Hoare Logic for Mutual Recursion and Local Variables

David von Oheimb*

Technische Universitat Miinchen
http://www.in.tum.de/ “oheimb/

Abstract. We present a (the first?) sound and relatively complete Hoare
logic for a simple imperative programming language including mutually
recursive procedures with call-by-value parameters as well as global and
local variables. For such a language we formalize an operational and an
axiomatic semantics of partial correctness and prove their equivalence.
Global and local variables, including parameters, are handled in a rather
straightforward way allowing for both dynamic and simple static scoping.
For the completeness proof we employ the powerful MGF (Most General
Formula) approach, introducing and comparing three variants for dealing
with complications arising from mutual recursion.

All this work is done using the theorem prover Isabelle/HOL, which
ensures a rigorous treatment of the subject and thus reliable results. The
paper gives some new insights in the nature of Hoare logic, in particular
motivates a stronger rule of consequence and a new flexible Call rule.

Keywords: axiomatic semantics, Hoare logic, mutual recursion, soundness, rel-
ative completeness, local variables, call-by-value parameters, Isabelle/HOL.

1 Introduction

Designing a good Hoare logic for imperative languages with mutually recursive
procedures and local variables still is an active area of research. By ‘good’ we
mean a provably sound and (relatively) complete calculus that is as simple as
possible and thus easy to apply. There are several complications and pitfalls
concerning the status of auxiliary variables, initialization of variables, scoping,
parameter passing, and mutual recursion. As we will explain in the sequel, the
work presented here provides theoretically interesting and practically useful so-
lutions to these problems, and thus is good in the above sense.

Classical verification systems dealing with these subjects — see [1] for an
overview — typically neglect mutual recursion and have turned out to be un-
sound, as mentioned e.g. by [4] and [5], or incomplete, or at least require several
auxiliary rules with awkward syntactic side-conditions. Recent investigations
tend to be much more precise, e.g. on the role of auxiliary variables, and even
employ mechanical theorem provers to reliably prove soundness and complete-
ness results. Here we emphasize the work of Kleymann![10],[5] who suggests a
Hoare logic of total correctness and proves it sound and relatively complete with
the mechanical theorem prover LEGO.

* research funded by the DFG Project BALIL http://isabelle.in.tum.de/Bali/ .
! formerly Schreiber.

The work described in the present paper has been conducted in the context of
Project BALI formalizing the semantics of Java and proving key properties like
type soundness[7] formally within the theorem proving system Isabelle/HOL.
Introducing an axiomatic semantics for a large subset of Java, we felt that there
were several issues like mutual recursion and parameter passing where we could
not resort to already established techniques. It turned out to be very practical
and fruitful to perform our investigations in the reduced setting of a simple
imperative programming language. In this respect we benefit from the pioneering
work of Nipkow[6] that deals with the basic language (without procedures and
local variables) within Isabelle/HOL.

One could argue that mutual recursion can be reduced to the already estab-
lished results on single recursion (e.g. of Kleymann) by program transformation.
But this would require non-trivial syntactic manipulations, which would be dif-
ficult to handle in a precise proof of soundness and unsuitable for practical
program verification. Concerning local variables, the only fully formal treatment
we know of, given by Kleymann, is a bit involved, so that one shrinks back
from transferring it to procedure parameters. We are not aware of any previous
work tackling even either of mutual recursion and procedure parameters whose
soundness and (relative) completeness has been mechanically verified.

Just a few words on Isabelle/HOL: This is the instantiation of the generic in-
teractive theorem prover Isabelle[8] with Church’s version of Higher-Order Logic.
The appearance of formulas on Isabelle/HOL is standard (e.g. ‘=" is the infix
implication symbol associating to the right) except that logical equivalence is ex-
pressed with the equality symbol. Predicates are functions with Boolean result,
and function application is written in curried style, e.g. f 2. Logical constants
are declared by giving their name and type, such as ¢ :: 7. Basic definitions
are written ¢ = ¢. Types follow the syntax of ML; type abbreviations are intro-
duced simply as equations. A free datatype is defined by listing its constructors
together with their argument types, separated by ¢|’. Isabelle offers powerful veri-
fication tools like natural deduction involving several variants of search, tableaux
reasoning, general rewriting, and combinations thereof.

We deliberately let the style of presentation of this paper be influenced by
the fully formal treatment caused by using Isabelle/HOL, which should give an
impression of its rigor. On the other hand, we abstract from technical details as
much as possible in order to present our results in a generic way.

2 The IMPp Programming Language

Winskel[11] has introduced a simple imperative programming language for edu-
cational purposes called IMP. We enriched it with procedures and local variables,
calling the result IMPp. The syntax of its statements (“commands”) is

com = SKIP | com; com | wvname := aexp | LOCAL loc:=aexp IN com
| IF bexp THEN com ELSE com | WHILE bezp DO com
| Call pname | wvname := CALL pname(aexp)

where the meanings of most of these constructs (Call being just an auxiliary
one) is what you expect. The types aexp = state — val and bexp = state — bool
represent arithmetic and Boolean expressions, which we do not further specify
since we need only their (black-box) semantics. The type state has two com-
ponents, namely the function spaces globs = glb — wval and locals = loc — val
representing the stores for global and local variables. The two kinds of variable
names are combined into a free datatype vname = Glb ¢lb | Loc loc where Glb
and Loc act as tags to distinguish them. The types glb and loc as well as the
type of values wal are left unspecified. The type of procedure names pname is
also arbitrary, but is required to be finite, 2 as motivated in §5.

We model the procedure declarations of a given program by a function
body :: pname — com mapping procedure names to the corresponding proce-
dure bodies. Our meta-theoretic investigations do not require body to be spec-
ified further. For simplicity, each procedure has exactly one parameter, which
we model by a generic local variable Arg :: loc, and a result variable Res :: loc
(where Res # Arg) whose value is returned on procedure exit. These are merely
syntactic restrictions avoiding immaterial but cumbersome details like explicit
parameter declarations and return statements.

2.1 Operational Semantics

We define the semantics of IMPp straightforwardly by an evaluation-style oper-
ational (“natural”) semantics. The evaluation (“execution”) of a statement c is
described as a relation evalc :: (com x state X state) set between an initial state
o and a final state o', written (¢,0)—> o’. For lack of space and since the other
inductive rules defining evalc are standard, we give only the relevant ones here:

(C, Ug[a U[)/)q>—) o1
(LOCAL X := a IN ¢, 0¢)— o1[oo(X)/X]

Local

(Call pn, (setlocs og newlocs)[a oo /Argl)— o1

ALL
¢ (X:=CALL pn(a),00)—> (setlocs o (getlocs 0p))[X:=01 (Res)]

(body pn, 09)— 01

Call
(Call pn, oo)—> 01

Note that local variables are initialized immediately when being created. The
usual notion of procedure call is split into two parts, which will be very useful
for the axiomatic semantics. The CALL statement replaces the local variables
of the caller by the actual parameter of the called procedure as the only (by
virtue of newlocs) local variable — thus implementing trivial static scoping —
and restores them (except for assigning the result variable) after return. The
Call statement is responsible for unfolding the procedure body only, thus im-
plementing recursion. If it is invoked directly rather than via CALL, it implements
dynamic scoping.

2 This is not a real restriction but a handy trick that avoids explicit well-formedness
constraints implying that in any program there is only a finite number of procedures.

The above definition makes use of a few auxiliary values and functions:

newlocs :: locals

setlocs :: state — locals — state

getlocs :: state — locals shorthand: o(X) getlocs 0 X
[-:=] = state — vname — wal — state shorthand: o[v/X] = o[Loc X:=v]

Our meta theory does not need define them further as it is independent of their
meaning. newlocs is intended to yield the empty set of local variables, setlocs sets
the local variables component of the state to a given set of variables, and getlocs
returns the local variables of the state. The update function _[_:=_] modifies
the state at the given point with a new value, i.e. assigns to a (global or local)
variable if it already exists, or otherwise allocates and initializes one.

Properties of the evalc relation, for instance determinism, are typically proved
via rule induction, i.e. induction on the depth of derivations. In contrast, struc-
tural induction (on the syntax of statements) is unsuitable in most cases because
rules like C'all yield structural expansion rather than reduction.

3 Axiomatic Semantics for IMPp

Now that we have introduced the language IMPp, we can describe the core of
our work, which is its axiomatic semantics (“Hoare logic”).

3.1 Assertions and Hoare Triples

Central to any axiomatic semantics is the notion of assertions, which describe
properties of the program state before and after executing commands. Semanti-
cally speaking, assertions are just predicates on the state. We adopt this abstract
view (similarly to our semantic view of expressions) and thus avoid talking explic-
itly on a syntactic level about terms and substitution and their interpretation.
In other words, we do a “shallow embedding” of assertions in our (meta-)logic
HOL. Thus, the issue of expressiveness of assertions disappears, and our notion
of completeness automatically means completeness (basically) in the sense of
Cook][2], i.e. completeness relative to the assumptions that all desired assertions
can be expressed syntactically and all valid pure HOL formulas can be proved.

Following Kleymann[5], we give the role of auxiliary variables the attention
it deserves. Auziliary variables, also known as “logical” variables (as opposed
to program variables), are necessary to relate input and output, in particular
to express invariance properties. For example, the proposition that a procedure
P does not change the contents of a program variable X is formulated as the
Hoare triple {X=Z7} Call P {X=Z}, which should mean that whenever X has
some value Z before calling P, after return it still has the same value. With
this interpretation, Z serves as an auxiliary variable that is implicitly universally
quantified. Early works on Hoare logic tended to view Z as a free? variable, which
gives the desired interpretation only if the triple occurs positively, and otherwise

3 According to standard conventions, such variables are implicitly universally quanti-
fied, i.e. '+t Zisread as VZ. '+t Z. Problems arise if Z occurs also in I'.

gives incorrect results. Viewing Z as an arbitrary (yet fixed) constant preserves
correctness, but this approach suffers from incompleteness: having obtained a
procedure specification like {X=27} Call Quad { Y=Z*Z}, it is often necessary
to exploit (i.e., specialize) it for different instantiations of Z, which is impossible
if Z is essentially a constant. The classical way out is sets of substitution and
adaptation rules involving intricate side-conditions on variable occurrences. A
real solution would be explicit quantification like VZ. {P Z} ¢ {Q Z}, but this
changes the structure of Hoare triples and makes them more difficult to handle.
Instead we prefer implicit quantification at the level of triple validity, given
below, making assertions explicitly dependent not only on the state, but also on
auxiliary variables.

Which number of auxiliary variables of which types are required of course
depends on the application. So we define the type of assertions with a parameter:

« assn = o — state — bool

where @ may be instantiated as required. Thus the (pretty-printed) postcondition
{Y=Z*Z} mentioned above fully formally reads as {\Z 0. 0(Y)=Z*Z} where
a = int. In general it is appropriate (and essential) to let o be the whole state,
such that all program variables can be monitored when constructing an arbitrary
relation between initial and final states.

Built on the type « assn, we model a Hoare triple as the (degenerate) datatype
a triple = {« assn} com {a assn}. It is valid wrt. partial correctness, written
E{P}{Q},iff VZo. P Zo=Vo'.{co0)— o' = Q Z o'. Note the universal
quantification on the auxiliary variable Z motivated above. This preliminary
definition will be refined and extended to judgments with assumptions in §4.1.

3.2 Rules not Dealing with Procedures

The remainder of the current section is dedicated to the question of which Hoare-
style rules should be given for the axiomatic semantics of IMPp. For the moment,
simple derivation judgments with single triples, written + {P}c{Q}, suffice to
capture everything but recursive procedures. So we take the usual rules, with

two exceptions.
’ (P} ¢ \Z 0. Q 2 (olo"(X)/X])}
F{\Zo.o'=0 AP Z (c]a 0/X])} LOCAL X:=a IN ¢ {Q}

Local

The Local rule adapts the pre- and postconditions reflecting the operational
semantics directly. To facilitate this, it remembers the initial state in ¢’ and
extracts the value of X with ¢'(X). (The meta variable ¢’ could also be put
as an auxiliary variable, but this would complicate matters unnecessarily.) As
opposed to the rule given in [5], this yields a straightforward handling of local
variables. In particular, we do not require explicit mechanisms catering for static
scoping because local variables are kept separate from global ones and are reset
completely on procedure call (see §3.3 below). Another option, suggested in [1],
would be to simply alpha rename X in ¢, but this would require a syntactic
side-condition, namely that the new name does not already occur in P,) and
¢, and an unpleasant modification of the program text.

VZio.PZo =3P Q. F{P'} c{Q'} A
Vo!.VZ'.P' Z' 0o = Q' Z' ') = Q Z o'
H{P} ¢ {Q}

Our conseq rule is a strengthened version of the generalized rule of consequence
discovered by Kleymann. As motivated in [10], it allows adapting the values of
the auxiliary variables as required, due to the universal quantification in their
interpretation discussed above. Additionally here, the triple in the premise only
needs to be derivable if the precondition P holds, and both new pre- and postcon-
ditions may depend on the auxiliary variables and the initial state. This allows
not only other common structural rules to be derived (rather than asserted), like
. . F{P}e{Q} G {P}e{Q'}

F{P}c{AZ 0. True} F{\Zo.P ZoVP Zo}c{\Z0c.Q ZoVQ' Zo}
but also new structural rules, e.g. one facilitating the use of the Local and CALL

rules: Vo'. F{\Zo.o'=0 AP Zo}c{Q}
export
H{P}c{Q}
A typical example is the derivation (modulo predicate-logical steps) for the fact
that a local variable does not affect outer local variables with the same name:

conseq

T Vo!. T'F{\Z 0. True} ¢ {\Z 0. o' (X)=(o]0c"(X)/X])(X)}
conseq Vo'. ' {\Z 0. 0'=0 A True} LOCAL X:=qa IN ¢ {\Z 0. 0" (X)=0(X)}
caport Vo!. I't{A\Z 0. 0'=0 A Z=0o(X)}LOCAL X:=a IN c{\Z 0. Z=0(X)}
I't{\Zo. Z=0(X)} LOCAL X:=a IN ¢ {\Z 0. Z=0(X)}
In a similar way, using some properties of getlocs and _[-:=_], a version of
the Local rule corresponding to the classical rule leading to dynamic scope (cf.
RULE 17 in [1]) can be derived:

Yo. ['F{A\Zo. P Z (o[v/X]) AN o(X) = a (o[v/X])} c{\Z 0. Q Z (c[v/X])}
I'+{P} LOCAL X:=a IN ¢ {Q}

Local

3.3 Simple Procedure Rules

When arriving at procedures, one is faced with the problem that in any practical
calculus recursion cannot be handled trivially (i.e. by repeated unfolding). As a
first step, we adopt the standard solution of introducing Hoare triples as assump-
tions of judgments, which enables one to cope with recursive calls of an already
unfolded procedure by appealing to a suitable assumption. Revising judgments
(currently F _ :: « triple — bool) to _ F_ :: « triple set — « triple — bool, we
allow putting triples as assumptions into the contexts of the derivation. In order
to reflect this revision, we have to add a context I" to all judgments in the above
rules. Next, we add three rules, the first of them being the well-known Call N
(‘N’ stands for ‘nested’) rule that makes the specification of the currently un-
folded procedure available as an assumption when verifying the procedure body.
The second rule enables exploiting assumptions.
{{P} Call pn {Q}}UI" F{P} body pn {Q} tel’

N R
Call T'F (P} Call pn {Q} @M T

The third rule, CALL, is responsible for adapting the local variables, resembling
the Local rule, though it adapts not only one variable. It resets all local variables
and binds the parameter, and in the postcondition restores them (remembering
the initial state in ¢') except for the one receiving the result:

I'H{P} Call pn {\Zo. Q Z ((setlocs o (getlocs ¢'))[X:=0(Res)])}
I't{\Z 0. c'=0 N P Z ((setlocs o newlocs)[a o /Arg])} X:=CALL pn(a){Q}

This rule demonstrates how easy it is to include (call-by-value) procedure
parameters, which have been left out by [5]. It is inspired by a similar rule from
[9], but differs in that it does not have to impose any syntactic restrictions on
the variables occuring in the pre- and postconditions.

3.4 Extended Procedure Rules

As we will show in §5.2, the calculus as given up to here is already complete. Yet
when using it to verify mutually recursive procedures with non-linear invocation
structure, it becomes tedious: since the assumptions about recursive invocations
can only be collected stepwise, often large parts of the proof have to be repeated
for different invocation contexts. Consider the example of three procedures P,)
and R, where P calls @ and R, @ calls R, and R calls P and Q. Verifying them
with the C'allN rule yields the following, roughly abstracted, proof tree:

{P,Q,R}I—Call P {P,Q,R} FCall Q {P,Q,R}I—Call R
. {P,Q,R}F (body of R) {P,Q,R}+ (body of Q)
{P,QYFCall R [P.R}F Call P {P.R}F Call Q
:{P,Q}F (body of Q) . {P,R}F (body of R)
{P}FCall Q {P}FCall R

" {P}F (body of P)
0 +Call P

The bodies of @ and R each are verified twice, which may be very redundant.
This can be avoided by conducting a simultaneous rather than nested verification
of all procedures involved. Verification condition generators such as [4] take this
idea to the extreme by verifying all procedures contained in a program simul-
taneously, forcing the user to identify in advance a single specification for each
procedure suitable to cover all invocation contexts. Our solution — given next
— is more flexible because it permits, each time a call to a cluster of mutually re-
cursive procedures is encountered, to verify simultaneously as many procedures
as required (but not more) and to identify the necessary specifications locally.
We extend the judgments further to _H_ :: « triple set — « triple set — bool
(I" F t now becomes an abbreviation of I'#{¢}) and replace the CallN rule by

I'U{{Pi}Call { @i} | i€ pspt-{{Pi}body i{Qi} | icps} peEps
I'-{Pp} Call p {Qp}

When using this rule to verify a call of p, one can decide to verify simultaneously
an arbitrary family of procedures where ps is the set of their names including p.

Call

Of course, we now need introduction rules for (finite) conjunctions of triples,
whereas elimination rules like subset may be derived from the others.

. . tFI—t I'tts b tFH—ts’ ts C ts’
em —_— insert ———— subset ———
P To TH{}Uts T ts

Exploiting the simultaneous Call rule, the proof tree of the above example
collapses to

{P,Q,R}F Call P {P,Q,R}FCall Q {P,Q,R}F Call R

. {P,Q,R} (bodies of P, Q and R)
O+ Call P

where no redundancy concerning procedure bodies remains.

Though it is — strictly speaking — not necessary, we found the cut rule
very useful in applications, as it helps to adapt the premises of judgments. A
similar rule, complementing the subset rule, is the well-known weaken rule. It
can be derived from all others by rule induction, or obtained as an immediate
consequence of cut and a strengthened version of asm.

It Tl v Libts ['C T JtsC
cu Thts weaken Tts R ST

4 The Proof of Soundness

This section motivates our actual definition of validity for Hoare triples, which
is influenced by the proof of soundness outlined thereafter.

4.1 Validity

Validity involving assumptions, - f=_: «a triple set — « triple set — bool, could
be defined as I'll=ts = (Vi€ I'. |=t) = (Vi€ ts. =¢). This would be reason-
able, but when attempting to prove the Call rule which adds assumptions about
recursive procedure calls, an inductive argument on the depth of these calls is
needed. This could be achieved by syntactic manipulations that unfold proce-
dure calls up to a given depth n, as done in [3]. We prefer a semantic approach
instead, which is influenced by [9] and [5]. We define a variant of the operational
semantics that includes a counter for the recursive depth of evaluations, rep-
resented by the judgment (_,_)—_— _ :: com — state — nat — state — bool.
The inductive rules using this new form are exactly the same as in §2.1, except
for replacing — by —n— and replacing the Call rule by

(body pn, o9)—n— o1

Call
(CALL pn, 0o)—n+1— oy

This refinement does not affect the semantics, i.e. the parameter n is a mere an-
notation, stating that evaluation needs to be done only up to recursive depth n.
The equivalence ({¢,c)—> ¢') = (In. (¢,0)—n— ¢') can be shown by rule in-
duction for each direction, where the ‘=" direction requires the lemma
<Cl,01>—n1—) Ui AN (02,02)—712—) (fé = dn. <Cl,01>—n—) 0'1 A (02,02)—n—> (fé
which in turn requires non-strictness: (¢,0)—n— o' A n<m = (¢,0)—m— o'

According to the refined notion of statement execution, the notion of validity
for single Hoare triples receives the recursive depth as an extra parameter:

En{P}{Q} =VZ0. PZo = Vo'. (co)—n—> 0 = QZo'

This definition carries over to sets of triples by H=n:ts = Vt€ ts. =n:t.
Now we can define the final notion of validity including assumptions as

I'=ts = Vn. f=n:I’ = }=n:ts

This version is strong and detailed enough to perform induction on the recursive

depth. On the other hand, when the set of assumptions is empty, it is equivalent

to the version given above because the chain (§ f=ts) = (Vn. f=nd) = f=nsts) =
(Vn. f=nits) = (Vi€ ts. =t) = (Vi€). Et) = (Vt€ ts. [=t)) holds.

4.2 Actual Soundness Proof

With our new definition of validity we can express soundness as § -t = (=t
This is a direct instance of I't-ts => I" =ts, which can be shown by rule induc-
tion on the derivation of the Hoare judgments and an auxiliary rule induction
for the Loop rule. The Call rule is the only difficult case, where we benefit from
the proof given in [3] suggesting a lemma that in our case reads as

TU{{P;} Call i {Q;} | i€ ps} b= {{P;} body i {Q:} | i€ ps} =
b=n:l = =n:{{P;} Call i {Qi} | i€ ps}

Here is the point where the bounded recursive depth comes in, as we conduct the
proof by induction on n. Doing this, we exploit the simple facts En+1:t=> En:t,
E=0:{P} Call i {Q}, and (|En+1:{P} Call i {Q}) = (En:{P} body i{Q}). The
CallN rule can of course be derived directly from the C'all rule.

As we can conclude from this section, the only interesting aspect of the proof
of soundness is to find a suitable notion of validity capable of capturing an
inductive argument on the recursive depth of procedure calls. Of course, due to
the number of rules in the operational and axiomatic semantics, in the inductive
proofs there are a lot of cases involving some amount of detail to be considered,
for which the mechanical theorem prover is of great help.

5 Three Proofs of Completeness

Much more challenging than the proof of soundness is the proof of completeness.
Here we benefit heavily from the MGF approach promoted by [5] and others.
We extend this approach, which was given for only a single recursive procedure,
to several mutually recursive procedures. When dealing with mutual recursion
some complications arise, which we overcome in three different ways, each with
specific advantages and drawbacks. For lack of space we can describe only proof
outlines and mention crucial lemmas.

5.1 The MGF Approach

For proving completeness of Hoare logics involving procedures, typically some
variant of Most General Formula, MGF for short, is used. A MGF is a judgment
I'+MGT ¢ where MGT takes a command ¢ and returns a Most General Triple which
describes the most general property of ¢, namely its operational semantics. The
basic variant of a MGT for partial correctness is

MGT ¢ = {\Z o09. Z= 00} c{\Z 01. (¢,Z)— 01}

Its precondition stores the initial state o¢ in the auxiliary variable Z, which is
consequently of type state here. Its postcondition claims that if the execution of
command c terminates in some state o1, this is the same as the outcome of the
operational semantics of ¢, starting also from oy.

Common to all variants of MGTs is that once the corresponding MGF has
been proved, completeness almost immediately emerges by virtue of the rule of
consequence. For instance,) - MGT ¢ = O={P}c{Q} = 0+ {P}c{Q} can be
proved in a two-line Isabelle script applying the definition of validity.

5.2 Version 1: Nested Structural Induction

The outline, proposed by Martin Hofmann[3], of our first completeness proof
employs two inductions (in very similar situations) on the structure of commands
and a variant of MGT that is a bit more involved, namely

MGT’ ¢ = {A\Z 0¢. Voi1. (¢c,00)— 01 = Z =01} c{A\Zo1. Z= 01}

We refine the outline a little, first by factoring out structural induction into
the MGT-lemma (Vp. I' - MGT (Call p)) => I'FMGT c such that it is performed
only once, and second by replacing MGT’ by the simpler MGT . *

The proof of () - MGT ¢ reveals the crux of structural induction: when arriv-
ing at unfolding procedure calls, the new subgoal gets structurally larger, such
that we cannot appeal directly to any induction hypothesis. Assumptions in the
judgments come to the rescue. Still, there remains a challenge: when using them
naively, one is faced with the need to use structural induction nested as deep as
the number of procedures in the program. This problem is overcome by resorting
to an auxiliary induction on the number of procedures not yet considered, such
that we strengthen our proof goal to I = {MGT (Call p) | True} =
VI.I' CI" = n < |I'"| = |I'| = |I""| = n = Ve. I'FMGT ¢ where I equals
the set of all possible procedure calls. Its proof is by induction on n, exploiting
the MGT-lemma, twice. It heavily depends on I'" being finite as otherwise calcu-
lations on cardinality like |I'| = |I'| — n would be meaningless. Now,) - MGT ¢
is an immediate consequence (just specialize I" to) and n to [I|).

* For the case of the WHILE loop, we return to MGT’ because there the auxiliary variable
oo has to serve as the (invariant) final state of the iteration. Both variants are
equivalent, where MGT’ entails MGT only if the language is deterministic (which is
true for IMPp) and there are at least two different program states, which we simply
assume since empty or singleton state spaces are of no interest anyway.

10

Note that this version of completeness proof gets by with the Call N version
of the Call rule (thus not requiring the rules empty and insert), but on the
other hand needs to apply it in a nested way.

5.3 Version 2: Simultaneous Structural Induction

Our desire to circumvent the nesting problem of Version 1 has been the motiva-
tion for inventing the Call rule as an extension of C'all N, which allows handling
procedures simultaneously. Version 2 is also by structural induction and makes
use of the MGT-lemma, but by exploiting the power of the C'all rule, it takes
only a much simpler lemma, namely F' C {MGT (body p) | True} =

{MGT (Call p) | True} H-F. The latter is proved by induction on the size of F, so
finiteness is vital also here. Comparing Version 2 with Version 1, it requires a
more advanced Call rule (and the two simple structural rules empty and insert),
but handles mutual recursion more directly and thus clearly.

5.4 Version 3: Rule Induction

Our third version of completeness proof takes the MGF approach to the extreme.
It gave us surprising insights into the nature of Hoare logic, yet is probably of
mainly theoretic interest because we could not avoid supporting it with two
additional rules. Our intuition when discovering this approach has been that
structural induction is not too nice, in particular when handling recursion, as
the other versions show. Let us employ a more direct and powerful induction
scheme: rule induction on the operational semantics.

The pattern of rule induction requires that the inductively defined relation,
evalc here, occurs negatively in the formula to be proved. Unfortunately, neither
0={P} c {Q} = O+ {P} ¢ {Q} itself nor } - MGT ¢ are of this pattern. Let us
resort to Voo 1. (¢,00)— 01 = O-{\Z 0. 0 = 0p}c{ \Z 0. 0 = 01} which
is a kind of MGF property where the evalc relation has been pulled out of the
assertion into the meta logic. From this formula we can easily show completeness
applying our strong rule of consequence, but we have to require the (clearly
admissible, yet non-derivable) extra rule

dvery Gz . A0 (e, 0)— o]

The above MGF property itself is directly amenable to the desired rule in-
duction, which yields a surprisingly short proof. Unfortunately, it requires an
unfolding variant of the Loop rule reflecting the operational semantics:
I't{A\Zo.PZoAbo}le{Q} TIF{Q}WHILE bDO ¢ {R}

I't{\Zo.PZoAbo} WHILE b DO ¢ {R}

LoopT

On the other hand, only a trivial variant of the Call rules (namely one without
assumptions) and no auxiliary variables are needed here.

Thus we can conclude that, in principle, the issues of assumptions and auxil-
iary variables can be circumvented! Of course, this is only a theoretical point as
in actual program verification one does not want to be faced with the operational
semantics again, which was suitable for the meta-level completeness proof only.

11

6 Conclusion

In this paper we have described new approaches for dealing with mutual recur-
sion, procedure parameters and local variables in a Hoare-style calculus. The
calculus is powerful — and also simple and convenient — enough to be used in
actual program verification efforts. In particular, we have introduced a relatively
simple handling of local variables, a convenient and flexible rule for simultane-
ously verifying mutually recursive procedures, and a strong rule of consequence.

All results have been achieved using the theorem prover Isabelle/HOL, which
not only gives full confidence in their correctness, but also was a great aid in
cleanly formalizing the theory and conveniently conducting the proofs.

We have combined several existing techniques with new ideas, resulting in a
lucid soundness proof and three variants of completeness proofs. Once discov-
ered, they should be transferable to other logical systems and programming lan-
guages with relative ease. The major current application is to an object-oriented
language, namely the investigation of Java within Project BALI.

Acknowledgments I thank Tobias Nipkow and Martin Hofmann for fruitful
discussions on handling mutual recursion. The idea how to perform nested struc-
tural induction is due to Martin Hofmann. I also thank Manfred Broy, Tobias
Nipkow, Leonor Prensa Nieto, Bernhard Reus, Francis Tang, Markus Wenzel and
several anonymous referees for their comments on draft versions of this paper.

References

1. K. R. Apt. Ten years of Hoare logic: A survey — part I. ACM Trans. on Prog.
Languages and Systems, 3:431-483, 1981.

2. Stephen A. Cook. Soundness and completeness of an axiom system for program
verification. STAM Journal on Computing, 7(1):70-90, 1978.

3. Martin Hofmann. Semantik und Verifikation. Lecture notes, in German.
http://www.dcs.ed.ac.uk/home/mxh/teaching/marburg.ps.gz, 1997.

4. Peter V. Homeier and David F. Martin. Mechanical verification of mutually re-
cursive procedures. In M. A. McRobbie and J. K. Slaney, editors, Proceedings of
CADE-13, volume 1104 of LNAI, pages 201-215. Springer-Verlag, 1996.

5. Thomas Kleymann. Hoare logic and VDM: Machine-checked soundness and com-
pleteness proofs. (Phd Thesis), ECS-LFCS-98-392, LFCS, 1998.

6. Tobias Nipkow. Winskel is (almost) right: Towards a mechanized semantics text-
book. In V. Chandru and V. Vinay, editors, FST&TCS, volume 1180 of LNCS,
pages 180-192. Springer-Verlag, 1996.

7. David von Oheimb and Tobias Nipkow. Machine-checking the Java specification:
Proving type-safety. In Jim Alves-Foss, editor, Formal Syntar and Semantics of
Java, volume 1523 of LNCS. Springer-Verlag, 1999.

8. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of LNCS.
Springer-Verlag, 1994. Up-to-date description: http://isabelle.in.tum.de/.

9. A. Poetzsch-Heffter and P. Miiller. A programming logic for sequential Java. In
S. D. Swierstra, editor, Programming Languages and Systems (ESOP ’99), volume
1576 of LNCS, pages 162-176. Springer-Verlag, 1999.

10. Thomas Schreiber. Auxiliary variables and recursive procedures. In TAPSOFT’97,
volume 1214 of LNCS, pages 697-711. Springer-Verlag, 1997.
11. Glynn Winskel. Formal Semantics of Programming Languages. MIT Press, 1993.

12

