, compilers/gbdk, compilers/gsoap2,
database/postgresql-7.2.1

50

15 GtkWidget, gchar, gpointer, dlg, gint, gfree, gtkwidget show, gtk, GList,
GTK BOX

editor/gedit-1.120.0, editor/gmas-1.1.0, editor/gnotepad+-
1.3.3

46

16 UCHAR, relation, stmt, trigger, yyvsp, yyval, tdata, plan, dbname, USHORT database/firebird-1.0.0.796, database/postgresql-7.2.1 43
17 AOP, emitcode, mfp, ic, uchar, ICRESULT, IC LEFT, aop, aopGet, ICRIGHT compilers/gbdk, compilers/sdcc, database/mysql-3.23.49 36
18 adr, FX, word, stm, ED, xt, REF, prop, term, FP compilers/gprolog-1.2.3, compilers/pfe-0.32.56 35
19 AOP, emitcode, ICRESULT, IC LEFT, aop, aopGet, ICRIGHT, pic14emitcode,

iCode, etype
compilers/gbdk, compilers/sdcc, database/firebird-1.0.0.796 31

20 dyn, FPRINTF, processid, p offset, ctl, rab, que, ioptr, prior, PRINTF database/firebird-1.0.0.796, database/gtmV43001A src linux 29
21 dyn, FPRINTF, processid, p offset, ctl, rab, que, ioptr, prior, PRINTF database/firebird-1.0.0.796, database/gtmV43001A src linux 27
22 regparse, dbp, mech, reginput, flagp, NOTHING, tuple, db,P, regnode boardgame/btechmux-1.4.3, database/leap-1.2.6,

database/mysql-3.23.49
26

23 rectype, argp, rec, fileid, saveerrno, datalen, qp, argpp, int4, dbp database/gtmV43001A src linux, database/mysql-3.23.49 26
24 AOP, emitcode, ICRESULT, IC LEFT, aop, aopGet, ICRIGHT, pic14emitcode,

iCode, etype
compilers/gbdk, compilers/sdcc, videoconversion/mjpgTools 26

25 jobject, JNIEnv, JNICALL, JNIEXPORT, jint, jstring, interp, TCLERROR, objv,
TCL OK

compilers/freewrapsrc53, compilers/jcom223, compilers/pfe-
0.32.56, database/mysql-3.23.49

24

26 entrypoint, USHORT, TEXT, yyvsp, raddr, R, UCHAR, yyval, blob, REQ compilers/clisp-2.30, database/firebird-1.0.0.796 17
27 int32 t, dbp, cinfo, net, unpack, argp, sinfo, cur1, purpose, mysql database/mysql-3.23.49, videoconversion/mjpgTools 17
28 AOP, emitcode, mfp, ic, uchar, ICRESULT, IC LEFT, aop, aopGet, ICRIGHT compilers/gbdk, compilers/sdcc, database/mysql-3.23.49 16
29 USHORT, UCHAR, blob, REQ, NULLPTR, hIcon, SCHAR, interp, wndclass,

bdb
compilers/freewrapsrc53, database/firebird-1.0.0.796 16

30 optind, nextchar, P, optstring, lastnonopt, optionindex, uchar, optarg, pfound,
dbp

boardgame/ttt-0.10.0, compilers/clisp-2.30, database/mysql-
3.23.49

15

31 int4, ctl, tn, rec, semid, blkno, ti, oprtype, saveerrno, AH database/gtmV43001A src linux, database/postgresql-7.2.1 14
32 notify, mech, PyObject, fargs, Node, Name, pset, zone, tprintf, NOTHING boardgame/btechmux-1.4.3, database/postgresql-7.2.1 11
33 interp, notify, dbp, tuple, mech, PyObject, uint32, plan, int32, buff boardgame/btechmux-1.4.3, database/mysql-3.23.49,

database/postgresql-7.2.1
10

34 adr, stm, AOP, emitcode, operands, ASSERT, ICRESULT, pred, lg, REF compilers/gprolog-1.2.3, compilers/sdcc 9
35 yyvsp, yyn, PARAMS, codeset, domainname, msgid1, binding, msgid2, yylsp,

domainbinding
boardgame/gbatnav-1.0.4, boardgame/gchch-1.2.1,
compilers/clisp-2.30

9

36 ERREXIT, picture, poolid, USHORT, getbuffer, outputbuf, cinfo, xxx,
UCHAR, streams

database/firebird-1.0.0.796, videoconversion/mjpgTools 9

37 REF, dyn, USHORT, vec, pathname, clause, STATUS, E, UCHAR, CSB compilers/gprolog-1.2.3, database/firebird-1.0.0.796 8
38 AOP, emitcode, pfile, ic, ICRESULT, IC LEFT, aop, aopGet, ICRIGHT,

pic14 emitcode
compilers/gbdk, compilers/sdcc, database/postgresql-7.2.1 7

39 ic, ply, npiece, score, AOP, pawnfile, uchar, bkingloc, wking loc, emitcode boardgame/Sjeng-10.0, compilers/gbdk 7
40 clause, cinfo, pred, ci, Group, Np, word, X, A, tmp4 compilers/gprolog-1.2.3, database/postgresql-7.2.1, video-

conversion/mjpgTools
6

Table 3: 41

15

16

A Software Production Infrastructure for the New
Millennium

Alberto Sillitti
DIST - Università di Genova

Via Opera Pia, 13
I-16145 Genova, Italy
ph: +39(010)353-2173
fax: +39(010)353-2154

alberto@dist.unige.it

Giancarlo Succi
Libera Università di Bolzano

Piazza Domenicani, 3
I-39100 Bolzano, Italy
ph: +39(0471)315-640
fax: +39(0471)315-649

Giancarlo.Succi@unibz.it

Tullio Vernazza
DIST - Università di Genova

Via Opera Pia, 13
I-16145 Genova, Italy
ph: +39(010)353-2793
fax: +39(010)353-2154

tullio@dist.unige.it

ABSTRACT
Software development involves several people with very different
skills: customers, managers, accountants, business analysts,
systems analysts, designers, developers, etc. Each one of them
tends to focus on his or her specific aspect and to consider it the
cornerstone of the whole development process. To involve these
people in the software development there are many different
views of the same knowledge base at the time of the involvement
of a specific person. The build and synchronization of these views
is a complex task and include a remarkable overhead in the
process. This paper presents a set of problems and an overview of
a possible solution to the development of an integrated
development platform.

Categories and Subject Descriptors
D.2.6 [Programming Environments]: Integrated environments.

D.2.11 [Software Architectures]: Domain-specific architectures.

General Terms
Design, Languages.

Keywords
Software development, open source, tools integration.

1. INTRODUCTION
In software development, different people focus on different
topics: developers focus on source code, designers focus on
architecture, manager focus on progresses and team management,
etc.

The code is what satisfies the customer needs and generates
revenue and wealth. However, the code alone has proven
ineffective as a mechanism to drive development. There is a
consistent body of knowledge emphasizing the role of analysis
and design, to derive the code. Recent trends in software
engineering, such as Agile Methodologies also emphasize the role
of requirement capture and tests and the interaction with the
business context.

In any case, software development requires an integration of
different activities, each using a different formalism. Traditional
practices extract requirements, perform analysis, write the code,
etc. Agile Methodologies put the accent on a strict integration of
code with semiformal requirements documents – user stories,
metaphors, etc., and with systematic tests in close collaboration
with customers and users.

Tool support appears an invaluable form of aid to software
production, improving quality and productivity by highlighting
and, when possible, correcting errors, maintaining consistency
across different activities, automating tasks, modeling financial
outcomes and opportunities.

Almost all people involved in the development process are
competent in using their own formalism: managers in planning
using Gantt etc., analysts using formal models, coders in writing
the code. The same reasoning can be generalized to most of the
kinds of profiles involved in the overall production.

There are effective tools addressing the specific, consolidated
activities related to development, say, project management tools,
analysis tools, design tools, etc. Such availability refers both to
proprietary tools and to open source tools. However, only limited
support is available for integrating different activities and new
practices and methodologies. For instance, there is minimal tool
support for Agile Methodologies, just a bunch of nice but small
tools such as xUnit, Cruise Control, etc., and the integration of
such tools into proprietary system has required some effort.

The paper is organized as follows: section 2 summarizes the state
of the art of tools integration; section 3 describes a set of ideas for
an improvement in tools for software development; finally,
section presents future scenarios.

2. STATE OF THE ART
The integration of simple tools is a well-known practice in the
Unix community, including in the Linux one [1] [11]. There is a
huge set of very specialized and efficient programs, each of them

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

17

addressing a single need [4]. The glue to connect these simple
programs is a shell script that uses the pipe mechanism to redirect
the input and output streams.
A different way of software integration is based on the
development of a graphical interface that can simplify the use of a
set of command line utilities as it happens to burn CDs in the
Linux environment with the K3b tool [5].
A more complex integration is performed in tools such as Emacs.
This tool is highly customizable through the Lisp language so that
it is able to transform the text editor into every text-based
application such as an e-mail client, a development tool, etc.
Moreover, the research community has investigated the problem
over many years. One example is the PCTE (Portable Common
Tool Environment) project supported by the European Union
through ESPRIT in the ‘80s [7]. The aim of the project was the
definition of an interface specification for tools in order to make
them communicate but this framework has not been commercially
successful. Some reasons could be found in the complexity of the
approach and in the lack of standard tools and languages to
manage data exchange, integration and workflows.
A way to develop new applications through integration is the
package oriented programming (POP). This technique exploits
mass-market applications, like Microsoft Office, as large
components integrating their functionality to provide a user
familiar new products with low costs. This technique is usually
platform dependant because it is not possible to integrate
components running on different platforms [12].
This is an important limit because each one provides different and
specific applications that could be used as high quality
components.

3. TOOLS INTEGRATION
Web service technology is completely based on the XML
language as a lingua franca to make services communicate. To
achieve this goal, a transformation language (XSLT) is available
and a language specific for integration [2] has been recently
developed. A protocol to integrate programs could be based on
this set of already available protocols and adapt them to programs
integration [3]. This choice is based on the growing amount of
tools and software libraries already available with an Open Source
licence. Moreover, programmers are becoming familiar with these
technologies and almost all tools already support such data
format.
A data interchange format is not enough but it should be a starting
point to develop an integration protocol without strong
requirements for basic operation because such tools are already
available, even if they have been developed to achieve a quite
different goal.

In the past there have been several open source projects that have
been a success just because of the open source/open standard
approach.
Emacs is an example of a tool that owns part of its success to its
integrability and its expansibility to new environments and tools
[11]. Emacs was first developed in 1975 and therefore is still used
after more than 27 years of its inception. Almost every command
in Emacs is a small LISP program that acts upon the document.
To extend Emacs, existing programs are simply modified or new

ones added which made it possible that the evolution of the
application was fluid and very user-driven [10].
Emacs is not the only development system that allows integrating
plug-ins, commercial software like Visual Studio from Microsoft
allow that, too [8]. Also open source platforms that have come
from individual corporations, such as the Eclipse tool integration
platform, support plug-ins.
Unfortunately, Emacs is now not any longer adequate for today’s
needs. It is anyway important to learn from such 25+ years
success story and to identify its key features with respect of other
corporate or open source solutions.
Emacs is centered on (a) an open protocol and on (b) a protocol
upward and downward compatible used by all plug-ins developed
using elisp. An open, upgradeable, fully upward and downward
compatible protocol like the one of Emacs is the key technology
to bring to success several open source projects.
Development platforms like Eclipse or Visual Studio are both
extendable; they allow the development of integrated plug-ins, but
they are tailored to their specific architecture and are not upward-
compatible in the sense that sometimes new versions of the
underlying products require new versions of their plug-ins.
An example is the embedded programming environment Visual
Basic for Applications that is part of Microsoft Office. It changed
substantially over the last versions of Microsoft Office. With
Microsoft Office 2003, .NET will be introduced as the next
generation programming environment, making much of the
current development effort useless [9]. Moreover, the way
different events are caught within Microsoft Applications is not
totally homogeneous: for instance, on-activate and on-deactivate
is handled differently in Microsoft Word XP and Microsoft Excel
XP.
An open, multi-purpose, upward- and downward-compatible
protocol can address effectively such problem. Such protocol
would leverage the effect of the several tools and in this way
increasing substantially the productivity of the development
activity. In essence, an open, upgradeable protocol supports
“platform transparency” and facilitates cross-platform
development, which may help significantly the industry as a
whole.
The analysis can be extended from protocols to tools. It is
interesting to analyze the economic reasons behind the instability
of corporate solutions. The open source community has no
interest in changing underlying protocols because this would
create problems for many other developers and users. On the
other side, commercial software producers are interested in selling
new versions of their system and may have an advantage in
making the new system incompatible with previous versions. If a
change is unavoidable, e.g., to correct bugs, an open source
standard makes it easier to adapt a tool or plug-in that stopped
working after the new release because the new and the old
protocol are known.
In addition, a key characteristic of open source development is
that it is focused on diffusion; therefore, it is in its best interest to
keep full upward and downward compatibility in its subsequent
releases. This is not the case for commercial products where short
time-to-market development cycles have priority, and there are
incentives to get people to jump on new versions of tools as soon
as possible, if possible disregarding old versions of tools. An

18

example for this is again Office 2003 that requires at least
Windows 2000 and will not work on Windows 9x [6]. After all,
versioning is the only way to keep a cash flow coming, in a world
where the information good does not “naturally” age.

4. OPEN ISSUES
Tools integration is a basic requirement to improve the
development process in order to reduce the overhead required by
data synchronization and information exchange among
incompatible or partially compatible tools.

At present, there are no established architectures to address this
problem due to the complexity, corporate strategies, and failed
attempts.

Open source protocols and technologies can be used to propose a
widely adopted standard to perform such integration and provide
both open source and commercial communities a common way to
develop inter-operating systems.

5. REFERENCES
[1] Bach, M. Design of the Unix Operating System, Prentice

Hall PTR, 1986.

[2] Business Process Execution Language for Web Services.
http://www-106.ibm.com/developerworks/library/ws-bpel/

[3] DeRemer, F., H.K. Kron. Programming-in-the-Large Versus
Programming-in-the-Small. IEEE Transactions on Software
Engineering, 2(2): 80-86, 1976.

[4] Frakes, W.B., B.A. Nejmeh, C. Fox. Software Engineering in
the Unix/C Environment, Prentice Hall, 1991.

[5] K3b homepage: http://k3b.sourceforge.net/

[6] Keizer, G. Drops Support For Older Windows, 2002.
http://www.informationweek.com/story/IWK20021031S000
8

[7] Long, F., R. C. Seacord. A Comparison of Component
Integration Between JavaBeans and PCTE. International
Workshop on Component-Based Software Engineering,
2003.
http://www.sei.cmu.edu/cbs/icse98/papers/seacord.html

[8] Microsoft Visual Studio – Creating Add-ins and Wizards,
2003.
http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/vsintro7/html/vxconcreatingautomationobjects.asp

[9] Microsoft Office 2003 for Developers, 2003.
http://www.microsoft.com/office/preview/developer/default.
asp

[10] Raymond, E.S. The Cathedral and the Bazaar, 2000.
http://www.catb.org/~esr/writings/

[11] Raymond, E.S. The Art of Unix Programming, 2003.
http://www.catb.org/~esr/writings/

[12] Succi, G., W. Pedrycz, E. Liu, J. Yip. Package-Oriented
oftware Engineering: A Generic Architecture. IEEE IT
Professional, 3(2), 2001.

19

http://www-106.ibm.com/developerworks/library/ws-bpel/
http://k3b.sourceforge.net/
http://www.informationweek.com/story/IWK20021031S000
http://www.sei.cmu.edu/cbs/icse98/papers/seacord.html
http://msdn.microsoft.com/library/default.asp?url=/library/en
http://www.microsoft.com/office/preview/developer/default
http://www.catb.org/~esr/writings/
http://www.catb.org/~esr/writings/

20

Supporting Distributed and Decentralized Projects:
Drawing Lessons from the Open Source Community

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
{jerenkra,taylor}@ics.uci.edu

Justin R. Erenkrantz, Richard N. Taylor

ABSTRACT

Open source projects are typically organized in a distributed and
decentralized manner. These factors strongly determine the pro-
cesses followed and constrain the types of tools that can be utilized.
This paper explores how distribution and decentralization have
affected processes and tools in existing open source projects with
the goals of summarizing the lessons learned and identifying oppor-
tunities for improving both. Issues considered include decision-
making, accountability, communication, awareness, rationale, man-
aging source code, testing, and release management.

Categories and Subject Descriptors

K.6.3 [

Management of Computing and Information Systems

]:
Software Management -

software development

General Terms

Management, Design

Keywords

Decentralization, Distribution, Open Source

1. INTRODUCTION

Organizational distribution and decentralization alter critical factors
in the software development process. Historically, centralized orga-
nizational structures have prevailed. A single organization, or part
of an organization, has been fully responsible for a project, bearing
the ultimate responsibility for shaping the deliverables and select-
ing the tools and processes used in development. Communication
and consensus building within the organization has been facilitated
by physical proximity.

For numerous business reasons, over the past decade and more,
many organizations have moved to

distributed

 development — a
single administrative authority operating over physically distributed
subgroups. This change has been supported by improvements in

communication and networking technologies. Nonetheless, with
participants no longer physically collocated, the processes and tools
of development have had to change to attempt to cope with the dif-
ficulties so incurred.

Development of applications by

decentralized

 organizations adds
an additional wrinkle into the problem. By decentralized develop-
ment we mean that no single organization controls the project;
rather that all decisions related to the goals and objectives for the
project must be made multilaterally. The motivation for decentral-
ized development is akin to the motivation for participation in stan-
dards bodies: the common weal can be advanced while
independence is retained. Each organization holds ultimate author-
ity for its internal processes and tools. To the extent that interaction
between participating organizations occurs, selection of the
involved tools and processes must also be done multilaterally.

The premise of this paper is that we can gain some insight into how
to effectively meet the challenges that face decentralized and dis-
tributed development organizations by examining the practices of
the open source community, as these projects are most often both
distributed and decentralized. The intended beneficiaries of this
work is, largely, new open source projects, through several of the
observations have applicability outside the open source domain.

Some work along this line has already taken place. Progressive
open source[6], for instance, has been introduced in some commer-
cial entities. This model is primarily geared towards applying open
source practices within the community of internal employees or
specific strategic partners rather than the public. This model is not
fully decentralized, however. Implicit in the notion of progressive
open source is a controlling authority that can dictate development.

There has also been a large body of work related to distributed soft-
ware development. One particular area that has been carefully stud-
ied by Herbsleb,

et.al.

 is the communication between participants in
a distributed software project[15]. In this case study, participants
were spread across several countries and developed a project col-
laboratively. One of the significant results was that there was a clear
bias towards communicating with people in proximity, rather than
communicating with remote peers, even when supported by good
communication technology. This study does not fully explore the
effects of decentralization on development, however, as all of the
participants essentially worked for the same organization and were
clustered in relatively large groups at a small number of sites. In a
highly decentralized and distributed software project, few develop-

21

ers may be in proximity and belong to the same organization.

Another body of work has focused on enhancing technologies spe-
cifically for supporting distributed development. CSCW technolo-
gies fit into this category, as well as enhancements to the web. In
[7], for instance, enhancements were discussed that could make the
current web tools better facilitate collaboration. However, it lim-
ited itself to web-based artifacts and does not lay out a guideline
for the processes best suited to these tools.

It almost goes without saying that not all projects require heavy-
weight processes and tools due to their limited scope or participa-
tion. Introducing unnecessary processes and tools may stifle a
small project. It is also possible that participants do not desire
expansion beyond a specific threshold. These classes of projects do
not truly fit the distributed and decentralized criteria. In the follow-
ing discussion, therefore, we will only concern ourselves with
projects that are sizeable or complex enough to warrant tool and
process support and which are developed in a collaborative, dis-
tributed, and decentralized fashion.

We begin the remainder of the paper with discussion of a survey of
open source projects, showing similarities that have arisen in tool
usage. Discussion then turns to characterizing the ways distribu-
tion and decentralization can constrain processes and tools. We
then begin to summarize lessons from the open source experience,
starting with identifying the management and coordination needs.
We continue with an examination of techniques for satisfying these
various needs. We conclude with a discussion of potential future
work.

2. BASIS PROJECTS

Since most open source projects display significant degrees of dis-
tribution and decentralization in their organization, they provide a
good foundation for study. Some prior examinations have been
conducted into the tool usage of open source projects[12]. While
most open source projects are not directly related to each other in
terms of the subject of their production, a commonality of support-
ing tools has emerged in many cases.

In [12], eleven open source projects were surveyed to determine
what tools are used to support the development model of the
project. The survey was conducted to determine the quality aspects
of open source projects and determine how to improve the project
deliverables. The surveyed projects are spread across several dif-
ferent domains - including compilers, web servers, programming
languages, and desktop environments.

The surveyed projects are among the most successful open source
projects available. The Apache HTTP Server is currently in use by
about sixty percent of all websites[20]. Servers shipping with the
Linux kernel amounted for fourteen percent of all servers shipped
in the first quarter of 2003[11]. Tomcat is the official reference
implementation for the Java Servlet and JavaServer Pages technol-
ogies[2]. Therefore, these projects provide a reasonable basis for
examining how successful distributed and decentralized open
source projects should be conducted.

As Figure 1 depicts, these projects also represent a wide range of

source code size. One project had as little as 55 thousand lines of
code (Tomcat), while another surveyed project supports 2.5 million
lines of code (Linux).

Each project has independently chosen the tools and processes that
best fit it. Most of the surveyed projects do not have any common
developers, so there is no direct relationship. However, in some
areas, a consensus appears to have been reached concerning the
proper tools to use.

In the survey, all of the projects shared the same source control
system, CVS. However, since the publication of the survey, Linux
has adopted BitKeeper as its source control system[4]. While there
does currently appear to be a consensus regarding CVS, a number
of other replacements to CVS are actively being developed. These
include such tools as Arch[1] and Subversion[5]. Therefore, this
consensus may not be stable over the long-term as newer products
attempt to replace CVS.

In other areas, there is no single tool that predominates; rather, a
small number of tools are commonly used. One such area is in
mailing list software; two tools currently dominate - ezmlm[3] and
Mailman[10]. While two of the surveyed projects used other tools,
the rest used one of these two tools.

In yet other areas, such as web portals, there is extreme variations
in the tools used. No two projects shared the same tool for updat-
ing their website. At this point, most projects are creating custom-
ized tools for their website that fit their individual needs rather than
relying upon a pre-built solution for content management.

The variations of tool similarity across problem domains presents
an interesting statement. In some areas, open source projects have
found a particular tool that seemingly fits their development model
well. This is evidenced by consensus concerning a particular tool.
This consensus may be due to an inherent property of the way the
project is organized whereby this tool is the only obvious choice.
Or, perhaps the adoption of a particular tool is a matter of historical
accident. If the adoption is related to historical accident rather than

Figure 1. Lines of Code in Basis Open Source Projects (1000s)

0 500 1000 1500 2000 2500 3000

XFree86

Python

Perl
NetBeans

Mozilla

Linux Kernel

KDE
Tomcat

GCC

GNOME
Apache HTTP Server

22

a solid fit, the introduction of tools that are better suited to a dis-
tributed and decentralized development model may be able to
replace the current consensus. However, in order to encourage bet-
ter tools and processes, we must understand the constraints placed
upon an open source project by decentralization and distribution.

3. CONSTRAINTS

The presence of decentralization and distribution in a software
project places a number of new constraints on what processes and
tools can be effectively utilized. In order to obtain a clearer picture
of what may work in these environments, we need to be able to
identify these constraints.

3.1 Decentralization

The decentralization aspect of development requires processes to
consider multiple interested parties. The involved developers may
act towards their own goals, rather than the goals of the entire
project. Therefore, not all developers will necessarily be aligned on
all items and tasks. Yet, the processes and tools used should try to
promote working towards a common beneficial goal while meeting
the individual goals.

Due to decentralization, developers may not all work for the same
physical organization. However, one organization may fund a por-
tion of the developers on a project. If this organization removes its
funding, their associated developers may leave the project. There-
fore, the project needs to be able to withstand such losses or risk
having the project abandoned. This risk promotes processes and
tools which maintain continuity and shared communal knowledge.

When the individual goals of organizations collide, care should be
taken in resolving these concerns. If these concerns are not met to
everyone’s satisfaction, dissatisfied organizations may leave the
project. Depending upon the influence of the departing subset, it
may place the project in jeopardy. Therefore, processes promoting
compromises should be strongly emphasized to minimize such
departures.

3.2 Distribution

Distributed software development places a strain on the project’s
communication mechanisms. When developers are not collocated,
it is no longer possible to have frequent face-to-face meetings.
Therefore, other communication mechanisms and tools must be
deployed to fill this void.

As noted earlier, prior studies into the nature of distributed soft-
ware development have indicated that it is hard to facilitate com-
munication to the right person at the right time across site
boundaries[15]. In order to address this problem, processes and
tools need to be in place to allow timely identification of key con-
tacts. Herbsleb,

et.al.

, for instance, identifies needs in the areas of
awareness, rich interpersonal interaction, and support for finding
experts.

Since developers are not physically collocated, it may cause prob-
lems with synchronous communication as developers may be scat-
tered across timezones. If synchronous methods are used, some

participants may not be able to contribute to a discussion. There-
fore, asynchronous communication mechanisms are usually pre-
ferred.

4. MANAGEMENT AND COORDINATION
NEEDS

This section identifies management and coordination needs that
decentralized and distributed project organization imposes. If these
needs are not properly addressed at the outset, then repercussions
may arise as the project matures.

4.1 Goals

Before embarking on a project, there is usually a need for a clear
statement of goals that the project needs to accomplish in order to
be successful. Upfront identification of goals allows for examina-
tion by prospective participants. It may be that the initial goals may
not suit all interested parties. Therefore, the goals may need to be
altered to support other interests. If the interests are made to corre-
spond, the groups can begin to proceed to coordinate development
tasks. If their interests are irreconcilable, the parties may proceed
separately. A confrontation may occur later if an implicit differ-
ences in goals is later revealed.

Furthermore, if only a few parties wish to participate, the potential
cost of decentralization may not add sufficient value to the project.
It may be that the project does not have enough outside attraction
to reach a critical mass to support a viable community. Unneces-
sarily adding the overhead of decentralization may end up harming
the viability of the project.

4.2 Coordination of Initial Development

Once a goal has been determined, the interested parties need to
identify how to reach these objectives. This roadmap can be valu-
able in planning development activities. A project may have an ini-
tial donation of code to build upon, or the new project needs to
start the development process.

4.2.1 Inherited Code

A project may inherit code based upon a prior effort that has
decided not to further development, or, one of the interested parties
may be willing to donate code to begin the development effort. In
either case, interested parties should be aware of the implications
of the decision.

When using inherited code, the primary task becomes enhance-
ment and evolution. At first, the project may be able to bypass the
design stage of the software life-cycle. The majority of tools and
processes will be geared towards maintenance. Depending upon
completeness of the donation, design artifacts may need to be
reproduced to promote understanding of the inherited code.

As the project matures, limitations may be found in the initial
design that require substantial refactoring. The initial developers
may desire a reasonable expectation that the inherited code allows
for ample extensibility. Otherwise, efforts to evolve the code may
encounter an early roadblock that forces reconsidering the usage of
this code.

23

4.2.2 Initial Code

When a project begins afresh, the initial processes and tools will
primarily be design-oriented rather than maintenance-oriented. In
order to work in a distributed environment, the processes and tools
must be able to support collaborative design. As the project
evolves, the processes may alter to primarily supporting imple-
mentation and maintenance tasks.

A common occurrence in open source projects is that a publicly
documented standard is implemented. These documents are typi-
cally written by a separate standards organization. These docu-
ments serve as the initial requirements and often specify
interoperability characteristics of the deliverable. Once agreeing
upon a standard to implement, developers can then devise a plan to
carry out the architectural design and implementation.

By minimizing the requirements stage of the software life cycle by
leveraging pre-existing standards, more effort can be directed
towards the design and implementation. However, many projects
implementing public standards also provide feedback to the stan-
dards committee based on real-world implementation experience.

4.2.3 Effect on Design and Requirements

Since some of the most prominent open source projects inherited
code which implements a public or well-known standard, it may
stand to reason that the processes involved with design and
requirements gathering are not as well developed as maintenance
and extensibility of code in open source projects.

However, in these particular cases, the requirements and initial
design have already been determined in a very rigorous manner. In
the case of projects which implement Internet RFCs, these require-
ments have been created in a very decentralized fashion. However,
once these requirements have been established, various parties will
form groups to implement the standard.

Therefore, while it may seem that some open source projects lack
an emphasis on requirements and design, we may be able to ratio-
nalize that on the strict division of requirements and implementa-
tion in the traditional standard-making bodies of the Internet.

4.3 Common procedures

In decentralized communities, the interested parties may establish
a common set of rules for running the project. These rules will take
the place of a controlling authority which dictates such rules. Fur-
thermore, this will allow all parties to operate within stated organi-
zational parameters.

The parties should have already agreed on the goals and may have
agreed on the initial design, but they must now also agree how to
reach the desired result in a formal manner. If a conflict between
members of the project arises, there needs to be a predetermined
mechanism for resolving these conflicts.

If these steps are ignored and such a process does not exist, it may
introduce tension between parties. By creating and following these
guidelines, the belief is that most conflicts will be resolved peace-
fully. These procedures should also attempt to not introduce
unnecessary overhead in the development process.

If these mechanisms fail and an impasse develops, then the com-
munity may be

forked

. One of the most prominent examples of the
forks of open source projects are among the BSD-derivatives[17].
Despite having a common ancestry, the vision of each BSD-deriva-
tive is slightly different. In essence, each BSD-based platform has
the goal of creating a Unix-like operating system. However, each
of these derivatives has a different technical or procedural vision of
how this goal should be accomplished.

Therefore, we suggest that decentralized projects are self-correct-
ing though at a cost of wasted resources. When a difference of
vision occurs between developers and organizations, projects can
be forked to maintain the integrity of the private goals. In the end,
each constituency retains their private goals, and may be willing to
separate from other participants if an impasse is reached. Only
when their private goals are being met will participation continue.

4.4 Tool requirements

When multiple parties participate in decentralized development,
special attention should be made to the requirements of the tools
that support the processes. The selection of tools should recognize
that not all developers have equal resources to acquire specialized
tools. Open source projects may not be directly funded, but when
all participants are funded, these requirements may not be as strin-
gent.

Since open source projects are traditionally open to all developers
regardless of organizational affiliation, the tools used are com-
monly open source as well. By relying on free tools, this alleviates
financial barriers to participation as not all developers may receive
direct compensation for their work on a project. It may be unrea-
sonable to expect developers to purchase tools in order to work on
a project.

Due to the variety of developer preferences, most required tools
need cross-platform support. In the open source community, a
good tool will not require developers to switch their operating sys-
tem to use a special tool. This allows developers to work on plat-
forms with which they are most comfortable.

Since a project may attract developers of different skillsets, it may
be unreasonable to expect developers to have special training in a
tool or a technique. To offset this, projects may need to provide
clear documentation on techniques that will help unfamiliar devel-
opers. Furthermore, since the participants are self-selecting, not all
participants may have formal computer-science backgrounds, so
some more advanced techniques may not be accessible to all par-
ticipants.

5. PROCESS AND MANAGEMENT TOOLS
AND TECHNIQUES

This section describes process and management techniques that
may be used in distributed and decentralized projects. These tech-
niques attempt to satisfy the needs discussed previously. We will
examine how open source projects are solving these constraints
and identify potential areas of improvements for each concern.
Table 1, at the end of the paper, will summarize these techniques.

24

5.1 Delegation and Decision-Making

A concern for distributed and decentralized projects is delegation
of assignments and leadership. Since the participants do not neces-
sarily share the same reporting structure, traditional management
techniques may not apply.

Similarly to other management models, there may either be a flat
or hierarchical structure within this decentralized organization.
Ultimate authority may rest with a specific individual, or decision-
making responsibility may be shared by the interested participants.
In the case of a single authority, this individual may set policies
unilaterally. However, these policies must still promote participa-
tion by others. This requires the creation of a benevolent dictator-
ship where participants are willing to yield authority to a central
authority — explicitly backing away from decentralization.

A prominent example of this central authority organizational
model is seen in the Linux kernel. Linus Torvalds was the initial
designer and developer of the Linux kernel. The rest of the partici-
pants have allowed him to maintain control over the project. Linus
has the ultimate say on what changes make it into the kernel.

Designating a single individual with ultimate authority may create
an organizational bottleneck. Therefore, a hierarchical organiza-
tional structure usually accompanies these structures. In Linux,
most substantial components of the kernel have an associated
maintainer. Rather than submitting a change directly to Linus,
changes should be submitted to the responsible maintainer. If the
maintainer agrees with the patches, the patches can then be submit-
ted to Linus.

Linus places a certain degree of trust in his maintainers that they
will follow his process for submitting patches to him and deal with
most of the overhead for that component Yet, due to the supreme
nature of Linus’s role, he can overrule the maintainer of a compo-
nent. It is possible to circumvent a maintainer and send a patch
directly to Linus. If he decides to apply the changes without
receiving prior input from the maintainer, he retains that right.

Another model commonly used by open source projects, one more
in tune with decentralization, is the meritocracy model. This is
exemplified by the Apache HTTP Server Project[9]. All members
share equal power, so there is no direct leader of the project. Under
this flat organizational model, people gain power by sustained con-
tributions over time. The power of the developer is enabled by
grants of write access to the shared repository and the ability to
veto changes.

Until a developer gains commit access, they are considered a con-
tributor. While they may participate freely on the mailing lists, an
intermediary with appropriate access must review and commit
their suggested changes. They may also cast non-binding votes on
issues before the community. Since these votes are non-binding,
developers with binding votes may choose to disregard such votes.

As the voting developers are exposed to a new participant, they are
examining the quality of the contributions and how the participant
works within the community. Then, one voting developer will
nominate the contributor for voting privileges to the rest of the vot-

ing developers on a private discussion list. If the group considers
the contributions beneficial and the participant trustworthy, voting
privileges will be offered.

While no single person can control the project, each voting devel-
oper has

veto

 authority to stop undesired changes from being
merged into the shared repository. While these vetoes can be cast
on any patch, there must be a valid technical reason for stopping
this change. There is also no way to override a veto - this organiza-
tional model enforces consensus-building.

5.2 Accountability

Accountability may become an issue in a decentralized organiza-
tion. If there is a problem with the software, users may desire a
contact to resolve this problem. Open source projects have typi-
cally addressed this concern in two fashions: creating for-profit
corporations that provide commercial support or creating non-
profit foundations that provide a perpetual point of contact. These
solve the issue by a direct step away from decentralization.

Some organizations that participate in open source projects pro-
vide for-fee support as a source of revenue. For example, this is
common in the relational database domain. Two open source data-
bases, PostgreSQL and MySQL, both have strongly related corpo-
rations that sell support to end-users.

These commercial entities will often provide support plans that
assist users in setting up the product. These companies may also
respond to direct support questions concerning the product. By
having a revenue stream, these companies are able to fund devel-
opment of the associated open source project by directly financing
developers. These developers may add enhancements that the orga-
nization’s client base has requested, or fix problems that have been
identified by support personnel.

As an alternative to providing a commercial support, some open
source projects have established non-profit foundations. These
foundations are the owner of the code and do not have any explicit
commercial interests. Therefore, it is expected that these founda-
tions will be able to oversee and maintain accountability for the
code. Two prominent examples of this are the Free Software Foun-
dation and FreeBSD Foundation.

In these cases, a non-profit foundation is usually responsible for
providing the infrastructure of the project. They will typically pro-
vide the services that allow development to occur. These founda-
tions do not usually provide end-user support or directly fund
developers. However, the foundation is expected to be eternal,
while a for-profit corporation may be forced to dissolve due to
financial considerations.

5.3 Communication

Due to the introduction of distribution, there may be varying
degrees of developer collocation. Since the projects are also typi-
cally decentralized, developers may not work for the same physical
organization. Therefore, the development process must allow for
communication between people not at the same location and not
belonging to the same physical organization. Therefore, the major-

25

ity of communication should be at the virtual organization level,
rather than the physical organization. By relying upon asynchro-
nous forms of communication rather than synchronous communi-
cations, a higher proportion of global developers can be supported.
Yet, relying upon asynchronous communication introduces a delay
factor[8,15].

In order to facilitate communication to the right person at the right
time, mailing lists are commonly used. This reduces the number of
contacts that are required. Almost every open source projects uses
public mailing lists to promote subscription by non-developers and
to encourage contributions by new developers.

Multiple mailing lists may also be used to further segment the mail
traffic. These mailing lists may be dedicated to a particular sub-
topic. By reducing the scope of a mailing list, it allows for separate
communities to form within the same project. This may be benefi-
cial for encouraging growth in large projects. It also moves discus-
sion away from a more generic mailing list where there may not be
as many interested people in the discussion.

It has been stated that email is predominately used because it is the
least common denominator[8]. One problem with email is that it
requires a common language to be used. Mechanical translation
services have not yet proved to be sufficient to address technical
translations. This may promote developers who are only fluent in
the main language of the developers.

A possible avenue to research would be to investigate projects
where developers do not share a common language. In these cases,
it would be useful to analyze how developers communicate when
they do not share a language. This may promote islands of devel-
opers that do not often communicate.

In addition to relying upon asynchronous communication, some
projects use a variety of synchronous communication (such as real-
time chats or instant messaging). Yet, this is only effective when
developers are located in similar time zones. If not all developers
can participate in synchronous communications, it is essential that
some archival of the communications be made. Otherwise, key
participants may be left out of a critical discussion.

5.4 Awareness

Awareness is an understanding and coordination of what partici-
pants are doing. Since the personnel of a decentralized and distrib-
uted community may be rapidly changing, it may be hard to even
identify who is currently active. This aspect of development pro-
cesses has been remarkably underdeveloped. Most coordination
efforts remain ad-hoc and short-term.

However, mailing lists provide a rudimentary tool for coordination.
A developer can post on the mailing list indicating that they are
planning to perform some activity. But, there is no enforcement of
this plan. This leads to a problem when a participant says they are
going to accomplish some task, but does not complete it.

Some projects may also use shared information repositories for
awareness information. For example, the Apache HTTP Server
Project relies on a STATUS text file that lists outstanding issues;

this file is emailed weekly to the main developers mailing list. Par-
ticipants may make a notation as to which issues they are address-
ing. However, it may require frequent refreshing of this file to
ensure that the information is not stale.

Many open source projects also require that large changes be dis-
cussed before implementation starts. This allows other developers
to provide feedback on proposed implementation strategy. Lever-
aging the feedback of developers may allow potential design prob-
lems to be detected earlier than if review occurs after
implementation.

5.5 Historical Rationale

Since turnover may be high in decentralized projects, a collective
history should be maintained and documented. By examining past
communications and activities, new developers can begin to under-
stand decisions made at a certain point in the past. It also allows
developers to learn from prior decisions.

It is essential to use communication mechanisms that allow for
long-term archival. Most asynchronous forms of communication
lend themselves well to archiving - such as public mailing list
archives. Therefore, the delay factor introduced by asynchronous
communication has an advantage of allowing capture of historical
rationale.

However, spontaneous synchronous communications are often not
archived. This may often be seen in projects where a number of
developers are physically co-located. In these environments, face-
to-face communications may have an unusually strong bias[15]. In
addition to not allowing full participation of the group, these sorts
of communication may be detrimental to distributed projects
because artifacts of these conversations are rarely recorded.

A common problem in open source projects is that new developers
often repeat or bring up old discussions. This demonstrates a lack
of tools that encourage review of past discussions. If tools for
reviewing prior discussions were readily available, developer time
spent rehashing prior topics could be minimized.

To help with this, Perl has created Perl Design Documents (PDDs)
which lay out the rationale for certain decisions made in the devel-
opment of Perl 6 and Parrot[28], This allows new developers to
annotate and reexamine prior decisions in a central location. It may
happen that a new developer has added insight that was not noted
in the prior conversation. If post-mortem annotation of discussions
is allowed, it may achieve a balance between stifling and encourag-
ing reexaminations.

5.6 Design Rationale

In addition to allowing for discovery of important historical con-
versations, it may be critical to understand the design rationale of
certain components. In a distributed and decentralized environ-
ment, it may not be possible to contact the original author of a sec-
tion of code. Therefore, mechanisms need to be in place to
communicate rationale to future participants.

One way to communicate rationale is by creating developer docu-

26

mentation. Some open source projects, such as AbiWord[25], keep
interface definitions and notes in-line with the source code. Docu-
mentation can then be published with tools such as doxygen[14].
By synchronizing the location, when major changes are made to
the source code, the belief is that the documentation will be
updated. This makes it easier to produce developer documentation
which reflects the current code.

Depending upon whether the project did the initial design, other
artifacts such as design documents and diagrams may be available.
In projects that provide an extensible interface, it is also common
to produce well-explained and concise examples as a way to illus-
trate the interface in action. This helps new developers of an inter-
face understand the code by looking at examples.

There has been research into encouraging software reuse, but these
tools have not yet been integrated into the mainstream. There are
tools available that provide relevant interface information in a per-
sonalized manner[30]. There has also been work towards harvest-
ing the structural and semantic information of code[19].
Encouraging adoption of already existing tools may make captur-
ing design rationale easier.

5.7 Participation

In projects where the personnel on a project may change fre-
quently, it is important to have a published set of developer guide-
lines. These guidelines allow familiarization with the processes
and tools used in a project. New participants can review them and
contribute to the project in an intelligent manner.

Sites such as the KDE Developer’s Corner provide a wealth of
information that allow new participants interested in KDE to learn
how to contribute[18]. The site contains introductory tutorials for
developers new to the internals of KDE. Information about the
development tools required to compile KDE and how to obtain the
latest KDE snapshots are also available.

It has been mentioned that having an established set of guidelines
shared by projects can reduce the redeployment costs of develop-
ers[6]. If all projects shared the essential guidelines, it would make
it easier to contribute to new projects. If each project had its own
set of unique guidelines, it would be difficult to transition to new
projects. Therefore, it would be beneficial to encourage standard-
ization of participation guidelines across projects.

5.8 Controlling Participation

A corollary to encouraging participation in decentralized and dis-
tributed software is that participation by new people must be man-
aged by the current participants. Depending upon the access
policies of the project, new participants may only have limited
access to making changes to the project. Therefore, processes and
tools need to be in place to support facilitating such contributions.

Tools such as the SourceForge’s patch manager used by the Python
project can be extremely useful[21]. These tools allows partici-
pants to submit patches to be applied, then developers with the
appropriate commit access can integrate the changes. This particu-
lar tool also allows for annotations to be stored.

However, these current tools suffer from a lack of integration with
the rest of the development process. Some projects enforce a pol-
icy where a certain number of positive reviews must be received
before a change can be integrated[26]. Contributions may also
grow stale as the project code base evolves. Furthermore, if none
of the active developers deem an issue important, it may be a chal-
lenge to motivate integration. The tools used to control participa-
tion should ease the burden of merging the changes.

5.9 Managing Source

Since the developers are distributed, it is often a requirement to
have a unified view of the source code. If a unified view is not
available, it may be possible for developers to not be aware of the
current state of affairs. Therefore, most projects will adopt some
sort of collaborative software configuration management system
(SCM). The processes and tools need to balance that each devel-
oper should be able to work independently while allowing them to
remain consistent with the rest of the team.

As discussed previously in [12], the predominate SCM in use by
open source projects is currently CVS. There has been a recent
trend in seeking tools that can replace CVS[1, 4, 5]. CVS is based
on a centralized repository model with one repository holding all
of the content. Some of the newer SCM tools that have been intro-
duced are keeping the centralized model of CVS[5], while others
are attempting to decentralize the repository structure[1, 4].

However, depending upon the accountability structure of the
project, it may make sense to keep a centralized repository even in
a decentralized project. If a project has a non-profit organization
which holds the copyright, then this organization should adminis-
ter the master repository. However, if the project has a loose
accountability structure, a decentralized repository structure may
be more efficient.

Most SCM tools currently in use also promote an optimistic con-
flict resolution model rather than a pessimistic conflict resolution
mode[16]. An optimistic locking strategy allows source conflicts to
be resolved at commit-time, while a pessimistic locking strategy
uses locking to prevent others from making changes while a
change is being developed. A pessimistic locking strategy may
interfere with parallel development as it prevents two developers
from working on the same file at the same time. Only using pessi-
mistic locking may have an impact upon the effectiveness of distri-
bution.

5.10 Issue Tracking

One of the stated advantages of open source projects is that it is
easier to fix problems since the source code is freely available[22].
However, it may still be difficult for non-developers to fix prob-
lems as they may not have the appropriate background required to
resolve a defect. Therefore, processes and tools are required to
report problems to the people who can help resolve defects.

Due to the presence of decentralization, it may be difficult to
solicit participants who can resolve reported defects in a timely
manner. Some participants may be wary of working with end-
users, or are too busy to deal with acquiring the relevant informa-

27

tion from the reporter. Therefore, the tools need to be able to sup-
port novice users and expert developers efficiently.

Standardizing on issue tracking tools, such as Mozilla’s Bugz-
illa[27], may increase the familiarity of both users and developers
with these tools. However, as these tools are adopted by more
projects and enhancements requested, feature creep must be
resisted. If the issue tracking tool becomes too complicated to use
effectively, its usefulness is diminished.

5.11 Documentation

Since not all users of a project are developers that can understand
code, a project must also be able to deliver quality user documenta-
tion. Otherwise, users may find the product too complicated to use
properly. A significant challenge for distributed and decentralized
projects is to have documentation at an equivalent quality to the
code.

At best, documentation can be viewed as a form of source code.
Therefore, many of the processes that apply to source code can
also apply to documentation. Documentation may be written in a
collaborative environment using similar tools and processes as the
ones used to write code.

A problem in any software project is how to keep the end-user doc-
umentation synchronized with the current version of the source
code. Oftentimes, developers are hesitant or reluctant to write user
documentation. Therefore, when they make a change that is visible
to a user, the developer may not update the relevant documenta-
tion. This leads to the documentation becoming out of sync with
the code.

Some open source projects have addressed this by having separate
documentation teams. One example of this separation is in PHP’s
documentation[29]. By isolating the documentation process from
the development process, it enforces another perspective on the

usability aspects of the code. This may result in an increase of
quality of both the code and end-user documentation.

Another characteristic of the PHP documentation process is that it
allows users to annotate the documentation on the website. As
users spot errors in the documentation, they may append a correc-
tion comment to the website. Then, PHP documentation partici-
pants can harvest the changes into the main documentation.

5.12 Testing

There is often a strong desire to ensure that a project meets both
the functional and reliability goals previously established. There-
fore, testing processes and tools should be developed and encour-
aged throughout the life cycle of the project. There are two classes
of methods that are typically used in open source projects: code
review and testing.

Since it is difficult to conduct regular meetings in a distributed
workplace, it is not possible to conduct periodic code review ses-
sions. Therefore, code reviews must occur as the changes are con-
ducted. Developers are usually asked to make small verifiable
changes rather than large changes. By asking all developers on a
project to review the changes as they happen and asking for the
most concise changes possible, it may make it easier to identify
problems sooner.

Besides relying upon manual inspection, some projects have a
suite of automated tests for the project. These automated tools
allow all participants to run the same set of tests at their discretion
on their specific platform. One such project that utilizes automated
tests is Subversion[5]. The test suite in Subversion is extensive and
tests almost all functionality of the system. Furthermore, no
releases can be made without first passing the automated tests. It
may be possible to integrate some recent research into optimizing
which regression tests are executed to improve the performance of
the test suites[13].

Table 1. Summary and Avenues for Enhancements

Issue Techniques Project Exemplar Avenues for Enhancements

Decision-Making Project leader, meritocracy Linux, Apache Understanding consequences

Accountability
For-profit support,
non-profit ownership

PostgreSQL,
FreeBSD

Introducing clarity

Communication Discussion lists, asynchronous All Balancing granularity

Awareness
Frequent status updates,
Discussion before implementation

Apache Creating better tools

Historical Rationale
Archival of communications,
design documents

Perl Creating better tools

Design Rationale Developer-centric docs, examples AbiWord Enforcing synchronization

Participation Clear tutorials, guidelines KDE Creating standards

Controlling Part. Feedback, annotating contributions Python Integrating into other processes

Source Code
Public source repository,
optimistic conflict resolution

All Investigating decentralization

Issue Tracking Soliciting developer assistance Mozilla Creating easy-to-use tools

Documentation Distinct personnel, annotations PHP Separation of code and docs

Testing Code reviews, automated tests Subversion Optimizing test executions

Release Management Mirroring, versioning Debian Managing distributions

28

5.13 Release Management

Since users ostensibly wish to use the deliverables of a project,
quality releases must be produced. Therefore, a viable release
strategy must be determined. If the project does not have a coher-
ent process, it may have problems attracting users or achieving a
reputation for stability.

In order to achieve widespread distribution, an infrastructure must
be in place to allow public consumption. Some projects rely upon
mirrored servers to handle the load of delivering releases to end-
users. A critical concern is how to select these mirrors - should
they be self-selected or should they be limited only to trusted indi-
viduals.

One such project that relies upon mirrors to deliver releases is
Debian[23]. Debian balances the load across many geographically
dispersed self-selected servers. However, Debian has several push-
primary mirrors that are chosen because of their reliability. Self-
selected mirrors can then pull releases from one of the pushed mir-
rors rather than accessing the master site directly.

Projects may also place meanings on the versions that deliverables
are labeled with. This allows a shared understanding of the
expected reliability. At times, it is helpful for a project to have a
development branch that is not intended for widespread usage.
These releases can also be used to perform dry-runs of the release
process. This can be especially helpful when a project is trying a
new release process. By explicitly labeling a version as unstable or
development, it can help match the expectations of users with the
expectation of the developers.

For example, Debian always has at least three versions that are
actively maintained: stable, testing, and unstable[24]. The stable
distribution is the one that is recommended for widespread usage.
Then, the testing distribution consists of packages that are waiting
to be included in the next stable release. Then, the unstable distri-
bution is meant for developers and not meant for production qual-
ity.

6. SUMMARY AND FUTURE WORK

Adopting a decentralized and distributed organization for develop-
ing software requires rethinking fundamental process and tools.
We have attempted to examine the consequences of supporting
decentralization and distribution by seeing how open source
projects have addressed these concerns. Table 1 provides a sum-
mary of the issues, techniques, and projects discussed in this paper.
It also lists avenues for enhancement that have been identified
where the current processes and tools could be improved to better
support distributed and decentralized software projects.

If projects can create a clear line of accountability that is separate
from all of the participants, it may foster a sense in the users that
responsibility will be maintained. A decentralized project should
be able to withstand the departure of organizations gracefully. If
this is not present, then users may become wary of the project fall-
ing out of active maintainership.

By limiting the scope of discussion lists, it makes it easier for par-

ticipants to understand what is currently going on in areas of the
project. This level of granularity must be balanced with having too
many mailing lists that makes it difficult to find the appropriate
forum for discussion. However, when the right balance is achieved,
this allows participants to easily partition discussion based upon
agreed topical lines.

One concern for distributed software development is that a set of
standards is required in order to ease participants shifting from one
project to another. This may manifest itself as a common vocabu-
lary shared between projects. If participants do not share a com-
mon language, it becomes hard to communicate effectively. The
creation of standards and accepted best practices can help ease
migration between projects.

A common problem in a distributed software project is understand-
ing what other participants are currently working on. The creation
of tools to promote awareness between developers can address this
need. Furthermore, tools that promote capturing of historical ratio-
nale may make it easier for new participants to enter a project.

Another area for tool improvement is introducing a way to capture
the rationale for a decision in the documentation. Currently, it is
hard to identify why a particular change is made. The artifacts for
determining this may not be centralized. Creating a tool that indi-
cates relationships between artifacts to encourage rationale under-
standing may be critical.

The current tools for controlling participation are ad hoc and not
well integrated. This makes it difficult to lower the burden upon the
participants in a project in dealing with the contributions by casual
participants. If the tools for handling contributions were better
integrated into the standard processes, it would make this task sig-
nificantly easier.

7. ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 0205724.

8. REFERENCES

[1]

Arch - Revision Control System

. <http://arch.fifthvision.net/>,
HTML, 2003.

[2] Apache Software Foundation.

The Jakarta Site - Apache Tom-
cat

. <http://jakarta.apache.org/tomcat/>, HTML, 2003.
[3] Bernstein, D.J.

ezmlm

. <http://cr.yp.to/ezmlm.html>, HTML,
2000.

[4] Bitmover.

BitKeeper

. <http://www.bitkeeper.com/>, HTML,
2003.

[5] CollabNet.

Subversion

. <http://subversion.tigris.org/>,
HTML, 2003.

[6] Dinkelacker, J., Garg, P.K., Miller, R., and Nelson, D. Pro-
gressive Open Source. In

Proceedings of the

International
Conference on Software Engineering (ICSE).

 p. 177-184,
2002.

[7] Fielding, R., Whitehead, E.J., Anderson, K., Oreizy, P., Bol-
cer, G.A., and Taylor, R.N. Web-based Development of Com-
plex Information Products

. Communications of the ACM.

41(8), p. 84-92, 1998.
[8] Fielding, R.T. and Kaiser, G. The Apache HTTP Server

Project

. IEEE Internet Computing.

 1(4), p. 88-90, 1997.

29

http://arch.%EF%AC%81fthvision.net/%00%00
http://jakarta.apache.org/tomcat/
http://cr.yp.to/ezmlm.html
http://www.bitkeeper.com/
http://subversion.tigris.org/

[9] Fielding, R.T. Shared Leadership in the Apache Project

. Com-
munications of the ACM.

 42(4), p. 42-43, 1999.
[10] Free Software Foundation.

Mailman

. <http://www.list.org/>,
HTML, 2003.

[11] Fried, I. Sales Increase for U.S. Linux Servers.

CNet
News.com

. February 10, 2003. <http://news.com.com/2100-
1001-984010.html>.

[12] Halloran, T.J. and Scherlis, W.L. High Quality and Open
Source Software Practices. In

Proceedings of the

Meeting
Challenges and Surviving Success: 2nd Workshop on Open
Source Software Engineering.

 May, 2002.
[13] Harrold, M.J., Jones, J.A., Li, T., Liang, D., Orso, A., Pen-

nings, M., Sinha, S., Spoon, S.A., and Gujarathi, A. Regres-
sion Test Selection for Java Software. In

Proceedings of the
ACM Conference on OO Programming, Systems, Languages,
and Applications (OOPSLA 2001).

 p. 312-326, Tampa, Flor-
ida, October, 2001.

[14] Heesch, D.v.

Doxygen

. <http://www.doxygen.org/>, HTML,
2003.

[15] Herbsleb, J.D., Mockus, A., Finholt, T.A., and Grinter, R.E.
An Empirical Study of Global Software Development: Dis-
tance and Speed. In

Proceedings of the

International Confer-
ence on Software Engineering (ICSE).

 p. 81-90, 2001.
[16] Hoek, A.v.d. Configuration Management and Open Source

Projects. In

Proceedings of the

3rd International Workshop on
Software Engineering over the Internet.

 Limerick, Ireland,
June 6, 2000.

[17] Howard, J. The BSD Family Tree

. Daemon News.

 April,
2001. <http://www.daemonnews.org/200104/
bsd_family.html>.

[18] KDE e.V.

Developer's Corner

. <http://developer.kde.org/>,
HTML, 2003.

[19] Maletic, J.I. and Marcus, A. Supporting Program Comprehen-
sion Using Semantic and Structural Information. In

Proceed-
ings of the

23rd International Conference on Software
Engineering.

 p. 103-112, Toronto, Ontario, Canada, May,
2001.

[20] Netcraft.

Netcraft Web Server Survey

. <http://www.net-
craft.com/survey/>, HTML, 2003.

[21] Python Software Foundation.

Patch Manager

. <http://source-
forge.net/tracker/?group_id=5470>, HTML, 2003.

[22] Raymond, E.S.

The Cathedral & the Bazaar: Musings on
Linux and Open Source by an Accidental Revolutionary

.
O'Reilly, 2001.

[23] Software in the Public Interest.

Debian Mirrors

. <http://
www.debian.org/mirror/>, HTML, 2003.

[24] Software in the Public Interest.

Debian Releases

. <http://
www.debian.org/releases/>, HTML, 2003.

[25] SourceGear Corporation.

AbiWord Documentation

. <http://
www.abisource.com/doxygen/>, HTML, 2003.

[26] The Apache HTTP Server Project. Apache HTTP Server
Project Guidelines and Voting Rules. <http://
httpd.apache.org/dev/guidelines.html>, HTML, 2003.

[27] The Mozilla Organization.

Bugzilla Project Homepage

.
<http://www.bugzilla.org/>, HTML, 2003.

[28] The Perl Foundation.

Parrot and Perl6 PDDs

. <http://
dev.perl.org/perl6/pdd/>, HTML, 2003.

[29] The PHP Group.

PHP: Documentation

. <http://www.php.net/
docs.php>, HTML, 2003.

[30] Ye, Y. and Fischer, G. Supporting Reuse by Delivering Task-
Relevant and Personalized Information. In

Proceedings of the
24th International Conference on Software Engineering.

 p.
513-523, Orlando, Florida, May, 2002.

30

http://www.list.org/
http://news.com.com/2100-
http://www.doxygen.org/
http://www.daemonnews.org/200104/
http://developer.kde.org/
http://www.netcraft.com/survey/
http://sourceforge.net/tracker/?group_id=5470
http://
http://
http://
http://
http://www.bugzilla.org/
http://
http://www.php.net/

Towards a Method to Instantiate a Product Model for Open
Source Software Development in a Commercial

Environment

[Extended Abstract]

David Cruz, Sascha Vogel
Software & Systems Engineering
Technische Universität München

Boltzmannstr. 3, D-85748 Garching

{cruz, vogels}@in.tum.de

ABSTRACT
Developing OSS in a commercial environment requires a pro-
cess model, which combines the flexibility and creativity of
OSS development with the structured process models of tra-
ditional software development.

A previous paper defines a metamodel which is suitable
to build specific process models for developing OSS in a
commercial environment. The following Paper gives another
brief overview of the product model and exemplifies the con-
struction of a process model. A characterization of project
types is performed and specific adaptions for each project
type are shown.

1. INTRODUCTION
The characteristics of OSS development [1, 7, 8] are very dif-
ferent from the ones of traditional SW development as used
in many companies. Yet lots of companies have an interest
in developing OSS. The interests may be of various natures
with different focuses (e.g. better quality SW) (cf. [4]), in
all cases the wish to develop OSS exists. Nevertheless many
companies have difficulties in carrying out their intents, be-
cause the process of doing so is not simple nor visible. The
product model defined in [2, 10] and [3] provides a means of
defining a process to develop OSS in various environments.

This paper explains how to use the product model to create a
process model and how to adapt the resulting process model
according to special project characteristics.

At first the different kinds of possible OS-projects are sub-
divided into categories. The impact on common process at-
tributes is shown and methods to adapt the process model

in order to account for these impacts are proposed. This is
part of section 2.

Then the product model itself and how it can be used in
order to create a process model is shortly described in sec-
tion 3.

Finally section 4 provides an example scenario and shows
the use of explained techniques within that scenario.

2. PROJECT CATEGORIES
A large variety of factors have an impact on how to design
the process of software development. Factors to be taken into
account here could be software architecture, license model,
business model, available tool support, etc. When construc-
ting a process model, all of these factors have to be taken
into account and the process model has to be adapted accor-
dingly. For some of these factors the product model already
provides advice on how to deal with them. In the followi-
ng two important factors are explained and combined into
types. The types influence different project characteristics,
some of which will be mentioned after the explanation of the
types. These characteristic and the need to cope with them
will later influence how the process model is built.

2.1 Methodology
The first factor to be taken into account is the methodology
by which to develop the SW. This might be a little confu-
sing, but the thought that closed source SW must always be
developed using traditional process models and OSS must
always be developed in an open source environment, is not
quite correct. It is perfectly possible to develop a SW com-
pletely within a company using the ’waterfall’ model (cf.
[12]) and then license the SW with the GPL, just as it is
perfectly possible to develop a SW using OSS development
techniques and not license it with an OS license.

In fig. 1 the two possibilities of what methodology to use to
develop SW are shown. It is important to notice that open
and closed source within the figure refers to the methodolo-
gy to be used and not to the license chosen, though of course
the license may have an influence on the choice, which me-
thodology to use to develop the SW. Further explanation of

31

internal Type 1

Open Source Closed Source

internal &

external

external

Type 2

Type 3 Type 4

Type 5 Type 6

Focus of this paper

Methodology

Community

Distribution

Figure 1: Project Classes

the figure follows in the section about community distribu-
tion.

2.2 Community distribution
One of the factors that has the most influence on the deve-
lopment process is how the community is distributed. When
developing OSS in an industrial context there are three cases
to take into account:

1. The company wants to develop OSS without the ex-
ternal community.

This means that the company wants to develop OSS
using an OSS development process without letting the
OS community take part in the development process.
As in these cases the development process is an OS pro-
cess, the product model can be used to build a process
model. The corresponding types within the product
model are shown in fig. 1, type 1.

2. The company wants to develop OSS together with the
community.

Type 3 in fig. 1 corresponds to this scenario. This con-
stellation also influences how the process model emer-
ges from the product model. The explicit handling is
explained in the tailoring mechanism in section 3.3.

3. The company lets the community develop an OSS.

In this case (type 5 in fig. 1) the company interacts
with the OS community without participating in the
actual development process. This could be the case
if the company where part of the organization. This
case is very special in handling and hence the product
model cannot be applied to it.

The development of closed source can also be divided into
three cases, depending on the subdivision of participating
developers:

• Type 2: The company develops SW without external
participation.

• Type 4: The company develops SW in a distributed
environment.

• Type 6: The company instructs external companies or
developers to develop their SW.

Specify

content

define

project

management

attributes

(time,

ressources, ...)

Define

directive-oriented

steering mechanisms

Identify

stimuli

Decision point (external or internal Stakeholder)

Escalation

Instance

Steering not possible.

For this an escalation instance

has to be defined particularly

to realize critical paths

Figure 2: Planing Workflow

The last three cases can also not be solved using the presen-
ted product model.

2.3 Scope of this paper
The aforementioned categories allow to differentiate a lot of
alternative project types. In this paper we focus on project
types 1 and 2 of fig. 1, because that is what this paper under-
stands as open source software development in a commercial
environment.

In particular, the relation between OSS and traditional SW
development is established by introducing planing, control-
ling and steering mechanisms in the OSS development pro-
cess. It is easy to see that these management activities are
necessary, but also different to introduce in a process model,
as not all participating developers can be forced to work on
their assigned tasks by directives.

For the mentioned project types, we introduce a tailoring
mechanism, that defines a process based on activities, ar-
tefacts and project types. In this paper this definition of
processes is called instantiation. The foundation for the fol-
lowing ideas is given by the product model described in [3].

2.4 Type Attributes
Depending on the aforementioned project types, different at-
tributes of the process model should be stressed in different
ways. In the following some of these attributes are shown
and explained.

• Planing effort

In most industrial processes someone wants to see a
result at a fixed date, therefore planing is essential.
Depending on the project type, planing can be adapted
in order to meet the requirements imposed by an OS
environment.

32

in Process presented accepted

an Artefact is beeing elaborated

the Artefact has passed the

quality assurance

the Artefact hast not passed the

quality assurance

and has to be reworked

in Process presented accepted

an Artefact is beeing elaborated
the Artefact has passed the

quality assurance

the Artefact hast not passed the

quality assurance

and has to be reworked

follow up

the Artefact has been

rejected. A new Stakeholder

has been identified to

create or finalize the Artefact
the Artefact has been

rejected. A new Stakeholder

has been identified to

create or finalize the Artefact

an Artefact has

been elaborated and

the project control registers

the quality lack

a)

b)

Figure 3: Artefact states

The realization of the planing activities depend on the
stakeholders which are assigned to activities which ha-
ve to be performed. In this paper we offer an OSS spe-
cific workflow which helps to plan projects even with
external stakeholders. In general external stakeholders
are not part of the organization itself. Therefore, tra-
ditional planing and steering mechanisms cannot be
applied. For this we propose to define stimuli for sta-
keholders to motivate them.

The needed workflow is illustrated in fig. 2. It can be
used for both of the identified project types. In pro-
ject type 1 the workflow will always take the same
path, whereas in project type 3 the stakeholder has
to be determined. Before choosing a stakeholder ad-
ditional information (e.g. time to process an activity)
is inserted into the attributes which can later be used
to control and steer the process as explained in the
attributes motivation and steering.

If problems arise during the project steering, it is im-
portant to have ”fall back solutions“. By this we mean
project instances such as further resources, alternati-
ves, etc. to still achieve the given project goals.

• Quality characteristic

The importance of quality assurance also changes with
the project type. Quality assurance is not only concer-
ned about the quality of the software, but about all
artefacts built within the development process.

The artefacts can be assigned to state machines, which
store the quality situation the artefact is currently in.
This machine has different appearances, which depend
on the responsible role. If this role is an internal role,

the machine consists of three more or less ”traditional
states“ (cf. [5, 6]): in Process, presented and accepted
as describe in figure 3a.

If the role is an external one, the machine has to be
adapted. As seen in Figure 3b it is expanded with the
state: follow up. This state documents, that an artefact
has not fulfilled the quality requirements.

Depending on the project steering process it is possible
to stay in the state follow up for further iterations of
rework. Each iteration influences the standing of an
external stakeholder within the project.

Based on this state it is possible to reach two different
states. Firstly, the artefact can be defined as in Pro-
gress and secondly, it can be marked as accepted. The
Redefinition of in Progress illustrates that an artefact
has been rejected by the project control. This implies,
that the responsibility for this artefact has changed.
Either another external stakeholder has been assigned
to this artefact or an internal one. The more serious
the finalizing of an artefact is, the more internal re-
sponsibilities should be introduced, because of to the
possibilities of directive-oriented project management
within one specific organization.

• Motivation and steering attribute

The attributes motivation and steering only need to be
accounted for, when the community is partly external,
for then special measures for motivation have to be
taken. When the community is entirely internal, there
is no need to adapt the product model, as the ways to
motivate an internal employee are not OS specific.

As mentioned above the planing attribute inserts ti-
me information into the activities. This information is
used in both motivation and steering.

The standard procedure provided to motivate exter-
nal developers is to offer incentives. When an activity
is finished more than a fixed percentage early, the de-
veloper is publicly offered an incentive. There is no
need to provide any measures if the developer hands
in the work late, for any kind of penalization would
most probably result in a negative reputation within
the community.

To be able to steer the project according to the plan,
two artefacts that are only to be handled by internals
can be added. The two artefacts are a positive and a
negative list. Similar to when motivating an external
developer, after each activity the resulting time score
is stored in one of the lists. These lists can then be
used to identify external developers which are reliable
and assign them critical problems.

3. PROJECT SPECIFIC PRODUCT-MODEL
This section firstly introduces the product model given in
[?]. Thereby, the model itself describes the type of a process
model. This is described in the subsections “underlying pro-
duct metamodel” and “products and views”. Secondly, the
instance of this process type is given. For this, we match the
given example of a software development project to the pro-
duct model. This matching mechanism is described in the
subsection “tailoring”. At the end, based on the scenario and
project types, the product model is instantly applied to the

33

defined tailoring mechanism. In this way, a role assignment
is performed.

3.1 Underlying Metamodel
The metamodel describes the elements of a work product
and their relations. Generally, a work product consists of
artefacts, activities and roles. Artefacts characterize phy-
sical elements which are produced during the development
process. This includes documents or code fragments. The ar-
tefacts are created modified or removed by activities. In this
context, specific activities are defined to realize one of these
activity categories. For instance the artefact “code” can be
modified as a consequence of a review comment or a faulty
test run. Here, the activity means to correct and adapt the
code according to the test specification. The roles determine
either responsibilities or assistants of the artefacts.

Products can be related. For this, a relation-type exists
which correlates artefacts and activities. This relation can
be a consumer-producer- or producer-producer-relation. It
depends on how the artefacts are used by the associated
activities. An artefact which is on the one hand produced
or modified throughout an activity and consumed on the
other hand describes a ”producer-consumer relation“ bet-
ween the products including the activities. If both activities
produce or modify an artefact, we call the resulting relati-
on a ”producer-producer relation“. In a similar way further
relations can be identified.

3.2 Products and Views
One further aspect of the metamodel are views. They are
used to structure the work products according to typical
aspects of open source development. In the product model
we identified the views: project initialization, software usage,
code development cycle and release management. However,
one work product can be part of different views as necessary.
For instance, the work product ”code depot“ is used in diffe-
rent occurrences in different views. Whereas the repository is
emphasized in the ”project initialization“, it focuses on the
network structure of documents in the ”software usage“.

3.3 Tailoring Mechanism
As we have seen in the previous sections 2, the stakeholder
significantly influences the project type attributes. Based on
the introduced ideas a tailoring mechanism can be charac-
terized. Here, tailoring means to adapt the product model
according to the community distribution and the product
relations.

Product relations arise as shown by activities creating or
using artefacts. These relations exist not only within one
product but can also exist between different products. Each
kind of relation is important for the tailoring mechanism as
described below.

However, to manage an OSS-project it is important to track
these relations to avoid problems during the life cycle. For
instance, assuming there are different stakeholders involved
to modify and finalize an artefact for the quality assurance
and one is waiting for the other.

In this case it is necessary, that the project management is
able to strictly steer the process. Therefore, an appropriate

Produkt 1

Produkt 2

Produkt 3

Figure 4: Tailoring based on the product criticality

planing or an adequate steering mechanism as mentioned in
section 2.4 is important. If different responsibilities appear,
the products should be harmonized in terms of assigning the
same community class to associated product elements.

The aim is to minimize delay. The rule for doing so is: the
more critical an artefact is the more manageability it should
be and the more possibilities for steering activities should be
present. In these cases, ideally, the role should be assigned
to stakeholders within an organization.

4. CASE STUDY
This case study defines a scenario in which the tailoring
mentioned above can be demonstrated.

4.1 Scenario
The scenario used to exemplify how to obtain a process mo-
del is as follows: A large company wants to develop the ope-
rating system for its mobile phone hardware using embedded
linux. Different departments of the company will develop the
software together and in interaction with the open source
community. The open source community has been included,
because the resources within the company are limited and
not sufficient. The reason why this scenario was chosen is
because of a number of interesting effects can be identified:

• different departments of the company building up em-
bedded linux work together. For instance, the depart-
ment developing hardware on the one hand and on the
other hand the department for software and systems
engineering as well as the integration unit.

This kind of OSS cooperation is quite different from
the hierarchical inter-department cooperation that is
usual for big companies (cf. [9]). This has an interesting
effect on the tradeoff of organizational rules and know-
how interchange.

• The cooperation with the OSS community shows that
internal and external stakeholders participate in the
development process.

34

Both aspects show that traditional development processes
are not applicable. People are motivated if they can be crea-
tive and have room for own decisions. A strict organized
development process would reduce this motivation and thus
efficiency in the development process. Otherwise planing and
steering are indispensable in a commercial environment [12,
11]. A trade off between traditional and open source soft-
ware development as introduced in this paper would help
coping with this dilemma.

For the given scenario we can identify project type 3 to
be suitable. The community includes internal and external
stakeholders and the project method should contain open
source elements.

4.2 Mapping Scenario and Product-Model
There are essentially two steps to take to tailor the product
model in order to obtain a suitable process model. The type
of the project has to be taken into account and then the
actual tailoring can take place.

Once the project type has been determined (see section 2)
the attributes to be stressed can be selected and used to go
through the product model. In the case of the chosen sce-
nario the community is internal and external. Furthermore
the SW to be developed is an Application. Therefore the
scenario can be categorized into a type 3 project.

As illustrated in section 2.4 a type 3 project needs to:

• define “fall-back-solutions” for all activities in case a
stackeholder does not meet up the expectations impo-
sed on him. If, for example, an external stakeholder
does not accomplish the activity of filtering the task
list properly, a “fall-back-solution” could be to simply
have an internal person available to filter the tasks. A
different solution would be to oblidge the developers,
only to handle tasks essential for the next release.

• define a state machine for all artefacts depending on
the stakeholder’s community class. Every artefact starts
in the state “in Progress”. If an external person is re-
sponsible for the artefact “Risk list” and presents it
to some other project member, the state of the arte-
fact “Risk list” changes to “presented”. If the artefact
lacks quality, then the state changes to “follow up” and
project control has to decide weather to define a new
stakeholder for the artefact. If the artefact constant-
ly lacks quality, then the project control will certainly
define a new stakeholder.

• have special mechanisms to motivate and steer ex-
ternal developers. Lists of the fastest developers, the
best documented code, etc. could be published on the
newsboard to motivate developers to meet coding ti-
mes or document better.

If a developer codes the solution for a patch in twice
the time that was planed to code the patch and this
happens with most of his patches, then an internal
negative list could sum up the time of delays. When
a critical patch is to be developed this task can then
be given to the developer with the most hours on the
positive list.

WP 3.1 Taskmanagement

Define Communication

mechanisms

Define Tasks

Filter Tasks

Risk List

Task List

WP 3.2 Patch

Checkout of

repository

Obtain Task

Code the Solution

Repository

check in

(commiter)

WP 3.4 Quality ensurance

send Patch

to commiter

check Patch

(commiter)

send Patch back to

developer (commiter)

change Requirements

(commiter)

Figure 5: Tailoring the Scenario

Fig. 5 shows a small part of the “patch development cycle”-
view (cf. section 3). There are three work products contai-
ning activities and artefacts which are partly related. The
activity “Obtain Task” for example has a consuming relati-
on towards the artefact “Task List” and the activity “Define
Tasks” has a producing relation with the same artefact, whe-
reas the activity “Filter Tasks” has both, a consuming and
a producing relation (cf. section 3).

When tailoring the product model to suite the given situa-
tion, these relations have to be accounted for. This means
that when performing changes in any of the activities or
artefacts, the related activities or artefacts have to be ana-
lyzed as well. If, for example, the activity “Define Tasks”
had to be changed in order to define dates for the planing,
the artefact “Task List” has to be changed accordingly.

Also the cross relation tailoring is dependent on the role as-
signment. In the example that means if the activity “Define
Tasks” is assigned to an external developer and the activity
“Filter Tasks” is assigned to an internal stakeholder who is
waiting for the ”Task List“ created or updated by the exter-
nal developer, it would be better to either change the roles
or to assign an internal developer to the activity “Define
Tasks”, too. These decisions always depend on how critical
the artefacts are.

5. SUMMARY AND CONCLUSIONS
In this paper we introduced a possibility to apply the pro-
duct model given in [3]. The model can be project-specific
tailored and thus a development process derived easily.

The paper starts with a short introduction and discusses:
what the product model is and how it works. It continues

35

by describing the different types of OSS-development pro-
jects within a commercial environment. Different project ty-
pes have been related to specific attributes. Based on these
attributes, a mechanism is characterized which can be used
to adapt the product model to the project type and the
criticality of the developed artefacts.

The following results have been developed:

• Different project types have been identified and des-
cribed in detail based on planing, steering and quality
assurence attributes.

• An existing product model has been applied to build
up an adequate development process. This has been
done for a simple case study which only uses a small
piece of the overall product model. Nevertheless, the
used and described method can be expanded to the
complete model.

• Furthermore, the tailoring-mechanism facilitates to re-
gard critical elements during an OSS development pro-
ject and to cope with problems arising during the li-
fe cycle, if external stakeholders are included into the
project and particularly the development process.

• Last but not least, a case study has been introduced
which briefly illustrates how to build up a very concre-
te development process in a commercial environment,
that is for one of the identified project types.

6. REFERENCES
[1] Apache XML Project.

http://xml.apache.org/guidelines.html, Feb 2003.

[2] Bernhard Deifel, Wolfgang Schwerin, and Sascha
Vogel. Work Products for Integrated Software
Development. Technical report, Technische Universität
München, 1999.

[3] Jianjun Deng, Tilman Seifert, and Sascha Vogel.
Towards a Product Model of Open Source Software in

a Commercial Environment. In 3rd International
Workshop on Open Source Software Engineering,
ICSE 03, May 2003, 2003.

[4] Martin Fink. The Business and Economics of Linux

and Open Source. Prentice Hall, 2002.

[5] IABG. Willkommen zum V–Modell.
http://www.v-modell.iabg.de/index.htm, November
1999.

[6] P. Kruchten. The Rational Unified Process – An

Introduction. Addison Wesley, 1998.

[7] Linux project. http://www.linux.org/, Feb 2003.

[8] Mozilla project. http://www.mozilla.org, Feb 2003.

[9] Research on open source software development.
http://www.isr.uci.edu/research-open-source.html,
Feb 2003.

[10] Wolfgang Schwerin. Models of Systems, Work
Products, and Notations. In Proceedings of Intl.

Workshop on Model Engineering ECOOP, Cannes

France, 2000.

[11] Software development practices in open software
development communities: A comparative case study.
http://opensource.ucc.ie/icse2001/scacchi.pdf, Feb
2003.

[12] Ian Sommerville. Software Engineering.
Addison-Wesley, 1992.

36

http://xml.apache.org/guidelines.html
http://www.v-modell.iabg.de/index.htm
http://www.linux.org/
http://www.mozilla.org
http://www.isr.uci.edu/research-open-source.html
http://opensource.ucc.ie/icse2001/scacchi.pdf

Open Source Software Case Study - BuDDy Library
(This document was created using the open source software Open-Office)

Haim Cohen
Analog Devices DSP Design Center

11 Galgalei Haplada St. P.O.Box
12193, Herzlia 46733, Israel.

972-9-9715406

haim.cohen@analog.com

ABSTRACT
In this paper, we describe an open source software case study.
We present the stages we gone through using the software in an
EDA tool we developed. The developed tool was a neutral-
context language for functional coverage definition, collecting
and analysis.

Keywords
Open source software, BuDDy, BDD, ROBDD, EDA, functional
coverage.

1. PROBLEM DOMAIN INTRODUCTION
In VLSI design, functional coverage is the task of defining and
analyzing the test cases the design was gone through during a
test. For example, when testing a DSP chip design model, we
would like the DSP to be tested under all possible kinds of
instructions. More difficult task will be to cover all the possible
sequences of 2 instructions. An EDA tool which define, collect
and analyze functional coverage tasks, is by nature dealing with
very large sets of binary vectors.

To implement sets of binary vectors with sets operation support
such as conjunction, disjunction, subtraction and set size, we
used Boolean functions. Using Boolean functions, a set is
represented by a Boolean function which evaluated to '1' only for
binary vectors which are in the set.

An efficient implementation of a Boolean function is the novel
data structure ROBDD [1] . ROBDDs are out of the scope of this
document, but we will just mention that this is an efficient and
compact data structure to represent a Boolean function, in a way
that the complexity of operations depends on the entropy (or
disorder) of the Boolean function, and not on the number of
binary vectors it satisfies.

2. THE NEED FOR THE LIBRARY
The advantages of using an existing open source library are its
immediate availability, its open nature which allows to add new
features as required, and (almost most of the time) its quality in
terms of bugs, due to its widespread usage (and therefore testing)
and usage history.

In our opinion, the main criteria for the usage of an OSS library
is the estimated work required to implement it from scratch. Most
of the times it will be more efficient to use existing OSS library
and invest the required time to evaluate and learn it, than to write
it from scratch.

In our case, we estimated it will take too much time to implement
the library from scratch. The ROBDD is a data structure with the
form of a graph with special ROBDD operations. Implementing a
ROBDD data structure in efficient matter with all the supported
operations is much more complicated and error-prone than
implementing simple data structures such as lists or hash tables.
In addition, the usage we made of ROBDDs, was in such manner
that bugs can hardly discovered by the end user. Therefore, there
was no other option but to find a good source code which already
made this job successfully.

3. EVALUATION
We choose the BuDDy [2] library for evaluation based on its
previous successful usage in EDA projects presented by the
library developer. Another factor for choosing BuDDy was the
quality of documentation that comes with it, and its
implementation which composed of low level C with C++
interface, which assures high performance together with easy
usage.

The evaluation of the library was consist of 2 stages : feasibility
check and performance testing. In the feasibility check we gone
through the library documentation and made sure that all the
ROBDD features required by our tool are supported by the
library. During this check, we found out that some data retrieval
functionality we need does not supported. Before we made any
further progress in the evaluation, we took a look at the source
code to verify that we can easily implement the required
functionality by ourself. During the performance testing stage,
we measured the performance of critical features, according to
their planned usage by our developed tool. We estimated how the
library performance will influence the tool performance. During
this stage we found that we can easily reduce the size of the files
the library use to store data.

4. SOURCE CODE MODIFICATIONS
After the successful evaluation of the library, we made two
modifications to the source code. The first modification was to
add the data retrieval functionality the library was missing. The
second modification was to reduce the file size the library use.
We reduced the file size using two different techniques :
replacing the existing ASCII files format by a more compact
binary format, and using another open source library called zlib
[3], which supports in-memory file compression . The modified
source code files of BuDDy were sent back to the library
developer.

37

5. SUPPORT
Support is a delicate issue in open source software. A support can
be divided to features-support, and bugs-support. In our case, we
made sure that the interface supplied by the library is rich enough
to fulfill all the features that are required and will be required by
our tool. We implement by ourself missing features that we
thought are easy to implement. The usage of this library by other
projects will enable us to have some developers to contact with if
some critical problem arise. The original developer of the library
is now involved in other projects and no longer support the code.

6. ADDITIONAL OPEN SOURCE
LIBRARIES / TOOLS USED
During the development of our EDA tool, we used some other
interesting libraries/tools we thing it worth to be familiar with.
(We will not mention the trivial yet essential emacs, gcc and
gmake.)

6.1 LIBRARIES
Zlib - [3] a library which support in-memory read and writing of
files in gzip format. The usage is very simple and the interface is
similar to the stdio.h interface.

Boost – [4]A rich library which supports a variety of common
facilities.

6.2 TOOLS
Doxygen – [5] A powerful tool to generate documentation from
C/C++ source code in various kinds of formats, including
HTML.

SWIG – [6] Simple Wrapper and Interface Generator. Using this
tool an existing scripting language can be easily added with a
special purpose C/C++ library, therefore adding a scripting entry
to an existing C/C++ application.

7. ACKNOWLEDGMENTS
I would like to thank Jørn Lind-Nielsen, a Former Ph.D. student
at the IT University of Copenhagen Denmark, for the state-of-
the-art ROBDDs library he developed.

8. REFERENCES

[1] Randal E. Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE transactions on Computers, 8
(C-35):677-691,1986

[2] Jørn Lind-Nielsen. BuDDy - A Binary Decision Diagram
Package. http://www.itu.dk/research/buddy/ .

[3] Jean-loup Gailly (compression) and Mark Adler
(decompression) . Zlib - data compression library, which
lets you compress or decompress data in memory or read
and write files in the gzip format. http://www.gzip.org/zlib/

[4] Boost - http://www.boost.org/

[5] Doxygen - Doxygen is a documentation system for C++, C,
Java, IDL (Corba and Microsoft flavors) and to some extent
PHP and C#. http://www.stack.nl/~dimitri/doxygen/

[6] SWIG - SWIG is a software development tool that connects
programs written in C and C++ with a variety of high-level
programming languages. http://www.swig.org/

38

http://www.itu.dk/research/buddy/
http://www.gzip.org/zlib/
http://www.boost.org/
http://www.stack.nl/~dimitri/doxygen/
http://www.swig.org/

Applying a Reference Framework to Open Source Process
Discovery

 Chris Jensen
Institute for Software Research
University of California, Irvine
Irvine, CA, USA 92697-3425

cjensen@ics.uci.edu

ABSTRACT
The successes of open source software development have inspired
commercial organizations to adopt similar techniques in hopes of
improving their own processes without regard to the software
process context that provided this success. This paper describes a
reference framework for software process discovery in open
source software development communities that provides this
context. The reference framework given here characterizes the
entities present in open source communities that interplay in the
form of software processes, discusses how these entities are
encoded in data found in community Web spaces, and
demonstrates how it can be applied in discovery.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management– lifecycle, software
process models

General Terms
Management, Measurement, Documentation.

Keywords
Reference Framework, Process Discovery, Open Source

1. INTRODUCTION
Open source software development has existed for decades,
though only more recently has it piqued the curiosity of industry
and academia. While many, like Eric Raymond in his essay, “The
Cathedral and the Bazaar” and Garg [5], with his work on
corporate sourcing, have extolled the virtues of the open source
development paradigm, seeking methods of bringing the benefits
of open source to industry, we still lack an understanding of the
process context that enables such successes and in which these
techniques lie. With this understanding, we may analyze other
process activities and social and technical factors on which these
techniques depend, whether they are compatible with existing

processes and the larger organizational landscape, and how
process techniques may be configured to realize such benefits as
have been seen in an open source forum. However, process
engineering activities for such analysis and that guide redesign
and (continuous) improvement all require a process specification.
Thus motivates our interest in process discovery. In previous
work [7], we demonstrated the feasibility of automating process
discovery in open source software development communities by
first simulating what an automated approach might consist of
through a manual search of their online Web information spaces.
Here, we discuss an approach to constructing the open source
software development process reference framework that helps
make such automation possible. This framework is the means to
map evidence of an enacted process to a classification of agents,
resources, tools, and activities that characterize the process. In
traditional corporate development organizations, we may be able
to readily determine such things by examining artifacts such as
the org-chart and so forth. But open source communities often
lack such devices. While components of the framework may be
known, no such mapping framework exists that enables open
source process discovery.

2. RELATED WORK
Weske, et al. [17] describe what they refer to as a reference model
for workflow application development processes, though theirs is
more of a software development lifecycle model than a software
development reference model and provide no insight for mapping
the Web information space to a process.

Srivasta, et al. [16] details a framework for pattern discovery and
classification of Web data. The discussion relates site content,
topology, session information garnered from site files and logs
and applies association rules and pattern mining to obtain rules,
patterns, and statistics of Web usage. However, they offer no
help in constructing the pattern discovery techniques that process
the data to arrive at those usage rules.

Lowe, et al. [8] on the other hand, propose a reference model for
hypermedia development process assessment. This model,
however lacks their domain model does not reflect software
development and their process meta-model is awkwardly
configured. Nevertheless, the overlap between hypermedia
development and open source software development makes is
apparent in comparing their reference model with the one
presented here.

39

3. ESSENTIAL ATTRIBUTES OF THE
FRAMEWORK
The job of the reference framework is to provide a mapping
between process evidence discovered by searching the community
Web and a classification scheme of process attributes. Software
lifecycle models in combination with probabilistic relational
modeling techniques then provide guidance for integrating these
relations together into a sequence of process fragments that can be
pieced together to form a meaningful model of the development
process. Our reference framework is based on the process meta-
model of Noll and Scacchi [12]. This meta-model consists of
actions, tools, resources, and agents. Whereas Lowe and
associates adapted the Spearmint framework, the skill level of the
agent is unnecessary for the specification of the software
development process. The abstract resource entity is likewise
excessive as it caries little semantic benefit in software
development process specification. These ingredients are not
specific to software development processes, however the
reference framework is domain specific. Furthermore, some
variance is expected between communities, based on the
community size, the extent of its maturity, and preferences of the
individuals. Thus, while it is not possible to assert that any given
community uses a specific testing suite, it is likewise impossible
to say that they use a testing suite at all. However, that is the
purpose of process discovery, and not the reference framework.
With this in mind, we can discuss the contents of the framework.

Surveys of Apache [1], Mozilla [3], and NetBeans [13] led to a
taxonomy [14, 15, 18] of tasks, tools, resources, and roles
common in open source development. The approach chosen
characterizes these process entities in two dimensions: breadth
(e.g. communication tools, code editing tools, etc.) and genericity
(e.g. an instant messaging client as a type of synchronous
communication tool subset of the larger category of all
communication tools). This classification scheme is necessary in
order to relate instances of process entities to their entity type,
which may then be associated with related entities (such as other
tasks, tools, resources, and roles).

4. PROCESS MAPPING OF OSSD WEB
INFORMATION SPACES
As noted elsewhere [7], there are three dimensions of the
information space that encode process evidence:

• Structure: how the Web of project-related software
development artifacts is organized

• Content: what types of artifacts exist and what information
they contain

• Usage Patterns: user interaction and content update patterns
within the community Web

The structure of the community Web is evident in two forms. The
physical form consists of the directory structure of the files of
which the site is composed. But, it is also apparent on a logical
level, in terms of the site layout, as might be given by a site map
or menu. These may or may not be equivalent. Nevertheless,
each layer in the hierarchy provides a clue to the types of agents,
resources, tools, and processes of the community. Structure
hierarchy names may be mapped to instances of tools, agents,
resources, and activities found in the open source software
development meta-model taxonomy, thus fulfilling the first role
of the reference framework. Additionally, directories with a high
amount of content, both due to file numbers and file size may
indicate a focus on activity in that area. Claims such as these may
then be reinforced or refuted based on additional information
gathered during discovery. Common to most open source
communities are mailing lists and discussion forums, source
repositories, community newsletters, issue repositories, and
binary release sections, among others. The mere presence of
these suggests certain activities in the development process.
These also signal what types of data may be contained therein. If
we just look at source repositories, we can obtain a process
specification of a limited set of activities- those that involve
changes to the code, just as issue and bug databases tell us that
some testing is done on which the issue reports are based. In
some communities, issue reports are also used to file feature
requests. Such information may also be found within discussion
forums or email lists.
The bulk of the process data is found within the content of Web
artifacts. Much of the mapping consists of text matching between

40

strings in artifacts such as web pages, and email messages and
process related keywords as was demonstrated for structure-based
data. In the case of web content, we are also looking for items
like date stamps on email messages to place the associated events
in time, document authors, and message recipients. In some
cases, it is possible to uncover “how-to” guides or partial process
prescriptions. Like other content, these may not accurately reflect
the process as it is currently enacted, if they ever did. Therefore,
each datum must be verified by others.
Usage patterns, like content size, are indicators of which areas of
the Web space are most active, which reinforces the validity of
the data found therein and also what activities in the process may
be occurring at a given time. Web access logs, if available,
provide a rich source of data. Page hit counters and last update
statistics are also useful for this purpose. Work by Cadez [4] and
Hong, et al [6] demonstrate two techniques for capturing Web
navigation patterns, however neither can be done in a strictly
noninvasive manner. The first cannot provide tours of the Web
space and the latter requires members to access the community
Web through a proxy server used to track trips.
OSSD artifacts vary along these three dimensions over time, and
this variance is the source of process events. To effectively
discover processes, our reference framework must be able to
relate artifacts in the community Web space with process actions,
tools, resources, and roles.

5. RESULTS
Our experiences in process discovery have shown this framework
to be adequate and effective for use in discovering software
development processes in OSSD communities. Nevertheless,
open source communities vary drastically in size and process due
to factors such as degrees of openness, product, motivations,
authority structure, and more. These all affect the development
paradigm and, in turn, the process and the landscape of the
community Web space. The challenge in process discovery is
then, determining relationships between entity instances
discovered. A directory such as “x-test results” is positive
evidence that some sort of testing is conducted. It is likely that
the files in this directory relate to this testing. Additionally,
hyperlinks in the content of these artifacts may point to other
sources of testing-related evidence as indicated by the context of
the reference. Detecting relationships between unlinked or
indirectly linked artifacts is more challenging. These connections
may be established by analyzing the context of the data collected
in light of a priori knowledge of software development practices
provided by the process entity classification scheme. For
example, the automated XTest results report summary found in
the subdirectory “xtest-
results/netbeans_dev/200308200100/development-unit” [11] of
the NetBeans community Web may be linked to the “Q-Build
Verification Report” in the QA engineer build test subdirectory
“q-builds” [10] even though there is no hyperlink to relate them
by observing a match between the build numbers found on each
page, which can, in turn, be matched with a binary file found on
the “downloads” page [9]. This shows a relation between
automated testing, manual testing, and source building efforts.
Date stamps on each artifact give us a basis to assert the duration
of each activity. Whereas structure and content can tell us what
types of activities have been performed, monitoring interaction
patterns can tell us how often they are performed and what

activities the community views as more essential to development
and which are peripheral.

6. DISCUSSION
Edward Averill [2] states that reference models must be a set of
conceptual entities and their relationships, plus a set of rules that
govern their interactions. The reference framework described
above does this by defining a particular application domain, fully
classifying it without prescribing how particular roles, resources,
tools, and activities should be assembled, or which meta-model
entities are required for a process. In doing so, the reference
framework is therefore community and process model
independent. It is also discovery technique independent. Though
we have applied it to discovery through manual search of the
community Web information space, there is nothing in the
specification that restricts its application to a more automated
approach to process discovery as is our goal.

The reference framework is development process independent but
it is not independent of the classes of tools, agents, activities, and
resources. If a new role, for example, is incorporated into the
development process, it must be added to the framework in order
to be found through automated discovery techniques. It is worth
recalling that the resulting process model shows an example of a
process instance, which is subject to variation across executions.
The degree of variation between instances may indicate stability
and maturity in the process, as well as showing signs of a
direction of evolution.

Though we have outlined a course of framework formation for an
abstract open source development paradigm, it is a framework
that may easily be tailored to communities with commercial-
corporate influences such as NetBeans and Eclipse, as well as
corporate source projects, adjusting the meta-model taxonomy in
terms of tool instances, roles, etc. to suit the development
paradigm.

7. ACKNOWLEDGMENTS
The research described in this report is supported by grants from
the National Science Foundation #IIS-0083075 and #ITR-
0205679 and #ITR-0205724. No endorsement implied.
Contributors to work described in this paper include Mark
Ackerman at the University of Michigan Ann Arbor; Les Gasser
at the University of Illinois, Urbana-Champaign; John Noll at
Santa Clara University; and Margaret Elliott and Walt Scacchi at
the UCI Institute for Software Research are also collaborators on
the research project described in this paper.

8. REFERENCES
[1] Ata, C., Gasca, V., Georgas, J., Lam, K., and Rousseau, M.

The Release Process of the Apache Software Foundation,
(2002). http://www.ics.uci.edu/~michele/SP/index.html

[2] Averill, E. Reference Models and Standards. Standardview
2, 2, (1994) 96-109.

[3] Carder, B., Le, B., and Chen, Z. Mozilla SQA and
Release Process, (2002).
http://www.ics.uci.edu/~acarder/225/index.html

[4] Cadez, I.V., Heckerman, D., Meek, C., Smyth, P., and
White, S. Visualization of Navigation Patterns on a Web Site

41

http://www.ics.uci.edu/~michele/SP/index.html
http://www.ics.uci.edu/~acarder/225/index.html

Using Model Based Clustering. In Proceedings of
Knowledge Discovery and Data Mining, (2000) 280-284.

[5] Dinkelacker, J., Garg, P. Corporate Source: Applying Open
Source Concepts to a Corporate Environment. In
Proceedings of the First ICSE Workshop on Open Source
Software Engineering, (Toronto, Canada May 2001).

[6] Hong, J.I., Heer, J., Waterson, S., and Landay, J.A.
WebQuilt: A Proxy-based Approach to Remote Web
Usability Testing, ACM Trans. Information Systems, 19, 3,
(2001). 263-285.

[7] Jensen, C., Scacchi, W. Simulating an Automated Approach
to Discovery and Modeling of Open Source Software
Development Processes. In Proceedings of ProSim'03
Workshop on Software Process Simulation and Modeling,
(Portland, OR May 2003).

[8] Lowe, D., Bucknell, A., and Webby, R. Improving
hypermedia development: a reference model-based process
assessment method. In Proceedings of the tenth ACM
Conference on Hypertext and hypermedia (Darmstadt,
Germany, 1999), ACM Press, 139-146.

[9] NetBeans IDE Development Downloads Page,
http://www.netbeans.org/downloads/ide/development.html.

[10] NetBeans Q-Build Quality Verification Report,
http://qa.netbeans.org/q-builds/Q-build-report-
200308200100.html.

[11] NetBeans Test Results for NetBeans dev Build
200308200100,
http://www.netbeans.org/download/xtest-
results/netbeans_dev/200308200100/development-
unit/index.html.

[12] Noll, J. and Scacchi, W. Specifying Process Oriented
Hypertext for Organizational Computing. Journal of
Network and Computer Applications 24, (2001). 39-61.

[13] Oza, M., Nistor, E., Hu, S. Jensen, C., and Scacchi, W. A
First Look at the Netbeans Requirements and Release
Process, (2002).
http://www.ics.uci.edu/cjensen/papers/FirstLookNetBe
ans/

[14] Scacchi, W. Open Source Software Development
Process Model Taxonomy, (2002).
http://www.ics.uci.edu/~wscacchi/Software-Process/

[15] Scacchi, W. Understanding the Requirements for
Developing Open Source Software Systems, IEE
Proceedings- Software, 149, 1 (February 2002). 25-39.

[16] Srivasta, J., Cooley, R., Deshpande, M., Tan, P. Web
Usage Mining: Discovery and Applications of Usage
Patterns from Web Data, CM SIGKDD Explorations
Newsletter, 1, 2 (2000). ACM Press, 12-23.

[17] Weske, M., Goesmann, T., Holten, and R., Striemer, R. A
reference model for workflow application development
processes. In Proceedings of the international joint
conference on Work activities coordination and collaboration
(San Francisco, CA 1999). ACM Press, 1-10.

[18] Ye, Y. and Kishida, K. Toward an understanding of the
motivation Open Source Software developers In Proceedings
of the 25th International Conference on Software
Engineering (Portland, Oregon May 2003). 419-429.

42

http://www.netbeans.org/downloads/ide/development.html
http://qa.netbeans.org/q-builds/Q-build-report-
http://www.netbeans.org/download/xtestresults/netbeans_dev/200308200100/developmentunit/index.html
http://www.ics.uci.edu/cjensen/papers/FirstLookNetBe
http://www.ics.uci.edu/~wscacchi/Software-Process/

Using Open Source Industrial Projects

Using Open Source for Competitive Advantage

Jeff Garland
CrystalClear Software, Inc

Phoenix, Az USA
jeff@crystalclearsoftware.com

Abstract

In the last few years, open source software
(OSS) has become widespread. Due to the
pervasiveness of OSS it has become difficult
to develop a large-scale software project
without using OSS in some aspect of the
project.

This paper will argue that companies that do
not use OSS for software development are at a
competitive disadvantage. In addition, the
paper will discuss different categories of OSS
usage and how this can allow for a streamlined
selection process of appropriate OSS for
industrial projects.

1. Introduction

Compared to just a few years ago, the
selection of available open source software has
grown dramatically. A quick perusal of
sourceforge.net attests to this fact. The growth
of OSS has been in almost every category of
software ranging from small components to
complete operating systems. Major
corporations such as IBM have now embraced
open source strategies. It seems clear that OSS
is a key part of the software development
landscape for the foreseeable future.

The growth in OSS means that companies
developing projects must determine how best
to leverage open source software. At one
extreme a company can choose to ban all open

source software products from both the
development of the product or service. This
extreme position puts companies at a
disadvantage. The competitive disadvantage
is a result of lost productivity caused by the
reinvention of existing software or in
inefficient operations that could be
streamlined using OSS technologies. For
example, building a web server for internal
project use would be a waste of time and
energy when perfectly suitable OSS web
servers exist.

On the other extreme a company might require
all tools and libraries to be open source. This
may also put a company at a disadvantage
since the company might have to develop
software that might otherwise be cheaply
purchased. A good example might be the
purchase of a sophisticated 'Tab Dialog'
component for building user interfaces that
can be purchased for the cost of a couple of
hours of programmer wages.

Somewhere between these extremes lies the
most likely position for most companies. As a
result, the question of which open source
software provides the most benefit and the
least risk to the company and the development
is left open.

2. Attributes for Evaluation of OSS

In many respects there is little difference in

43

the evaluation of OSS and commercial
software for industrial projects. Each project
needs to evaluate if a given product is suitable
for the task, has compatible licensing, and has
appropriate support available. Companies
building large software systems have faced
this issue for years. Some key questions
include:

1) How well does the software meet the need?
2) Is the software of high quality?
3) Is the licensing compatible with the goals of

the project?
4) What is the investment required to

understand and utilize the software
effectively?

5) What do we risk by attempting to use this
product in our project?

6) Is the product complex enough and
important enough to project success that
support will be needed?

The assessment of how well a particular
software product meets the project needs is
unique to each project. However, some of the
other questions aspects of the evaluation might
be generalized to reduce the effort of
evaluation. The following proposes a
categorization of OSS products to simplify the
evaluation of licensing and other attributes of
OSS.

3. Categories of OSS

OSS products can be broadly divided into
libraries and frameworks, operating systems
and platforms, languages, and development
tools. The following provides some examples
of these different categories.

Linux [1] is perhaps the best known open
source operating system, but there are many
others such as BSD [2]. Platforms include
web servers such as Apache [3].

OSS languages include Perl [4], PHP [5], and
many others. These languages offer modern
features, powerful libraries, and have become
quite popular for web programming and many
other tasks. Perl is an example of an open
source language for which there isn't a
commercial equivalent (excluding commercial
packaging of Perl, of course) that has the same
mix of platform portability, large library, and
language features. That's not to say Perl is
better than say JAVA [6] for writing portable
applications, only that for some applications
Perl is an excellent candidate.

Development tools include a wide range of
products including compilers such as gcc,
version management tools such as CVS
(Concurrent Versions System) [7], Make tools
such as GNU Make, documentation
generators such as Doxygen [8], and
collaboration tools such as Wiki [9].

Examples of libraries and frameworks would
be libraries such as Adaptive Communications
Environment (ACE) [10] and Boost [11] (a
collection of open source C++ libraries).
There is a huge diversity of OSS libraries and
frameworks available today.

4. Breakdown of the Categories

Each of the previously described categories of
OSS has different attributes and tradeoffs for
industrial projects. The following will attempt
to characterize how these categories impact
the decision to use OSS.

For the most part, use of platforms, tools, and
languages is quite beneficial and low risk for
industrial development projects. With tools,
platforms, and languages the project intent is
not typically to extend or distribute the OSS
software, but simply to use it. Thus even the

44

most restrictive open source licenses are
compatible with this sort of commercial use.
Companies can freely utilize these OSS
products for development and to provide
services while keeping their own software
source a trade secret. The obvious advantages
of this sort of use include reduction in
licensing costs compared using commercial
tools and platforms. The overall investment to
install, understand, and evaluate these various
open source tools is usually modest. The risk
is minimal since if an OSS tool fails to deliver
the project can always replace the OSS tool
with an equivalent commercial tool later in the
project. On the downside, the documentation
and guarantee of support is often less for OSS
software compared to commercial software.
However, this is far from universal since many
of the OSS languages and platforms are far
better documented and have a much wider
range of support options compared to their
commercial alternatives.

Open source languages represent an example
of where OSS provides significant advantage
to organizations with little risk. OSS
languages like Perl are so widely used that
many experienced Perl programmers are
available. Perl also has an advantage of being
available on many platforms. For example, in
contrast to scripting in Visual Basic, using Perl
to build tools can allow a project to maintain
platform neutrality while building powerful
custom tools to support project development.

The use of open source libraries and
frameworks is the most difficult category of
open source to evaluate for commercial use.
First off, the licensing must be compatible
with the project. Most often this will exclude
all libraries developed under the GNU General
Public License (see www.gnu.org/licenses/gpl-
faq.html) for details. Thus many of the
libraries and frameworks are excluded for
companies that need to keep their project

source proprietary. However, there are many
other open source licenses for libraries which
do allow for commercial use. The wide range
of licenses makes the evaluation of libraries
much more difficult. Another aspect of
libraries and frameworks is the wide variation
in quality. Some of the available libraries are
of low quality. On the other hand, some
libraries such as Boost are literally setting the
standard (in this case the next generation C++
library standard) and thus are of very high
quality and of particular significance.
Commercial support of libraries and
frameworks is much more difficult to obtain
than for platforms, tools, and languages.

5. Conclusions

Open source software is now an entrenched
part of the software development landscape.
Companies that ignore OSS run the risk of
ignoring tools and libraries that could provide
significant efficiencies at little or no risk.
Languages, tools, and platforms can be used
by projects despite restrictive licensing.
Libraries and frameworks present a significant
evaluation challenge, but can also be applied
successfully to industrial projects.

6. About the Author

Jeff Garland is the founder of CrystalClear
Software - a software consulting firm
specializing in large-scale mission-critical
software development projects. He has used
open source software in many large
development projects during the last 7 years of
his 17 year career. He is also the primary
developer of the Boost date-time library - an
open source C++ library. Jeff is the co-author
of Large Scale Software Architecture: A
Practical Guide Using UML Large Scale
Software Architecture: A Practical Guide

45

Using UML published by Wiley and Sons. He
holds a Master’s degree in Computer Science
from Arizona State University and a Bachelor
of Science in Systems Engineering from the
University of Arizona.

7. References

[1] Linux www.linux.org

[2] FreeBSD www.freebsd.org

[3] Apache www.apache.org

[4] Perl www.perl.org

[5] PHP www.php.net

[6] JAVA www.sun.com/java

[7] CVS www.cvshome.org

[8] Doxygen www.doxygen.org

[9] Wiki www.c2.com/cgi/wiki

[10] ACE
www.cs.wustl.edu/~schmidt/ACE.html

[11] Boost www.boost.org

46

