
Hoare Logic for Mutual Recursion and Local Variables

David von Oheimb�

Technische Universit�at M�unchen
http���www�in�tum�de��oheimb�

Abstract� We present a �the �rst�� sound and relatively complete Hoare
logic for a simple imperative programming language including mutually
recursive procedures with call	by	value parameters as well as global and
local variables� For such a language we formalize an operational and an
axiomatic semantics of partial correctness and prove their equivalence�
Global and local variables
 including parameters
 are handled in a rather
straightforward way allowing for both dynamic and simple static scoping�
For the completeness proof we employ the powerful MGF �Most General
Formula� approach
 introducing and comparing three variants for dealing
with complications arising from mutual recursion�
All this work is done using the theorem prover Isabelle�HOL
 which
ensures a rigorous treatment of the subject and thus reliable results� The
paper gives some new insights in the nature of Hoare logic
 in particular
motivates a stronger rule of consequence and a new �exible Call rule�

Keywords� axiomatic semantics� Hoare logic� mutual recursion� soundness� rel�
ative completeness� local variables� call�by�value parameters� Isabelle�HOL�

� Introduction

Designing a good Hoare logic for imperative languages with mutually recursive
procedures and local variables still is an active area of research� By �good� we
mean a provably sound and �relatively� complete calculus that is as simple as
possible and thus easy to apply� There are several complications and pitfalls
concerning the status of auxiliary variables� initialization of variables� scoping�
parameter passing� and mutual recursion� As we will explain in the sequel� the
work presented here provides theoretically interesting and practically useful so�
lutions to these problems� and thus is good in the above sense�

Classical veri�cation systems dealing with these subjects 	 see 
�� for an
overview 
 typically neglect mutual recursion and have turned out to be un�
sound� as mentioned e�g� by 
�� and 
��� or incomplete� or at least require several
auxiliary rules with awkward syntactic side�conditions� Recent investigations
tend to be much more precise� e�g� on the role of auxiliary variables� and even
employ mechanical theorem provers to reliably prove soundness and complete�
ness results� Here we emphasize the work of Kleymann�
����
�� who suggests a
Hoare logic of total correctness and proves it sound and relatively complete with
the mechanical theorem prover LEGO�

� research funded by the DFG Project Bali
 http���isabelle�in�tum�de�Bali� �
� formerly Schreiber�



The work described in the present paper has been conducted in the context of
Project Bali formalizing the semantics of Java and proving key properties like
type soundness
�� formally within the theorem proving system Isabelle�HOL�
Introducing an axiomatic semantics for a large subset of Java� we felt that there
were several issues like mutual recursion and parameter passing where we could
not resort to already established techniques� It turned out to be very practical
and fruitful to perform our investigations in the reduced setting of a simple
imperative programming language� In this respect we bene�t from the pioneering
work of Nipkow
�� that deals with the basic language �without procedures and
local variables� within Isabelle�HOL�

One could argue that mutual recursion can be reduced to the already estab�
lished results on single recursion �e�g� of Kleymann� by program transformation�
But this would require non�trivial syntactic manipulations� which would be dif�
�cult to handle in a precise proof of soundness and unsuitable for practical
program veri�cation� Concerning local variables� the only fully formal treatment
we know of� given by Kleymann� is a bit involved� so that one shrinks back
from transferring it to procedure parameters� We are not aware of any previous
work tackling even either of mutual recursion and procedure parameters whose
soundness and �relative� completeness has been mechanically veri�ed�

Just a few words on Isabelle�HOL� This is the instantiation of the generic in�
teractive theorem prover Isabelle
�� with Church�s version of Higher�Order Logic�
The appearance of formulas on Isabelle�HOL is standard �e�g� ���� is the in�x
implication symbol associating to the right� except that logical equivalence is ex�
pressed with the equality symbol� Predicates are functions with Boolean result�
and function application is written in curried style� e�g� f x� Logical constants
are declared by giving their name and type� such as c �� � � Basic de�nitions
are written c � t� Types follow the syntax of ML� type abbreviations are intro�
duced simply as equations� A free datatype is de�ned by listing its constructors
together with their argument types� separated by �j�� Isabelle o�ers powerful veri�
�cation tools like natural deduction involving several variants of search� tableaux
reasoning� general rewriting� and combinations thereof�

We deliberately let the style of presentation of this paper be in�uenced by
the fully formal treatment caused by using Isabelle�HOL� which should give an
impression of its rigor� On the other hand� we abstract from technical details as
much as possible in order to present our results in a generic way�

� The IMPP Programming Language

Winskel
��� has introduced a simple imperative programming language for edu�
cational purposes called IMP� We enriched it with procedures and local variables�
calling the result IMPP � The syntax of its statements ��commands�� is

com � SKIP j com� com j vname �� aexp j LOCAL loc��aexp IN com
j IF bexp THEN com ELSE com j WHILE bexp DO com
j Call pname j vname �� CALL pname�aexp�

�



where the meanings of most of these constructs �Call being just an auxiliary
one� is what you expect� The types aexp � state � val and bexp � state � bool
represent arithmetic and Boolean expressions� which we do not further specify
since we need only their �black�box� semantics� The type state has two com�
ponents� namely the function spaces globs � glb � val and locals � loc � val
representing the stores for global and local variables� The two kinds of variable
names are combined into a free datatype vname � Glb glb j Loc loc where Glb

and Loc act as tags to distinguish them� The types glb and loc as well as the
type of values val are left unspeci�ed� The type of procedure names pname is
also arbitrary� but is required to be �nite� � as motivated in x��

We model the procedure declarations of a given program by a function
body �� pname � com mapping procedure names to the corresponding proce�
dure bodies� Our meta�theoretic investigations do not require body to be spec�
i�ed further� For simplicity� each procedure has exactly one parameter� which
we model by a generic local variable Arg �� loc� and a result variable Res �� loc
�where Res �� Arg� whose value is returned on procedure exit� These are merely
syntactic restrictions avoiding immaterial but cumbersome details like explicit
parameter declarations and return statements�

��� Operational Semantics

We de�ne the semantics of IMPP straightforwardly by an evaluation�style oper�
ational ��natural�� semantics� The evaluation ��execution�� of a statement c is
described as a relation evalc �� �com� state� state� set between an initial state
� and a �nal state ��� written hc��i�� ��� For lack of space and since the other
inductive rules de�ning evalc are standard� we give only the relevant ones here�

Local
hc� ��
a ���X�i�� ��

hLOCAL X �� a IN c� ��i�� ��
��hXi�X�

CALL
hCall pn� �setlocs �� newlocs�
a ���Arg�i�� ��

hX��CALL pn�a����i�� �setlocs �� �getlocs ����
X����hResi�

Call
hbody pn� ��i�� ��

hCall pn� ��i�� ��

Note that local variables are initialized immediately when being created� The
usual notion of procedure call is split into two parts� which will be very useful
for the axiomatic semantics� The CALL statement replaces the local variables
of the caller by the actual parameter of the called procedure as the only �by
virtue of newlocs� local variable 
 thus implementing trivial static scoping 

and restores them �except for assigning the result variable� after return� The
Call statement is responsible for unfolding the procedure body only� thus im�
plementing recursion� If it is invoked directly rather than via CALL� it implements
dynamic scoping�

� This is not a real restriction but a handy trick that avoids explicit well	formedness
constraints implying that in any program there is only a �nite number of procedures�

�



The above de�nition makes use of a few auxiliary values and functions�

newlocs �� locals
setlocs �� state � locals � state
getlocs �� state � locals shorthand� �hXi � getlocs � X

 �� � �� state � vname � val � state shorthand� �
v�X� � �
Loc X��v�

Our meta theory does not need de�ne them further as it is independent of their
meaning� newlocs is intended to yield the empty set of local variables� setlocs sets
the local variables component of the state to a given set of variables� and getlocs

returns the local variables of the state� The update function 
 �� � modi�es
the state at the given point with a new value� i�e� assigns to a �global or local�
variable if it already exists� or otherwise allocates and initializes one�

Properties of the evalc relation� for instance determinism� are typically proved
via rule induction� i�e� induction on the depth of derivations� In contrast� struc�
tural induction �on the syntax of statements� is unsuitable in most cases because
rules like Call yield structural expansion rather than reduction�

� Axiomatic Semantics for IMPP

Now that we have introduced the language IMPP � we can describe the core of
our work� which is its axiomatic semantics ��Hoare logic���

��� Assertions and Hoare Triples

Central to any axiomatic semantics is the notion of assertions� which describe
properties of the program state before and after executing commands� Semanti�
cally speaking� assertions are just predicates on the state� We adopt this abstract
view �similarly to our semantic view of expressions� and thus avoid talking explic�
itly on a syntactic level about terms and substitution and their interpretation�
In other words� we do a �shallow embedding� of assertions in our �meta��logic
HOL� Thus� the issue of expressiveness of assertions disappears� and our notion
of completeness automatically means completeness �basically� in the sense of
Cook
��� i�e� completeness relative to the assumptions that all desired assertions
can be expressed syntactically and all valid pure HOL formulas can be proved�

Following Kleymann
��� we give the role of auxiliary variables the attention
it deserves� Auxiliary variables� also known as �logical� variables �as opposed
to program variables�� are necessary to relate input and output� in particular
to express invariance properties� For example� the proposition that a procedure
P does not change the contents of a program variable X is formulated as the
Hoare triple fX�Zg Call P fX�Zg� which should mean that whenever X has
some value Z before calling P� after return it still has the same value� With
this interpretation� Z serves as an auxiliary variable that is implicitly universally
quanti�ed� Early works on Hoare logic tended to view Z as a free� variable� which
gives the desired interpretation only if the triple occurs positively� and otherwise

� According to standard conventions
 such variables are implicitly universally quanti	
�ed
 i�e� � � t Z is read as �Z� � � t Z� Problems arise if Z occurs also in � �

�



gives incorrect results� Viewing Z as an arbitrary �yet �xed� constant preserves
correctness� but this approach su�ers from incompleteness� having obtained a
procedure speci�cation like fX�Zg Call Quad fY�Z�Zg� it is often necessary
to exploit �i�e�� specialize� it for di�erent instantiations of Z� which is impossible
if Z is essentially a constant� The classical way out is sets of substitution and
adaptation rules involving intricate side�conditions on variable occurrences� A
real solution would be explicit quanti�cation like �Z� fP Zg c fQ Zg� but this
changes the structure of Hoare triples and makes them more di�cult to handle�
Instead we prefer implicit quanti�cation at the level of triple validity� given
below� making assertions explicitly dependent not only on the state� but also on
auxiliary variables�

Which number of auxiliary variables of which types are required of course
depends on the application� So we de�ne the type of assertions with a parameter�

� assn � � � state � bool

where �may be instantiated as required� Thus the �pretty�printed� postcondition
fY�Z�Zg mentioned above fully formally reads as f�Z �� �hYi�Z�Zg where
� � int� In general it is appropriate �and essential� to let � be the whole state�
such that all program variables can be monitored when constructing an arbitrary
relation between initial and �nal states�

Built on the type � assn� we model aHoare triple as the �degenerate� datatype
� triple � f� assng com f� assng� It is valid wrt� partial correctness� written
j�fPgcfQg� i� �Z �� P Z ������� hc��i�� ����Q Z ��� Note the universal
quanti�cation on the auxiliary variable Z motivated above� This preliminary
de�nition will be re�ned and extended to judgments with assumptions in x����

��� Rules not Dealing with Procedures

The remainder of the current section is dedicated to the question of which Hoare�
style rules should be given for the axiomatic semantics of IMPP � For the moment�
simple derivation judgments with single triples� written � fPgcfQg� su�ce to
capture everything but recursive procedures� So we take the usual rules� with
two exceptions�

Local
� fPg c f�Z �� Q Z ��
��hXi�X��g

� f�Z �� ���� � P Z ��
a ��X��g LOCAL X��a IN c fQg

The Local rule adapts the pre� and postconditions re�ecting the operational
semantics directly� To facilitate this� it remembers the initial state in �� and
extracts the value of X with ��hXi� �The meta variable �� could also be put
as an auxiliary variable� but this would complicate matters unnecessarily�� As
opposed to the rule given in 
��� this yields a straightforward handling of local
variables� In particular� we do not require explicit mechanisms catering for static
scoping because local variables are kept separate from global ones and are reset
completely on procedure call �see x��� below�� Another option� suggested in 
���
would be to simply alpha rename X in c� but this would require a syntactic
side�condition� namely that the new name does not already occur in P� Q and
c� and an unpleasant modi�cation of the program text�

�



conseq

�Z �� P Z � �� 	P � Q�� � fP �g c fQ�g �
���� ��Z �� P � Z � � �� Q� Z � ��� �� Q Z ��

� fPg c fQg

Our conseq rule is a strengthened version of the generalized rule of consequence
discovered by Kleymann� As motivated in 
���� it allows adapting the values of
the auxiliary variables as required� due to the universal quanti�cation in their
interpretation discussed above� Additionally here� the triple in the premise only
needs to be derivable if the precondition P holds� and both new pre� and postcon�
ditions may depend on the auxiliary variables and the initial state� This allows
not only other common structural rules to be derived �rather than asserted�� like



� fPgcf�Z �� Trueg

�
� fPgcfQg G � fP �gcfQ�g

� f�Z ��P Z ��P � Z �gcf�Z ��Q Z ��Q� Z �g

but also new structural rules� e�g� one facilitating the use of the Local and CALL
rules�

export
���� � f�Z �� ���� � P Z �gcfQg

� fPgcfQg

A typical example is the derivation �modulo predicate�logical steps� for the fact
that a local variable does not a�ect outer local variables with the same name�

conseq

Local



���� � � f�Z �� Trueg c f�Z �� ��hXi���
��hXi�X��hXig

���� � � f�Z �� ���� � Trueg LOCAL X��a IN c f�Z �� ��hXi��hXig

export
���� ��f�Z �� ���� � Z��hXigLOCAL X��a IN cf�Z �� Z��hXig

� � f�Z �� Z��hXig LOCAL X��a IN c f�Z �� Z��hXig

In a similar way� using some properties of getlocs and 
 �� �� a version of
the Local rule corresponding to the classical rule leading to dynamic scope �cf�
Rule �� in 
��� can be derived�

�v� � � f�Z �� P Z ��
v�X�� � �hXi � a ��
v�X��g c f�Z �� Q Z ��
v�X��g

� � fPg LOCAL X��a IN c fQg

��� Simple Procedure Rules

When arriving at procedures� one is faced with the problem that in any practical
calculus recursion cannot be handled trivially �i�e� by repeated unfolding�� As a
�rst step� we adopt the standard solution of introducing Hoare triples as assump�
tions of judgments� which enables one to cope with recursive calls of an already
unfolded procedure by appealing to a suitable assumption� Revising judgments
�currently � �� � triple � bool� to � �� � triple set � � triple � bool� we
allow putting triples as assumptions into the contexts of the derivation� In order
to re�ect this revision� we have to add a context � to all judgments in the above
rules� Next� we add three rules� the �rst of them being the well�known CallN

��N � stands for �nested�� rule that makes the speci�cation of the currently un�
folded procedure available as an assumption when verifying the procedure body�
The second rule enables exploiting assumptions�

CallN
ffPg Call pn fQgg�� � fPg body pn fQg

� � fPg Call pn fQg
asm

t
 �

� � t

�



The third rule� CALL� is responsible for adapting the local variables� resembling
the Local rule� though it adapts not only one variable� It resets all local variables
and binds the parameter� and in the postcondition restores them �remembering
the initial state in ��� except for the one receiving the result�

� � fPg Call pn f�Z �� Q Z ��setlocs � �getlocs ����
X���hResi��g

� �f�Z �� ���� � P Z ��setlocs � newlocs�
a ��Arg��gX��CALL pn�a�fQg

This rule demonstrates how easy it is to include �call�by�value� procedure
parameters� which have been left out by 
��� It is inspired by a similar rule from

��� but di�ers in that it does not have to impose any syntactic restrictions on
the variables occuring in the pre� and postconditions�

��� Extended Procedure Rules

As we will show in x���� the calculus as given up to here is already complete� Yet
when using it to verify mutually recursive procedures with non�linear invocation
structure� it becomes tedious� since the assumptions about recursive invocations
can only be collected stepwise� often large parts of the proof have to be repeated
for di�erent invocation contexts� Consider the example of three procedures P� Q
and R� where P calls Q and R� Q calls R� and R calls P and Q� Verifying them
with the CallN rule yields the following� roughly abstracted� proof tree�

fP�Q�Rg � Call P fP�Q�Rg � Call Q

�
�
� fP�Q�Rg � �body of R�

�
�
�

fP�Qg � Call R

�
�
� fP�Qg � �body of Q�

�
�
�

fPg � Call Q

fP�Rg � Call P

fP�Q�Rg � Call R

�
�
� fP�Q�Rg � �body of Q�

�
�
�

fP�Rg � Call Q

�
�
� fP�Rg � �body of R�

�
�
�

fPg � Call R

�
�
� fPg � �body of P�

�
�
�

� � Call P

The bodies of Q and R each are veri�ed twice� which may be very redundant�
This can be avoided by conducting a simultaneous rather than nested veri�cation
of all procedures involved� Veri�cation condition generators such as 
�� take this
idea to the extreme by verifying all procedures contained in a program simul�
taneously� forcing the user to identify in advance a single speci�cation for each
procedure suitable to cover all invocation contexts� Our solution 
 given next

 is more �exible because it permits� each time a call to a cluster of mutually re�
cursive procedures is encountered� to verify simultaneously as many procedures
as required �but not more� and to identify the necessary speci�cations locally�

We extend the judgments further to �� �� � triple set�� triple set� bool
�� � t now becomes an abbreviation of � ��ftg� and replace the CallN rule by

Call
� �ffPigCall ifQig j i
 psg��ffPigbody ifQig j i 
 psg p
 ps

� � fPpg Call p fQpg

When using this rule to verify a call of p� one can decide to verify simultaneously
an arbitrary family of procedures where ps is the set of their names including p�

�



Of course� we now need introduction rules for ��nite� conjunctions of triples�
whereas elimination rules like subset may be derived from the others�

empty
� ���

insert
� � t � ��ts

� ��ftg�ts
subset

� ��ts� ts � ts�

� �� ts

Exploiting the simultaneous Call rule� the proof tree of the above example
collapses to

fP�Q�Rg � Call P fP�Q�Rg � Call Q fP�Q�Rg � Call R

�
�
� fP�Q�Rg � �bodies of P� Q and R�

�
�
�

� � Call P

where no redundancy concerning procedure bodies remains�
Though it is 
 strictly speaking 
 not necessary� we found the cut rule

very useful in applications� as it helps to adapt the premises of judgments� A
similar rule� complementing the subset rule� is the well�known weaken rule� It
can be derived from all others by rule induction� or obtained as an immediate
consequence of cut and a strengthened version of asm�

cut
� ���ts � ��� �

� ��ts
weaken

� ���ts � � � �

� ��ts
asm� ts � �

� ��ts

� The Proof of Soundness

This section motivates our actual de�nition of validity for Hoare triples� which
is in�uenced by the proof of soundness outlined thereafter�

��� Validity

Validity involving assumptions� j�j� ��� triple set�� triple set� bool� could
be de�ned as � j�j�ts � ��t
 � � j�t� �� ��t
 ts� j�t�� This would be reason�
able� but when attempting to prove the Call rule which adds assumptions about
recursive procedure calls� an inductive argument on the depth of these calls is
needed� This could be achieved by syntactic manipulations that unfold proce�
dure calls up to a given depth n� as done in 
��� We prefer a semantic approach
instead� which is in�uenced by 
�� and 
��� We de�ne a variant of the operational
semantics that includes a counter for the recursive depth of evaluations� rep�
resented by the judgment h � i� � �� com � state � nat � state � bool�
The inductive rules using this new form are exactly the same as in x���� except
for replacing �� by �n� and replacing the Call rule by

Call
hbody pn� ��i�n� ��

hCALL pn� ��i�n��� ��

This re�nement does not a�ect the semantics� i�e� the parameter n is a mere an�
notation� stating that evaluation needs to be done only up to recursive depth n�
The equivalence �hc��i�� ��� � �	n� hc��i�n� ��� can be shown by rule in�
duction for each direction� where the ���� direction requires the lemma
hc����i�n�� ��� � hc����i�n�� ��� �� 	n� hc����i�n� ��� � hc����i�n� ���
which in turn requires non�strictness� hc��i�n� �� � n�m �� hc��i�m� ���

�



According to the re�ned notion of statement execution� the notion of validity
for single Hoare triples receives the recursive depth as an extra parameter�

j�n�fPgcfQg � �Z �� P Z � �� ���� hc��i�n� �� �� Q Z ��

This de�nition carries over to sets of triples by j�j�n�ts � �t
 ts� j�n�t�
Now we can de�ne the �nal notion of validity including assumptions as

� j�j�ts � �n� j�j�n�� �� j�j�n�ts

This version is strong and detailed enough to perform induction on the recursive
depth� On the other hand� when the set of assumptions is empty� it is equivalent
to the version given above because the chain �� j�j�ts� � ��n� j�j�n���� j�j�n�ts� �
��n� j�j�n�ts� � ��t
 ts� j�t� � ���t
 �� j�t��� ��t
 ts� j�t�� holds�

��� Actual Soundness Proof

With our new de�nition of validity we can express soundness as � � t �� �j�t�
This is a direct instance of � ��ts �� � j�j�ts� which can be shown by rule induc�
tion on the derivation of the Hoare judgments and an auxiliary rule induction
for the Loop rule� The Call rule is the only di�cult case� where we bene�t from
the proof given in 
�� suggesting a lemma that in our case reads as

��ffPig Call i fQig j i 
 psg j�j� ffPig body i fQig j i 
 psg ��
j�j�n�� �� j�j�n�ffPig Call i fQig j i
 psg

Here is the point where the bounded recursive depth comes in� as we conduct the
proof by induction on n� Doing this� we exploit the simple facts j�n���t��j�n�t�
j���fPg Call i fQg� and �j�n���fPg Call i fQg� � �j�n�fPg body ifQg�� The
CallN rule can of course be derived directly from the Call rule�

As we can conclude from this section� the only interesting aspect of the proof
of soundness is to �nd a suitable notion of validity capable of capturing an
inductive argument on the recursive depth of procedure calls� Of course� due to
the number of rules in the operational and axiomatic semantics� in the inductive
proofs there are a lot of cases involving some amount of detail to be considered�
for which the mechanical theorem prover is of great help�

� Three Proofs of Completeness

Much more challenging than the proof of soundness is the proof of completeness�
Here we bene�t heavily from the MGF approach promoted by 
�� and others�
We extend this approach� which was given for only a single recursive procedure�
to several mutually recursive procedures� When dealing with mutual recursion
some complications arise� which we overcome in three di�erent ways� each with
speci�c advantages and drawbacks� For lack of space we can describe only proof
outlines and mention crucial lemmas�

�



��� The MGF Approach

For proving completeness of Hoare logics involving procedures� typically some
variant of Most General Formula� MGF for short� is used� A MGF is a judgment
� � MGT c where MGT takes a command c and returns aMost General Triple which
describes the most general property of c� namely its operational semantics� The
basic variant of a MGT for partial correctness is

MGT c � f�Z ��� Z � ��g c f�Z ��� hc�Zi�� ��g

Its precondition stores the initial state �� in the auxiliary variable Z� which is
consequently of type state here� Its postcondition claims that if the execution of
command c terminates in some state ��� this is the same as the outcome of the
operational semantics of c� starting also from ���

Common to all variants of MGTs is that once the corresponding MGF has
been proved� completeness almost immediately emerges by virtue of the rule of
consequence� For instance� � � MGT c �� �j�fPgcfQg �� �� fPgcfQg can be
proved in a two�line Isabelle script applying the de�nition of validity�

��� Version �� Nested Structural Induction

The outline� proposed by Martin Hofmann
��� of our �rst completeness proof
employs two inductions �in very similar situations� on the structure of commands
and a variant of MGT that is a bit more involved� namely

MGT� c � f�Z ��� ���� hc���i�� �� �� Z � ��g c f�Z ��� Z � ��g

We re�ne the outline a little� �rst by factoring out structural induction into
theMGT�lemma ��p� � � MGT �Call p�� �� � � MGT c such that it is performed
only once� and second by replacing MGT� by the simpler MGT � �

The proof of � � MGT c reveals the crux of structural induction� when arriv�
ing at unfolding procedure calls� the new subgoal gets structurally larger� such
that we cannot appeal directly to any induction hypothesis� Assumptions in the
judgments come to the rescue� Still� there remains a challenge� when using them
naively� one is faced with the need to use structural induction nested as deep as
the number of procedures in the program� This problem is overcome by resorting
to an auxiliary induction on the number of procedures not yet considered� such
that we strengthen our proof goal to � � � fMGT �Call p� j Trueg ��
�� � � �� � �� n � j� �j �� j� j � j� �j � n �� �c� � � MGT c where � � equals
the set of all possible procedure calls� Its proof is by induction on n� exploiting
the MGT�lemma twice� It heavily depends on � � being �nite as otherwise calcu�
lations on cardinality like j� j � j� �j � n would be meaningless� Now� � � MGT c
is an immediate consequence �just specialize � to � and n to j� �j��

� For the case of the WHILE loop
 we return to MGT� because there the auxiliary variable
�� has to serve as the �invariant� �nal state of the iteration� Both variants are
equivalent
 where MGT� entails MGT only if the language is deterministic �which is
true for IMPP � and there are at least two di�erent program states
 which we simply
assume since empty or singleton state spaces are of no interest anyway�

��



Note that this version of completeness proof gets by with the CallN version
of the Call rule �thus not requiring the rules empty and insert�� but on the
other hand needs to apply it in a nested way�

��� Version �� Simultaneous Structural Induction

Our desire to circumvent the nesting problem of Version � has been the motiva�
tion for inventing the Call rule as an extension of CallN � which allows handling
procedures simultaneously� Version � is also by structural induction and makes
use of the MGT�lemma� but by exploiting the power of the Call rule� it takes
only a much simpler lemma� namely F � fMGT �body p� j Trueg ��
fMGT �Call p� j Trueg��F� The latter is proved by induction on the size of F� so
�niteness is vital also here� Comparing Version � with Version �� it requires a
more advanced Call rule �and the two simple structural rules empty and insert��
but handles mutual recursion more directly and thus clearly�

��� Version �� Rule Induction

Our third version of completeness proof takes the MGF approach to the extreme�
It gave us surprising insights into the nature of Hoare logic� yet is probably of
mainly theoretic interest because we could not avoid supporting it with two
additional rules� Our intuition when discovering this approach has been that
structural induction is not too nice� in particular when handling recursion� as
the other versions show� Let us employ a more direct and powerful induction
scheme� rule induction on the operational semantics�

The pattern of rule induction requires that the inductively de�ned relation�
evalc here� occurs negatively in the formula to be proved� Unfortunately� neither
�j�fPg c fQg �� �� fPg c fQg itself nor � � MGT c are of this pattern� Let us
resort to ��� ��� hc���i�� �� �� �� f�Z �� � � ��gcf�Z �� � � ��g which
is a kind of MGF property where the evalc relation has been pulled out of the
assertion into the meta logic� From this formula we can easily show completeness
applying our strong rule of consequence� but we have to require the �clearly
admissible� yet non�derivable� extra rule

diverg
G � f�Z �� �	��� hc� �i�� ��gcfQg

The above MGF property itself is directly amenable to the desired rule in�
duction� which yields a surprisingly short proof� Unfortunately� it requires an
unfolding variant of the Loop rule re�ecting the operational semantics�

LoopT
� � f�Z �� P Z � � b �gcfQg � � fQg WHILE b DO c fRg

� � f�Z �� P Z � � b �g WHILE b DO c fRg

On the other hand� only a trivial variant of the Call rules �namely one without
assumptions� and no auxiliary variables are needed here�

Thus we can conclude that� in principle� the issues of assumptions and auxil�
iary variables can be circumvented� Of course� this is only a theoretical point as
in actual program veri�cation one does not want to be faced with the operational
semantics again� which was suitable for the meta�level completeness proof only�

��



� Conclusion

In this paper we have described new approaches for dealing with mutual recur�
sion� procedure parameters and local variables in a Hoare�style calculus� The
calculus is powerful 
 and also simple and convenient 
 enough to be used in
actual program veri�cation e�orts� In particular� we have introduced a relatively
simple handling of local variables� a convenient and �exible rule for simultane�
ously verifying mutually recursive procedures� and a strong rule of consequence�

All results have been achieved using the theorem prover Isabelle�HOL� which
not only gives full con�dence in their correctness� but also was a great aid in
cleanly formalizing the theory and conveniently conducting the proofs�

We have combined several existing techniques with new ideas� resulting in a
lucid soundness proof and three variants of completeness proofs� Once discov�
ered� they should be transferable to other logical systems and programming lan�
guages with relative ease� The major current application is to an object�oriented
language� namely the investigation of Java within Project Bali�

Acknowledgments I thank Tobias Nipkow and Martin Hofmann for fruitful
discussions on handling mutual recursion� The idea how to perform nested struc�
tural induction is due to Martin Hofmann� I also thank Manfred Broy� Tobias
Nipkow� Leonor Prensa Nieto� Bernhard Reus� Francis Tang� Markus Wenzel and
several anonymous referees for their comments on draft versions of this paper�

References


� K� R� Apt� Ten years of Hoare logic� A survey � part I� ACM Trans� on Prog�
Languages and Systems
 ����
����
 
��
�

�� Stephen A� Cook� Soundness and completeness of an axiom system for program
veri�cation� SIAM Journal on Computing
 ��
�������
 
����

�� Martin Hofmann� Semantik und Veri�kation� Lecture notes
 in German�
http���www�dcs�ed�ac�uk�home�mxh�teaching�marburg�ps�gz
 
����

�� Peter V� Homeier and David F� Martin� Mechanical veri�cation of mutually re	
cursive procedures� In M� A� McRobbie and J� K� Slaney
 editors
 Proceedings of
CADE���
 volume 

�� of LNAI
 pages ��
��
�� Springer	Verlag
 
����

�� Thomas Kleymann� Hoare logic and VDM� Machine	checked soundness and com	
pleteness proofs� �Phd Thesis�
 ECS	LFCS	��	���
 LFCS
 
����

�� Tobias Nipkow� Winskel is �almost� right� Towards a mechanized semantics text	
book� In V� Chandru and V� Vinay
 editors
 FST�TCS
 volume 

�� of LNCS

pages 
���
��� Springer	Verlag
 
����

�� David von Oheimb and Tobias Nipkow� Machine	checking the Java speci�cation�
Proving type	safety� In Jim Alves	Foss
 editor
 Formal Syntax and Semantics of
Java
 volume 
��� of LNCS� Springer	Verlag
 
����

�� Lawrence C� Paulson� Isabelle� A Generic Theorem Prover
 volume ��� of LNCS�
Springer	Verlag
 
���� Up	to	date description� http���isabelle�in�tum�de��

�� A� Poetzsch	He�ter and P� M�uller� A programming logic for sequential Java� In
S� D� Swierstra
 editor
 Programming Languages and Systems �ESOP ���	
 volume

��� of LNCS
 pages 
���
��� Springer	Verlag
 
����


�� Thomas Schreiber� Auxiliary variables and recursive procedures� In TAPSOFT��


volume 
�
� of LNCS
 pages �����

� Springer	Verlag
 
����



� Glynn Winskel� Formal Semantics of Programming Languages� MIT Press
 
����

��


