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Abstract

Today, many software-based, reactive systems offer a
multitude of functionality. One way to master the devel-
opment of such a system is to model its functionality on an
abstract level and derive a system architecture and an im-
plementation out of this functionality model. In this paper,
we present an approach to model the functionality by means
of related, interacting services. For us, a service represents
an single functionality of a system. The concept of services
is used in two consecutive model layers with well-defined
semantics leading from a black-box description of the sys-
tem to a white-box model which consists of communicating
services. Due to the precise semantics of a service and the
interaction of services, the service models can be directly
refined to a logical component architecture which in turn
integrates into the development of a concrete implementa-
tion of the overall system.

1 Introduction

Today, many software-intensive systems provide a wide
range of functionality, i.e. they offer a variety of differ-
ent, user-observable functions. We call such systems multi-
functional. For us, a multi-functional system is any reactive
system which offers a set of different functions and com-
bines them into a single system in consideration of their mu-
tual dependencies. Thereby, the functionality of the overall
system exhibits a surplus value compared to the set of indi-
vidual functions. With functionality we mean the character-
istic, observable behavior of a system, or more precisely its
reaction (outputs) to certain inputs.
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The property of multi-functionality spans various ap-
plication domains such as telecommunication, avionics or
automotive. Here for example, the functionality offered
by an automobile has been increasing rapidly during the
last decades, having reached a state where a modern pre-
mium class automobile has advanced to be a highly versatile
multi-functional system. Today, the system functionality is
mainly realized by software. Certainly, the efficient devel-
opment of software for such complex, multi-functional sys-
tems requires special techniques and methods.

Addressing this trend, we introduce an approach to
model a multi-functional system during the early phases of
a model-based development process by means of two inte-
grated service models. The service models capture the pure
functionality of the system in a formal way and are the basis
for further, more detailed architecture models, such as e.g.
a logical component architecture. In particular, they estab-
lish a formal relation between functional requirements and
architecture models. In both service models the concept of
a service is used to independently model single functional-
ities of the system which are related and combined to form
the overall system behavior.

We call the upper, more abstract model the Service Di-
agram. It gives a structured view of the overall function-
ality offered by the system as a hierarchy of all services
directly observable by the user/environment. Subsequently,
the Service Diagram is refined into a consecutive, less ab-
stract model, the so-called Service Network. It gives a more
detailed view on the system, by now considering the inter-
action between the identified services. Together with the
Service Diagram, the Service Network provides the basis
for the construction of the Logical Architecture.

The rest of this paper is organized as follows: In Section
2 we briefly introduce an example of a multi-functional sys-
tem, which will be used throughout the rest of the paper to
illustrate the suggested concepts. Section 3 presents current
issues in the modeling of multi-functional systems and mo-
tivates the presented techniques. In Section 4 we introduce



and briefly define the basic concepts such as the idea of a
service and motivate their relevance for the use as means
of describing the functionality of multi-functional systems.
Section 5 can be seen as the core of the paper, since here,
we describe how the basic concepts should be applied in
order to formally capture the functionality of a system. In
particular, we describe the two service models as well as the
model of the logical components. Finally, we compare our
models with related approaches in Section 6 before we con-
clude the paper in Section 7 together with an outline how to
integrate the concepts in our future work.

2 Running Example

The introduced techniques and models will be illustrated
by the example of a door control unit (DCU) [13]. Since in
a modern premium class car the whole functionality offered
by the DCU is exclusively software based, it gives a realis-
tic example of a multi-functional system with clear distin-
guishable sub-functionalities. In the following, we briefly
describe the functionality of the DCU.

The DCU controls several comfort features of a car, such
as adjustment of the power front seats, memory functional-
ity, seat heating, door lock, power windows, interior light-
ing, and the adjustment of the outside mirrors.

The DCU provides a physical user interface consisting of
several buttons and switches mainly located in the front and
back door lining. The functionalities are as expected, e.g.
adjusting the seat in its horizontal and vertical axis, chang-
ing the angle of the seat back and the extension of the head
restraint, opening and closing the windows, saving the posi-
tions of the seat, mirrors and steering wheel, turning on the
seat heating and changing its degree of intensity, and adjust-
ing the vertical and horizontal angle of the outside mirrors
and turning on/off the mirror heating.

Dependencies between different functions and other rel-
evant details will be described at the appropriate places.

3 Contributions

In general, the software engineering process and the re-
spective methods for the development of complex, multi-
functional systems has not reached a stage yet which satis-
fies the current needs of the industry. This makes the devel-
opment of such systems a challenge which requires special
techniques and methods. With the models and concepts de-
scribed in this paper we address the following issues con-
cerning the development of complex multi-functional sys-
tems.

During the early phases of a model-based development
process, i.e. during the transition from requirements to ar-
chitecture models, an open issue is at what level to start with

a formal description. In practice today, functional require-
ments are not precisely formulated. The usual approaches
to modeling requirements or the functionality offered by a
system are use case diagrams [14] or feature models [15]
which both lack a precise semantics [8] in general.

In contrast to a pure informal approach, we introduce a
formal model with a well-defined semantics for describing
the functionality already at an early stage of the develop-
ment process. This has several advantages: Firstly, a for-
mal model which formalizes (functional) requirements al-
lows an automatic analysis of the system already in the early
phases of the development process. By this, discrepancies
between conflicting functionalities can be detected and re-
solved. Secondly, a formal model can be simulated — in the
case of the service models with the CASE-tool AutoFocus
[21] — which is a valuable property for industrial applica-
tion.

The increasing complexity of multi-functional systems
requires to design a system in a modular fashion by split-
ting up the system into an appropriate set of different sub-
functions and generating the overall system as a combina-
tion of these. This implies to model sub-functionalities in-
dependently and to compose/combine them adequately af-
terwards in order to form the overall system behavior. In
both our models we realize a modular, independent specifi-
cation of (sub-) functions by means of modular services.
A single service can consist of several sub-services with
the meaning that a service aggregates the functionalities ex-
pressed by its sub-services. On the one hand, this allows a
great freedom in the specification of an individual service,
but on the other, it results in a structured hierarchy of ser-
vices which forms a single service representing the overall
functionality of the system.

Concerning the development process a system will be
modeled at different levels of abstraction in a way that each
level gives a more or less abstract view of the system. The
fact that both models are based on the same notion of a ser-
vice facilitates the transition from the Service Diagram to
the Service Network. Thus, both service models integrate
seamlessly at the top of such a model chain closing the for-
mal gap in a model-based development process. In particu-
lar, they provide the basis for a formal transition from (func-
tional) requirements to architecture design which currently
is not well supported by formalisms.

The abstraction level where a system is seen only ac-
cording to its functionality is an appropriate place to realize
changes due to an evolution of the system. Every function-
ality modularly modeled here can be traced to a set of im-
plementation entities (such as components) in subsequent
models, which means that changes in the service models
can easily be propagated in subsequent models. Thus, the
service models represent a suitable abstraction level with a
high re-use potential.



4 Service Theory

Before we describe the service layers in detail in Section
5 we introduce the necessary basics in this section. The fol-
lowing definitions and ideas are based on the Service The-
ory [3] introduced by Broy which itself is based on the FO-
CUS theory [5] for the specification of interactive systems.
Since the FOCUS theory assigns a precise semantics to each
of its concepts, it is a suitable basis for the ideas introduced
in this paper.

We use the concept of services to capture, structure and
relate the functionality offered by a system. So far, this is
similar to feature-based approaches (see Section 6), but in
contrast to a feature a service has a precise semantics de-
fined by its input/output behavior.

Basically, a service is based on the idea of timed data
streams which are used to model the interaction of a ser-
vice by describing the communication with its environ-
ment. Intuitively, a timed (data) stream can be thought of
as a chronologically ordered (finite or infinite) sequence of
data messages. Given a set M of data messages, we de-
note a timed stream of elements from M by a function
s : N — M. We assume a model of time consisting of an
infinite sequence of time intervals of equal length. In each
time interval only one message can be transmitted. Such
streams can be used to represent histories of communica-
tions of data messages transmitted within a time frame. For
each time interval ¢t € N, s(¢) denotes the message commu-
nicated within the time interval ¢.

Every service provides a syntactic service interface and
a behavioral semantics. The syntactic interface of a service
is given by the set of all typed ports of the service. We write
I » O to denote the service interface, where I is the set of
input ports and O the set of output ports respectively. With
every port we associate a stream representing the message
history of this port. Given a service S with syntactic inter-
face I » O for each port p € I U O and all time intervals
t € N, the term S[p]|(¢) denotes the message communicated
via the port p within the time interval ¢. Note that a service
can interact with its environment exclusively via its ports.

The behavioral semantics of a service S with syntactic
interface I » O is precisely characterized by a partially
defined (stream-processing) function mapping streams of
messages received on the input ports ¢ € [ to streams
of corresponding messages on the output ports p € O.
With "partially defined" we mean that a service does not
always have to return a well-defined output, i.e. the stream-
processing function, which characterizes the behavior of the
service, does not have to be defined for all possible inputs.
With Dom(S) we denote the set of input streams of the ser-
vice S which have defined outputs.

Services can be connected through channels. The idea
is that a directed channel (p, q) between two ports p and

q represents a connection between two services S7 and S
with compatible! service interfaces I; » O and I, » Os,
where p € O, q € I, respectively.

All in all, a service is an appropriate concept to describe
functionalities offered by a multi-functional, reactive sys-
tem during early stages of the development where the focus
of the developer is to model all information that is already
known about the system while not bothering about the sit-
uations which are not important for the current level of ab-
straction. In the next section we will see how these concepts
can be used in order to describe a system as a set of related
services.

S Functionality Model Layers

In this section we introduce a framework of layers which
gives different views on the system from different levels of
abstraction respectively (see Figure 1). This corresponds to
the idea to specify a system on consecutive abstraction lay-
ers, each one giving a more detailed model of the system,
where the highest layer reflects a very abstract, informal de-
scription of the systems, while the lowest layer represents a
concrete deployable implementation.
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Figure 1. Layer Framework

Our layer framework starts from a very abstract descrip-
tion of the system as a set of use-cases or feature models
without a well-defined semantics.

The formalization of use cases or features by indepen-
dent services and their structuring yield the next layer,
called Service Diagram. In this model, the system behavior
is specified from the environment point of view (black-box

For the complete definition of a connection between services see [3].



view). Therefore, each functionality is described by a ser-
vice which is directly observable by the environment, i.e.
its inputs can directly be triggered from the environment
and its outputs are directly observable from the environ-
ment. Subsequently, observable inter-service dependencies
are specified. Note that here, we do not characterize the
communication between individual services — we only spec-
ify dependencies between them as being observable from its
overall system boundaries.

Refining the Service Diagram by adding communication
behavior yields the consecutive layer, called Service Net-
work. It gives a more detailed view on the system, by now
considering the interaction of the identified services and fo-
cusing on their intercommunication. This results in a net-
work of communicating services which realize the function-
ality modeled in the Service Diagram.

The last step of our approach is to build up a Logical Ar-
chitecture formed by a network of components, which are
connected by channels, and to refine the functionality spec-
ified in the Service Network.

In the following, we introduce a notation for the spec-
ification of a single service, then both service models, the
Service Diagram and the Service Network, are discussed in
detail. Finally, we give an outline how to use these models
for the construction of a Logical Architecture.

5.1 Service Specification

There are several techniques to specify the behavior
of a service. In Section 4 services are formally defined
by stream-processing functions. Since a service is a set
of interaction patterns which give a precise relation be-
tween inputs and outputs, we propose to use modified I/O-
automata [ 18] to specify a single service. An I/O-automaton
A is completely defined by its set of states .S, the initial state
sg € S, and the transition relation §. A transition is denoted
by

(s1 nfout, 89) € d4, forsy,se €8S,
A transition can be triggered in the state s; if all the input
ports specified in the input pattern in have received the nec-
essary input messages (denoted by port?message). The
transition outputs data to different output ports specified in
out (denoted by port!message), and puts the automaton
into the state s,. In other words, expression port?message
(resp. port!message) means that the message stream on
the input (output) port port is extended by the message
message. Thus, the I/O-automaton constructively defines
(infinite) input and output message streams as well as the
relation between them. The automaton is partial in the sense
that not for every input in every state there is a defined tran-
sition ¢ € J 4. Since the behavior of the service is specified
from the environment viewpoint (black-box view), the au-

tomaton is not allowed to have internal transitions (labeled
with an empty input sequence).
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Figure 2. Specification of Service Heating

For example, Figure 2 shows a possible specification of
the service Heating from our running example. This ser-
vice describes a function that controls the heating of a seat.
The user can switch between three states of the heating (off,
level 1 and level 2), sending one of the two messages (// or
[2) to the service. The service sends a corresponding mes-
sage (50, s1 or s2) to the physical device responsible for the
heating. The syntactic interface (I » O) of this service is
defined by I={in} and O={out}. Figure 2(a) introduces a
possible graphical notation. Figure 2(b) shows a behavior
specification of the service. The I/O-automaton specifies a
causality property between an infinite stream on the port in
of input messages {l/1, 2} and an infinite stream on the port
out of output messages {s0, s1, s2}.

5.2 Service Diagram

The last section showed how to to specify an individual
functionality of a system modularly and independently from
other functionalities. Now we concentrate on the structur-
ing of the functionalities of multi-functional systems and
their dependencies. This results in a hierarchical structure
of the system functionality where the overall functionality
is decomposed in services and sub-services, with defined
relations between them.

The Service Diagram gives a specification of the behav-
ior of systems as observable from the environment when
viewing the system as a black-box, i.e. the behavior is spec-
ified as a causal relation between input and output mes-
sages. Both, the individual services offered by a system



and the dependencies between them are specified, but we
do not consider the architecture of the system (i.e. commu-
nication links between services). Thus, we formally specify
functional requirements without any predication about im-
plementation. In particular this implies that we consider the
whole system as a single (but complex) service itself com-
posed of several sub-services.

The Service Diagram consists of single services and
three kinds of relationships between them, namely refine-
ment, aggregation, and dependency (cp. Figure 3).
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Figure 3. Service Diagram

Refinement Since a typical multi-functional system of-
fers the plethora of functions with complex interactions be-
tween them, representing all this information without ab-
straction would have a negative effect on the usability of
the specification. To master the complexity of a specifica-
tion, we introduce abstract services, since the partiality of
a service allows to model a certain functionality at different
levels of abstraction.

An abstract service is an abstract specification of one or
several functionalities. It can be considered as a contract be-
tween the services refining it and the environment — when
a service refines an abstract service, it promises to provide
at least the behavior specified by that abstract service. Al-
though, an abstract service is specified by an I/O-automaton
it cannot be implemented directly, but rather must be refined
by other services — it only helps to structure services and,
particularly, dependencies between them.

The formal definition of an abstract service is based on
the refinement relation between two services. Intuitively, an
abstract service has fewer legal inputs and/or more defined
outputs than the refining service. This means that for a cer-
tain input stream the set of corresponding output streams of
the refining service R is a subset of the output streams of the
abstract service A. Additionally, Dom(A) C Dom(R) is
required. In particular, R gives a more concrete/restricted

specification of the function modeled by A since it acts
more deterministically concerning its I/O relation. Our def-
inition of refinement permits to change the number of ports
and their types in a specific way. For the formal definition
see [4].

For example, the service Manual Adjustment from Fig-
ure 3 refines the abstract service Adjustment. The Service
Adjustment has only one input and one output port, and
specifies an abstract seat adjustment functionality: It re-
ceives a message defining the movement direction (d1 or
d2) and sends a corresponding motor control message m
that encodes the direction. Adjustment only specifies an im-
mediate causality between its input and output messages:
the user gives a direction to the DCU — the seat moves in
the given direction. Manual Adjustment gives a more re-
stricted specification of the adjustment function — it sepa-
rates between length and height movement. The refining
service has two input and two output ports, for the length
and height movement directions respectively. In the Ser-
vice Diagram from Figure 3, service Memory is another re-
finement of Adjustment. It receives an input message and
moves the seat to a saved position, according to the stored
height and length. The abstract service Adjustment will not
be implemented in the Service Network because its role is
only to identify some common behavior between services
Manual Adjustment and Memory. Both services have an
important property in common — they are restricted due to
the dependency relation between Child Seat Detection and
Adjustment (see below).

Aggregation The aggregation relations allow to arrange
individual services which have been specified indepen-
dently into a service hierarchy. Thus, it greatly helps to
reduce the complexity of the system functionality.

The aggregation is defined as a relation between a ser-
vice and its sub-services. It directly reflects the idea that
the functionality offered by a service can be subdivided
into different sub-functionalities. Intuitively, a sub-service
specifies a sub-functionality of its super-service, in con-
trast to a refining service which refines the functionality of
the whole refined service. Formally, a service S is called
a sub-service of a (super-) service C, if C' refines S and
Dom(S) C Dom(C'). With this definition we require that
the super-service has to be defined for all inputs for which
its sub-service yielded a defined output as well. Addition-
ally, the output streams of the super-service may be more
restricted compared to the corresponding ones of the sub-
service because of influences by other sub-services.

A super-service composed of several sub-services is
called a compound service. Thus, according to the aggrega-
tion relation, we define the semantics of a compound service
as a container of all concurrently operating sub-services.
We do not specify the compound services by I/O-automata,



because their behavior can be reproduced from their sub-
services using the well-defined semantics of the aggrega-
tion relation. Thus, the automaton of Manual Adjustment
does not exist in the Service Diagram because it can be
reproduced from the automata of sub-services Length and
Height. In this example, the sub-services of the compound
service are completely independent of each other — each of
them can run without any impact on the other service. In
other cases, some of the sub-services of a compound service
may influence each other. Then, additionally to the aggre-
gation, their mutual dependencies must be defined, because
a sub-service may be restricted by other sub-services when
they are combined in one compound service. For exam-
ple, since the service Child Seat Detection influences the
services Manual Adjustment and Memory, we have to spec-
ify this dependency in addition to the aggregation relation
between compound service Sear and sub-services Heating,
Manual Adjustment, Memory and Child Seat Detection. See
the following paragraph for further details.

Dependency Aggregation and abstract services represent
hierarchical relations between services. Although the struc-
ture of services is essential for understanding the user func-
tionality of a system, dependency relations among services
also have significant implications in the development of a
system. By dependency relations, we mean relations be-
tween services in a way that the operation of one service
depends on those of other services. Although there are a
lot of methodological significant dependency relations like
enables, modifies or needs, the scope of this paper is to ap-
proach the specification technique of these relations rather
than to completely enumerate them.

In our example (cp. Figure 3), the service Child Seat De-
tection modifies the behavior of the abstract service Adjust-
ment and, hence, of Manual Adjustment and Memory. If
Child Seat Detection detects a child seat mounted on the
front seat, both adjustment services, Manual Adjustment
and Memory, are prevented to move the front seat according
to their modular specifications.

As already mentioned, relations between services are
specified as being observable from the overall system
boundaries without changing their interfaces (no additional
ports are added) and without characterizing the communica-
tion between them (no additional channels are added). Also,
the modular behavior specification of single services (in our
case I/O-automata) are not modified in order to realize a de-
pendency relation between them.

To specify these relations we introduce additional con-
straints. A constraint restricts the behavior of the influ-
enced service by defining dependencies between its 1I/O
message streams and those of the influencing service. These
constraints are defined by predicate logic expressions over
names of services, ports as well as access operations and

specify dependencies between port values of different ser-
vices in time intervals.

For example, the service Child Seat Detection (C'SD)
permanently receives a message (yes or no) from the envi-
ronment through its port 7n whether a child seat is mounted
or not. If the message is yes, service Adjustment (A) is
not allowed to move the front seat, i.e. to send a message
through its port out. The dependency between both services
is specified by the following constraint:

Vit € N: (CSDl[in|(t) = yes) = (Alout](t) = [])

This means, for every point in time, if message yes is re-
ceived on the port in of service Child Seat Detection, no
message is sent on the port out of service Adjustment.

As our example illustrates, abstract services implicitly
impose their constraints on the refining services. All con-
straints on an abstract service have to hold for its refining
services. For our example this means that the constraint on
Adjustment has to hold for Manual Adjustment and Mem-
ory, too.

It should be noticed that the constraints do not mod-
ify the modular specification of services. They only
specify the interplay between them which must be satis-
fied in the Service Network (see Section 5.3). In other
words, constraints provide criteria to verify the models of
the consecutive layer. Only those models which do not
violate these constraints are the candidates for valid models.

With the Service Diagram we introduced an adequate
model for the specification of the user-visible functional re-
quirements of the system under consideration. Hereby, the
basic ideas are to reduce the complexity of the overall func-
tionality by describing each of its functionalities indepen-
dently by simple services (by means of I/O-automata), ar-
range these services into a service hierarchy (by means of
aggregation and abstraction relations) and specify relation-
ships between these individual services that show how they
influence each other (by means of dependency relations).

5.3 Service Network

So far, the focus lay on a consistent description of the
behavior as it is observable at the outer boundaries of the
system. However, now we address the question how the
black-box behavior (specified in the Service Diagram) can
be realized by a network (Service Network) of communicat-
ing entities.

As we are still not necessarily interested in complete de-
scriptions of the system behavior, again services are used as
basic building blocks. But in contrast to the Service Dia-
gram, in a Service Network the services communicate with
each other in order to realize the demanded behavior. Archi-
tectural concerns on the other hand like the mapping from



services to components and designing a hierarchical com-
ponent architecture are not considered at this level but de-
layed to the following layer.

The structural relations which were dominating in the
Service Diagram mainly served the structured gathering and
understanding of the system functionality. Thus, they are
of no relevance in the Service Network. More precisely,
in a Service Network the services are not hierarchically ar-
ranged and there exist neither abstract nor compound ser-
vices. As mentioned in Section 5.2, the behavior specified
by an abstract service is completely realized by its refining
services. Compound services were basically used in order
to structure the functionality. Since their behavior can be
reproduced from their sub-services (in consideration of the
relevant dependencies), it is enough to implement the refin-
ing services or sub-services respectively.

In our example only the services Child Seat Detection,
Memory, Length, Height and Heating remain in the Service
Network (see Figure 4). The compound services Manual
Adjustment or Seat as well as the abstract service Adjust-
ment must not be considered in the Service Network.
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Figure 4. Service Network

However, it must be ensured that the resulting Service
Network satisfies all dependencies in the Service Diagram.
Therefore, dependency which are defined for abstract or
compound services must be propagated to the refining ser-
vices or sub-services and be reflected by their communica-
tion behavior.

The services of the Service Network refine the atomic
services of the previous Service Diagram by adding com-
munication behavior in order to realize the interplay be-
tween them. Thereby, each dependency relation of the Ser-
vice Diagram results in a more or less complicated commu-
nication relation in the Service Network. This inter-service
communication can be realized by adding internal channels
in between the affected services. The syntactic interface and
the behavioral semantics of the corresponding services must
be extended accordingly. Sometimes, it can even be neces-
sary or useful to introduce new services in order to realize
the dependencies of the Service Diagram. In either case it

must be assured that the behavior specified in the Service
Diagram is completely realized in the Service Network.

In the following, both possibilities (adding new channels
or new services) are explained in more detail. Note, that in
both cases the syntactical interface of the overall system is
not changed.

Internal Channels To establish communication between
services, the interfaces of the services identified in the Ser-
vice Diagram can be extended by additional internal ports.
These can be used to link mutual depending services by in-
ternal channels. With internal channels we mean channels
connecting two services, but not a service with the envi-
ronment. Internal channels can only be attached to internal
ports. In our example the functional dependency between
Child Seat Detection and Adjustment (cp. Figure 3) is im-
plemented by adding directed, internal channels connecting
the service Child Seat Detection with all the services refin-
ing Adjustment (cp. Figure 4): the services Length, Height,
and Memory. Via these channels the Child Seat Detection
signalizes by a binary signal (yes/no) if a child seat is de-
tected or not. Therefore, the interface of Child Seat De-
tection must be extended by an additional output port and
the interfaces of Length, Height and Memory by respective
input ports. Moreover, the behavior of these services must
be adapted accordingly. The services Length, Height and
Memory can execute their original behavior only if the mes-
sages received at the input ports connected to the service
Child Seat Detection signalize that there is no child seat
mounted.

Internal Services As mentioned before, it is sometimes
useful to introduce new internal services. Internal services
have only internal ports, i.e. ports which are not observable
at the outer system boundaries. For example, priorities
can be easily modeled in a Service Network that way.
Let’s assume that there would be the following additional
dependency specified in the corresponding Service Dia-
gram: The services Length and Height are mutual exclusive
and Length has a higher priority than Height, i.e. if both
length and height movement are demanded at the same
time, the length movement will be executed. This relation
can be implemented easily by adding an internal service
Multiplexer which receives both input signals and decides
if they are forwarded to the services Length and Height
respectively.

Summarizing, the Service Network provides a specifica-
tion of the overall system functionality (as specified in the
services and constraints of the Service Diagram) only by
means of communicating services. Thus, the Service Net-
work constitutes a model that can be simulated easily. For
example, all introduced concepts are directly supported by



the CASE tool AUTOFOCUS [21]. Besides, the Service Net-
work can be used as starting base for the design of a Logical
Architecture as introduced in the next section.

5.4 Logical Architecture

Changing the view from a pure black-box to a white-
box view on the system the Service Network is the first step
towards a logical system architecture. However, it is not
dealt with architectural questions, and the specification of
the system behavior is consistent but still incomplete. Thus,
the most important task on this layer (Logical Architecture)
is the totalization of the behavior. The behavior has to be
defined completely and deterministically (i.e. the system
provides a well-defined predictable output for each possi-
ble input sequence). As a consequence, the building blocks
of the Logical Architecture are components with totally de-
fined behavior in contrast to services. Therefore, the ser-
vices are grouped together and mapped onto (hierarchical)
components. Thereby, one or several services of the Ser-
vice Network are related to one component of the Logical
Architecture, i.e. a component can provide several services.

The second major design decisions we make on this layer
is the design of an appropriate logical system architecture.
The formation of the Logical Architecture can be influenced
by different criteria, for example the communication re-
lations of the Service Network, the hierarchical structure
which has been developed in the Service Diagram, or cer-
tain non-functional requirements. Depending on which cri-
teria are considered to be more important, the resulting Log-
ical Architecture will turn out differently.

Though, the concrete definition of the Logical Archi-
tecture is essential for the development of a system, it is
beyond the scope of this paper and subject of future work.
Here, we just briefly sketched how the presented service
models integrate in the overall software development
process.

In this section, we presented three consecutive layers,
namely the Service Diagram, the Service Network and the
Logical Architecture, for the modeling of the functionality
of a reactive multi-functional system. Note, that with the
Logical Architecture the functionality of the system is com-
pletely described. Subsequent design models will not add
any new functionality but only deal with the question how
this functionality can be implemented adequately.

6 Related Work

The approach presented in this paper introduces an inte-
grated model for both functionality specification and func-
tionality hierarchical structuring as part of the layer frame-
work. Thus, related work can be mainly found in three dif-

ferent areas: techniques for feature specification, formaliza-
tion of feature models, and model based development.

Feature Specification A large number of contributions
have been made over the past decade in order to spec-
ify multi-functional systems. Feature-oriented develop-
ment methods, as for example Feature-Oriented Domain
Analysis (FODA) [15] or Feature-Oriented Reuse Method
(FORM) [16] identify, classify and structure features as well
as interactions between them. FODA and FORM intro-
duced a graphical tree-like notation that showed the hierar-
chical structure of features. Since the introduction of FODA
by Kang et al. in 1990, many different kinds of graphical
notations [11, 9, 12, 17] have been proposed to extend this
original notation. However, these approaches only focus on
the modeling of relationships between features, using unin-
terpreted features as the corresponding base concept. The
second deficit of these methods is that the absence of a for-
mal semantics of the graphical notations prevents an auto-
matic analyze of them. In contrast, here the behavior of sin-
gle features as well as the semantics of their relationships
are specified.

Formalization of feature models The definition of a for-
mal semantics for feature models is not new. In [2], Ba-
tory and O’Malley use grammars to specify feature mod-
els. Sun, Li et al. define in [23] a formal semantics for the
feature modeling language using first-order logic. The for-
malization of feature models with propositional formulas
goes back to the work by Mannion [19], in which logical
expression can be developed for the model, using propo-
sitional connectives by modeling dependency between re-
quirements. In [10], Czarnecki et al. argue that cardinality-
based feature models can be interpreted as a special class
of context-free grammars. Another approach to specify-
ing multi-functional systems is introduced by van Lam-
sweerde et al. In [24, 25] they propose formal techniques
and heuristics for detecting conflicts from specifications of
goals (requirements) and their interactions specified in LTL.
As mentioned in the latter paragraph, the main deficit of
these approaches is disregard for the behavior of single fea-
tures. “As a consequence, these approaches focus on the
analysis of dependencies, however abstracting away from
the causes for these dependencies” [22]. In [8], Czarnecki
and Antkiewicz recognize that features in a feature model
are only merely symbols. They propose an approach to
mapping feature models to other models, such as behav-
ior or data specifications, in order to give them semantics.
However, this approach only focuses on assets like software
components and architectures. Our work focuses on formal-
izing user requirements and their analyze in the early phases
of the development process. The closest approach to our
work is a theoretical framework introduced by Broy [3, 4]



where the notion of a service behavior is formally defined.
This framework provides several techniques to specify and
to combine features based on their behaviors. However,
this quite theoretical approach does not cover several rele-
vant methodological issues what our work focuses on (tech-
niques for building of service models and for the specifica-
tion of inter-service relations).

Model based development Another related area to our
work is model-based development (e.g. [1]), which aims at
modeling every important aspect of a software system. A
compilable and deployable model is an abstract representa-
tion of a system which interacts with its environment. An
important work in this area is the generative software devel-
opment [7] introduced by Czarnecki. This system-family
approach focuses on automating the creation of system-
family members: a system can be automatically generated
from a textual or graphical specification. However, this ap-
proach as well as approaches like [20, 22, 21] focus on the
construction of a specific solution (e.g. software architec-
ture) without supporting the formal requirement specifica-
tion. In contrast, we concentrate on the formalization of
functional requirements and close the formal gap between
requirements and architecture design in the early phase of
the model-based development process.

7 Conclusion and Future Work

The presented concepts can be roughly summarized as
follows: We introduced two consecutive service models
which allow to specify the functionality offered by a sys-
tem in detail and shortly sketched how they can be inte-
grated in a layered development process. The Service Dia-
gram focuses on the modeling and structuring of the user-
observable functionality while the consecutive model, the
Service Network, concentrates on the communication rela-
tion between the set of all services. Going from a struc-
tured view of the functionality (represented by services) to
a less abstract level where the focus is on the interaction be-
tween all services represents a natural way of engineering a
system in a top-down fashion: At first we identify (observ-
able) services and try to structure them into a hierarchical
relation. After that we focus on how this hierarchy can in-
ternally be realized by inspecting the intercommunication
between all relevant (possibly not directly observable) ser-
vices. Lastly, the resulting Service Network serves as an
architectural guideline for the subsequent construction of a
Logical Architecture. In general, the introduced techniques
are applicable in all domains where reactive systems are de-
signed according to the desired functionality. In particular,
they are not limited to the automotive domain.

Why did we concentrate to model the functionality of
a system? In the domain of reactive, multi-functional sys-

tems, representing the functionality of a system means to
describe precisely what a system should do, i.e. the func-
tionality represents the essence of a system. Together with
non-functional requirements we obtain a precise specifica-
tion of the desired system already at a very abstract level.
Note that this is essential since this level of abstraction of
a system is the basis for changes due to the evolution or
extension of the system with a maximum of re-use.

Both models, the Service Diagram and the Service Net-
work, integrate into the requirements engineering process
and bridge the gap between usually informally specified
(functional) requirements and formal design models with
a well-defined semantics. Our intension is not to replace
the informal modeling techniques for the early requirements
engineering process, but in our opinion informal models
alone are not sufficient.

For a model-based development process, a seamless
transition between the models of different abstraction layers
is essential. The same notion of a service as the basic entity
for describing functionality provides the basis for a smooth
transition between both service models, even though the fo-
cus of the models is different.

The well-defined semantics of the introduced models al-
lows to perform an automatic analysis of system properties.
This allows to comfortably deal with problems such as fea-
ture interaction [6], resolving discrepancies between con-
flicting functions and verification of the system’s behavior.
The identification of all relevant domain-specific dependen-
cies is part of our future work.

The concept of a service represents a suitable instrument
to model single functionalities in a modular fashion. To-
gether with a well-defined meaning for the composition of
several services we are able to ascribe the specification of
the overall system behavior to the specification of individual
(sub-) functionalities. This helps to master the complexity
of multi-functional systems.

So far, we have pretended to use the introduced tech-
niques only to model single systems. But the principle of
representing a (single) system as a set of related functions
can easily be taken to model a family of related systems
which share a set of functions. In turn, this requires to inte-
grate concepts like variability and alternatives into our mod-
els and to define their semantics. For our service models,
the notion of refinement and aggregation provides an ad-
equate semantical basis to smoothly incorporate these con-
cepts. By this, both models are suitable for the development
of software product lines. We consider the extension of our
concepts to be applicable in these areas as future work.

There are several issues which we did not point out in de-
tail in this paper: E.g. we did not precisely specify the tran-
sition from the Service Diagram to the Service Network nor
address the concrete form of dependencies together with a
precise meaning. The definition of service-patterns for the



modeling of certain scenarios would enrich the degree of
application in industry. Thus, such definitions and descrip-
tions are a matter of future work as well.
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