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ABSTRACT
Software Product Lines (SPL) are systematic approach to de-
velop families of similar software products by explicating
their commonalities and variability, e.g., in a feature model.
Using techniques from model-driven development, it is then
possible to automatically derive a concrete product from a
given configuration (i.e., selection of features). However, this
is problematic for interactive applications with complex user
interfaces (UIs) as automatically derived UIs often provide
limited usability. Thus, in practice, the UI is mostly created
manually for each product, which results in major drawbacks
concerning efficiency and maintenance, e.g., when applying
changes that affect the whole product family. This paper in-
vestigates these problems based on real-world examples and
analyses the development of product families from a UI per-
spective. To address the underlying challenges, we propose
the use of abstract UI models, as used in HCI, to bridge the
gap between automated, traceable product derivation and cus-
tomized, high quality user interfaces. We demonstrate the
feasibility of the approach by a concrete example implemen-
tation for the suggested model-driven development process.
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INTRODUCTION
A Software Product Line (SPL) aims for the development of
a family of similar software products from a common set of
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shared assets by making use of the commonalities among
them [6, 16]. By applying SPL practices, organizations are
able to achieve significant improvement in time-to-market,
engineering and maintenance costs, portfolio size, and qual-
ity [6]. SPLs have been commercially applied in many in-
dustry domains [20] including highly interactive applications
like e-commerce software [2] or mobile games [1].

The fundamental premise of an SPL is that the initial invest-
ment in a family of products pays off later by allowing sys-
tematic, efficient derivation of products. This can be achieved
by using techniques from model-driven engineering [21, 23]
like automated model transformations to derive the final prod-
uct from a given product configuration. While this works
well for deriving most parts of the product implementation
[8, 24, 25], it has limitations for the product’s user interface
(UI) part: A high quality UI must not only adhere to cer-
tain functionality defined by a product configuration (e.g., the
presence or absence of UI elements) but also meet usability
requirements like adequate layout, composition into screens,
and choice of UI element types. This requires to customize
the UI beyond purely automated derivation [15, 4]. A simple
solution is to design the UI manually for each product [2].
However, as practice shows, this can result in serious draw-
backs regarding error rate and maintenance [4].

This paper investigates these problems based on real-world
examples and analyses the development of product families
from a UI perspective. The paper is structured as follows: We
first show the basic SPL concepts followed by their applica-
tion to UIs. Then we discuss solution alternatives and their
benefits and drawbacks. As it turns out, there is a dilemma
between support for systematic, automated SPL concepts and
usability of the resulting UIs. As we show, this challenge can
be addressed by a model-driven SPL process with specific
support for UI customization. In the remainder of the paper,
we first analyze the different aspects of a UI to be customized
and then describe a resulting model-driven SPL process for
interactive applications.

GENERAL SPL CONCEPTS
A SPL is used for the efficient development of a family of
related products from a shared set of software assets. A com-
mon example is online shop software: As different online
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Figure 1. Example feature model for online shops.

shops (as commonly found in the web) have large commonal-
ities in their functionality they can all be built from a common
set of software assets. However, there are also variations be-
tween them, like the supported payment methods or the way
the articles sold in the shop are organized. The core idea of
SPL is to systematically manage this variability so that (ide-
ally) a concrete product can be derived by just selecting its
desired options.

The commonalities and variability in a SPL are usually spec-
ified in terms of a variability model. In this paper we use
feature models [18] as a very common variability modeling
concept but there are several other approaches, e.g., decision
models [17] or OVM [16], which are used analogously.

A feature model specifies all features supported by the SPL
and the dependencies between them. Figure 1 shows a small
example feature model for online shop software1. Each node
represents a feature that can be supported by the software,
like a Catalog, Searching or different ArticleTypes2. The rela-
tionships between parent features and child features are con-
strained as mandatory (the child feature is always required),
optional (the child feature is optional), or-group (at least one
of the child features must be selected), or an xor-group (ex-
actly one of the child features must be selected).

For instance, in Figure 1 each online shop must support a Cat-
alog (mandatory feature) which includes ArticleInformation and
optionally Searching. ArticleInformation includes the ArticleType
from which at least one child has to be selected (or-group).
By definition, selecting a child feature requires its parent to
be selected as well. In addition, cross-tree constraints can be
defined, such as requires and excludes. For instance, in Fig-
ure 1 ShippingOptions requires PhysicalGoods as otherwise there
is no need to support shipping.

A feature model allows specifying a concrete product by con-
figuring the product, i.e., selecting and deselecting features
according to the constraints in the feature model. Each fea-
ture is mapped to SPL assets (the implementation of a feature;
depending on the target platform) so that a given feature con-
figuration (ideally) allows direct derivation of the correspond-
ing implementation. For instance, there might be a software

1See, e.g., [12] for a more realistic example with 225 features.
2Please note that to avoid misunderstanding we use the term “prod-
uct” to refer to products developed with a SPL while we use “article”
to refers to the items sold in an online shop.

component Shipping which implements the different shipping
options and is only included into the implementation if the
feature Shipping was selected.

Figure 2a shows the basic (model-driven) SPL process (Fig-
ures b) and c) shown in comparison will explained later).
The upper part shows the domain engineering which refers to
creation of the whole SPL based on domain knowledge and
market analysis. This includes defining the feature model,
the SPL assets, and a mapping between them (called feature
mapping). The lower part shows the application engineer-
ing which refers to derivation of concrete products based on
the SPL. A product is developed by defining a feature con-
figuration, i.e., selection of features. From this, the product
implementation is derived based on the feature mappings.

The product derivation can be automated using model trans-
formations. Usually, the transformation is performed on the
model level, i.e., the implementation is represented by a
model (“code model”) which can read and write the actual
code, to reduce the complexity of the transformation and to
ensure traceability of code changes [8, 2]. The derivation it-
self is performed either by composing the selected SPL assets
(“positive variability”) or by starting with an implementation
of the whole SPL and selectively deleting deselected SPL as-
sets (“negative variability”). Whether an SPL asset is selected
or deselected is defined by the feature mapping. However,
usually the mapping is not a 1:1 mapping between features
and SPL assets but more complex and is specified, e.g., by
constraints. We will show a concrete example applied to UIs
in the next section.

APPLICATION OF SPL CONCEPTS TO THE UI
The initially most natural way to realize a SPL for interactive
applications is a straightforward application of SPL concepts
to all its parts, including the UI. This means that the appli-
cation’s UI is just considered as an SPL asset like any other
application part. This section shows how this can be realized.

In the following we illustrate how to specify a mapping
between UI elements and features which enables product
derivation. To this end, we use the approach described in
[7]. It uses the principle of “negative variability” [25] which
means that product derivation starts from a superimposed
model (created manually) which contains the implementa-
tion for all features in the whole SPL. The model elements
are annotated with presence conditions over features. Dur-
ing (automated) product derivation, all model elements are re-
moved whose presence condition is false based on the current
feature configuration. Presence conditions can be specified
as boolean constraints over features and more complex con-
straints can be specified using arbitrary XPath3 expressions.
The default present condition is “true”, i.e., model elements
without an explicit presence condition always remain present
in a product.

Figure 3 shows an extract of a potential (manually designed)
UI for the example online shop SPL annotated with presence

3http://www.w3.org/TR/xpath/
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(a) Common model-driven SPL approach.
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(b) Approach with manual UI design.
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(c) Model-driven approach with UI customiza-
tion.

Figure 2. Model-driven product derivation in SPLs.
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Figure 3. Example for a feature mapping for a UI.

conditions over the features from Figure 14. It shows three
screens Shipping, Payment Options, and Confirmation, the basic
navigation between them (represented by arrows), and the as-
sociated presence conditions. For instance, the screen Ship-
ping is removed from a product (together with all its content)
if the feature ShippingOptions is deselected in the feature con-
figuration. A slightly more complex constraint is specified
for the the combo box Select payment method: it remains only
present in a product if the features CreditCard and Purchase-
Order are both selected as otherwise there is nothing to select
for the user.

In this approach, presence conditions are evaluated according
to the containment hierarchy, i.e., if a container is removed
(e.g., a screen or a grouping) all contained elements are re-
moved as well. For instance, if the feature PaymentOptions is

4For the product derivation, the information in the figure needs to be
specified as a model using an appropriate modeling language but this
is not important at this stage. We will discuss appropriate modeling
approaches later in this paper.

deselected the screen Payment Method is removed with all its
contents.

In addition, [7] allows specifying rules for post-processing
steps. An example is the navigation (represented by arrows
in Figure 3): if a screen is removed, incoming and outgoing
arrows are merged to close the navigation flow. Of course,
this can be customized by attaching presence constraints to
navigation flows.

In this way, the whole UI for a product can be derived from a
feature configuration including its behavior specification. For
instance, [7] shows derivation of Activity Diagrams, which
might be used to specify the behavior of a UI. Figure 4 il-
lustrates an example. The upper part in Figure 4a shows a
feature configuration based on the feature model from Fig-
ure 1 (only those parts of the feature model relevant for the
example). In this example, ShippingOptions are deselected and
CreditCard is the only payment option. The lower part in Fig-
ure 4b shows the resulting UI, which was derived based on
the feature mapping (from Figure 3) and the derivation rules
explained above.

THE DILEMMA BETWEEN AUTOMATION AND USABILITY
– SOLUTION ALTERNATIVES
In the preceding sections we introduced the general concepts
of SPLs and their potential applications to the UI. While SPL
concepts work very well in practice (see, e.g., [20]), the spe-
cific challenges of the UI in SPLs for interactive applications
have mostly been neglected in software engineering commu-
nity. In fact, the UI aspect differs from other SPL assets inso-
far as a high quality UI must not only provide a certain func-
tionality but also must provide high usability which is much
more difficult to satisfy with automated techniques.

In this section, we discuss the challenges when applying SPL
concepts to the UI. There are two experience reports from in-
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Figure 4. Example product for the online shop SPL.

dustry that mention the UI aspect and which we hence use
for our discussion: [2] presents the experience from a com-
pany called SystemForge with their model-driven SPL for
online shops for small and medium businesses. In [4], the
company HIS reports on challenges arising with their prod-
uct HISinOne, a web-based university management software
supporting, e.g., management of students, human resources,
and financial accounting. HISinOne is not a SPL in the strict
sense (i.e., there is no SPL approach fully applied) but is still
a highly variable ecosystem providing different customized
products for their customers.

In the remainder of this section, we will first discuss the ben-
efits and problems of existing solution alternatives and then
we present a third solution alternatives to address the identi-
fied problems.

On the Need for UI Customization
The approach described in the previous section (Figure 3) di-
rectly applies the common SPL concepts (as shown in Fig-
ure 2a) to the application’s UI part. This means that the UI
is considered like any other software artifact as part of the
SPL assets in Figure 2a. The main advantage is that in this
way all existing strengths of SPLs – like efficiency, reuse, and
a high degree of automation – apply to the UI part as well.
Moreover, existing further SPL concepts can be applied, like
concepts for SPL validation or maintenance.

However, this approach has limitations. The quality of a UI
is not only determined by functional requirements (i.e., pres-
ence or absence of UI elements and behavior) but also by its
usability which is influenced by many other factors like the
decomposition into screens, the layout, and the detailed vi-
sual appearance [19]. All such UI properties must hence be
customized to the specific needs and requirements of a spe-
cific product.

In context of a SPL, two levels of UI customization can be
distinguished, which we discuss in the following.

Customization according to general usability require-
ments: In real SPLs, feature models become usually large
and complex and consist of many hundreds or even thousands
of features. Hence, it is often impossible to foresee the con-
sequences of all different combinations of feature configura-
tions in advance. For the UI this can mean that usability is-
sues arise after automated product derivation. For instance,
removing elements from a screen (as in negative variabil-
ity) can lead to screens which are almost empty and are no
longer useful as screens of their own [4]. To some extent this
might be addressed by additional rules or heuristics during
the product derivation, e.g., that a screen with very few con-
tent is merged with other screens. In practice, it depends on
the complexity of the UI and the desired degree of usability
whether such heuristics are sufficient enough.

Customization according to product-specific UI require-
ments: The most obvious part of an UI which often needs
to be customized is its visual appearance. For instance, in
case of an online shop, each shop’s visual appearance should
reflect the shop owner’s corporate identity. Customizing
the visual appearance is often unproblematic as this can be
achieved without changing the derived UI implementation,
e.g., by using stylesheets and dynamic loading of custom text
and graphics. However, other UI properties like its general
structure (e.g., decomposition into screens and screen layout)
cannot be customized in this way. For instance, HIS reports
that universities want to have input fields in the same order as
they appear on their paper forms to increase the input speed
[4].

To some extent, such product-specific customization might
be captured by extending the feature model with UI specific
options, e.g., to provide several standard layouts to choose
between [2]. However, as pointed out by [2], this alone is
not sufficient as all their customers want more control over
their UI. Similarly, [4] clearly states that, according to their
experience, the complexity of UI customizations and their in-
terdependencies cannot be captured in a feature model.

Summary: In summary, customization needs of the UI
within a SPL can be addressed to some extent by apply-
ing heuristics or capturing UI-specific options in the feature
model. However, for interactive applications where the UI is
important and highly variable, this is often not sufficient in
practice.

On the Need for Automation
The preceding section has shown that interactive applications
often need individual UI customization. On the other hand,
the application logic of, e.g., online shops is well understood
and can be derived very efficiently using model-driven SPL
techniques. One way to solve this conflict is a two-fold de-
velopment approach: The application logic is generated us-
ing a SPL while the corresponding UI is developed manu-
ally. Figure 2b illustrates this alternative in comparison to
the basic SPL approach in Figure 2a. For instance, this so-
lution is applied by SystemForge [2] by generating only UI
templates (providing variables to access the application logic)
while the UI is developed manually by the customer herself
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on that base. Similarly, HIS allows the customers unrestricted
manual modifications of the UI code [4].

However, this solution results in new problems. While the
manual design allows unrestricted customization according to
the product-specific usability needs, it does no longer comply
to the overall model-driven SPL approach. This means that
systematic SPL concepts can no longer be applied to the ap-
plication’s UI part. For instance, the feature configuration still
contains lots of information which is relevant for the UI, but
this information is no longer used in a purely manual UI de-
sign approach. Moreover, the UI’s compliance to the feature
model as well as the correct linkage between UI and appli-
cation logic now has to be ensured manually which can be
tedious and error-prone.

The most important drawback is in evolution and mainte-
nance. Concepts from model-driven SPL, like traceability,
can no longer be applied to a manually designed UI. Up-
dates on the software which require changes on the UI can
no longer be automatically applied. For instance, HIS reports
on these difficulties when, e.g., adding new input fields to the
UI of the whole SPL, e.g., due to new laws for Universities
[4]. In a manually designed UI, each change has to be inte-
grated manually to each single product which is error-prone
and lacks of efficiency.

In addition, other benefits of model-driven SPLs, like sup-
port for multiple target platforms, can no longer be applied
to the UI. For instance, an online shop might be provided in
several versions for the desktop and for different mobile de-
vices. In a model-driven SPL, all these versions can be de-
rived consistently from a given feature configuration. Having
purely manual UI design, each version must be created and
maintained separately and consistency between them must be
ensured manually.

In summary, there is a dilemma between usability and au-
tomation. It is desired to have an approach which provides
full support for UI customization but still integrates with the
systematic model-driven SPL concepts. We propose such an
approach in the next section.

A Model-driven Approach Supporting UI Customization
We propose to use abstract UI models which allow all re-
quired manual customization on the model level and fully
integrate into a model-driven SPL approach. For this, we
make use of the existing concepts defined in the research area
of model-based user interface development (MBUID) [22, 5,
10]. These approaches provide models on different abstrac-
tion levels to specify the UIs and to support multi-platform
development. They do not address SPLs but we can reuse
their basic concepts of abstract UI modeling for our purpose.

The types of models typically used in MBUID are Task
Model, Domain Model, Abstract UI Model, and Concrete UI
Model (see, e.g., [5]). We briefly introduce them in the fol-
lowing5.

5Please note that advanced properties of UIs, like context-sensitive
behavior or multimodality, as discussed in [5], are beyond the scope
of this paper and not further considered.

The most abstract models are the Task Model and the Do-
main Model. The Domain Model is a conventional model
to describe domain concepts and the corresponding applica-
tion structure, e.g., in terms of a UML class diagram. A Task
Model describes the user tasks to be supported by the appli-
cation (like “Choose Articles” in an online shop application)
and the temporal relationships between them. A concrete ap-
proach for task models is, e.g., CTT [14].

An Abstract UI Model describes the UI in terms of abstract
UI elements, which are platform-independent abstractions of
UI widgets, like input element, output element, selection el-
ement, or action element (abstraction of a button). Each
abstract UI element realizes tasks from the Task Model and
is associated with properties or operations from the Domain
Model. Abstract UI Elements are contained in Presentation
Units, which are top-level containers like Windows/Frames,
and other UI containers (abstractions of, e.g., panels). The
Abstract UI Model also describes the navigation between the
Presentation Units and an (abstract) layout.

A Concrete User Interface Model refines the Abstract UI
Model by specifying concrete UI elements, i.e., concrete UI
widgets, and their layout. It can still abstract from a specific
GUI API (e.g., providing a generalized “List Box” widget).

The final implementation, sometimes represented as a model
as well, is referred to as the Final UI Model.

To solve the dilemma described in the previous sections, we
propose to perform product derivation for UIs on an appro-
priate level of abstraction (i.e., derivation of more abstract
UI models instead of a final UI) which allows to specify all
required UI customizations using the models. From these ab-
stract UI models it is then possible to move down to the final
implementation using a model-driven process. The approach
is shown in Figure 2c.

In this way, it is possible to overcome all drawbacks described
in the previous sections: On the one hand, there is now sup-
port for full UI customization provided, on the other hand
all advantages of a model-driven approach still apply like ef-
ficiency, consistency, traceability, support for maintenance,
and even support for multiple target platforms. Due to the au-
tomated derivation of the (abstract) UI, also the consistency
with the feature configuration and the correct linkage of the
UI with the application logic is automatically ensured.

In the next section, we analyze which is the right abstraction
level, which UI elements need to be potentially customized
and which can always be derived. Afterwards, we present on
that base the details of the proposed approach.

ANALYSIS OF UI CUSTOMIZATION NEEDS
In this section we discuss the different aspects which make up
a UI and analyze them regarding their potential need for cus-
tomization within an SPL. This is necessary for our approach
to identify the right abstraction level for the UI models to be
used and, in particular, which aspects of a UI can be directly
derived from a feature configuration and for which aspects we
need to support customization.
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Development 
UI Aspect 

Customi‐
zation 

Customization
Specification 

Tasks and Temporal Operators  No ‐

Abstract UI (AUI) Elements No ‐

Relationships to Domain Model  No ‐

Presentation Units  Yes AUI Model
Navigation  No ‐

Concrete UI (CUI) Elements  Yes AUI to CUI Transformation
Layout  Yes AUI Model or

AUI to CUI Transformation 
Visual Appearance & Adornments  Yes Stylesheets
Other CUI properties  Yes AUI to CUI Transformation
 

Table 1. UI aspects and their need for customization.

Table 1 lists the different aspects of UIs as they typically
appear in MBUID models. Other CUI properties refers to
element-specific properties of concrete UI elements like if a
text field provides word-wrapping or a if list box allows multi-
selections. The second column of Table 1 specifies whether
there is a need for product-specific customization in a SPL
(in contrast to purely automated derivation from a feature
configuration). The third column specifies on which level of
abstraction the customization should be supported within a
model-driven process. In the following, we discuss each row
in detail.

Tasks and temporal operators: The tasks are directly re-
lated to the functionality of an application. Customizing the
tasks within a SPL would contradict the SPL approach where
the functionality of a product is specified by a feature con-
figuration. Hence, there is no need for customization. (Of
course, it is possible that a product of a SPL is extended with
new custom functionality but this means to change the appli-
cation logic and goes beyond the scope of UI customization.)
The temporal operators between tasks are directly associated
with them and there is no need to customize them as long as
the tasks do not change.

Abstract UI elements: The abstract UI elements are still on
a very generic level (such as input, output, selection, action)
and, hence, determined by the tasks. For instance, a task “se-
lect payment method” will always be realized by a selection
element while “input credit card number” will be realized by
an input element. Thus, as there is no need for customizing
the tasks, the abstract UI elements do not need to be cus-
tomized.

Relationships to the domain model: Abstract UI elements
are associated with properties or operations from the domain
model to specify the information which they represent or the
operation they trigger. Therefore, these mappings to the do-
main model are directly related to the corresponding tasks and
do not require customization.

Presentation Units: The decomposition of the UI into Pre-
sentation Units (i.e., top-level UI containers that cluster other
UI elements into logical groups) needs to consider product-
specific constraints. As described above, product derivation
can lead to almost empty (or overfull) presentation units due
to removal (or addition) of UI elements. Moreover, product-
specific layout and space constraints can require customiza-

tion of presentation units as well. For instance, in some online
shops the description of articles might require extra space or
a specific layout which influences the distribution of UI ele-
ments to the presentation units. Related to that, there might
be product-specific requirements on which presentation unit
a specific information should be presented. An example is the
decision, which information about the articles to show on an
“Article Details” page only, which information in the “List of
Articles”, and which in the “Shopping Cart”. For instance,
in an online shop selling business software, the number of li-
censes to buy and the resulting prices can be very important.
In contrast, in a shop selling computer games, most customers
will buy only a single license, so that the input field to set the
number of licenses might be displayed on a less prominent
place (e.g., in the “Shopping Cart” only but not in the “List
of Articles”).

The product-specific customization of Presentation Units
should be supported early on abstract level (i.e., abstract UI
model) as many further development steps, like navigation
and layout specification, rely on the definition of the Presen-
tation Units.

Navigation: Once the Presentation Units are defined, the
navigation between them can be derived based on the tem-
poral operators from the task model. Thus, in most cases the
navigation does not need to be customized itself.

Concrete UI elements: The choice of concrete UI elements
implementing the abstract UI requires customizations as well.
On the one hand the choice of concrete UI elements is often
considered by the user as part of the visual design and thus
subject to customer requirements, e.g., when using tabbed
menus instead of classical menu bars. On the other hand,
the choice of a concrete UI element depends on the actual
content (e.g., the articles in an online shop). For instance,
for a small number of choices, radio buttons might be desired
while a large number of choices might be represented by a
list or by even more sophisticated custom widgets, as used in
Rich Internet Applications.

The choice of concrete UI elements can be customized effi-
ciently by adapting the model transformation which defines
the mappings from abstract UI Elements to concrete UI El-
ements. In SPL context, this transformation is defined once
for the SPL and provides the default mapping. There are sev-
eral ways to adapt a model transformation, either just by ex-
tension, or by using an additional “mapping model” to de-
fine custom mappings, or by other mechanisms provided by
current model transformation languages (like ATL6 or ETL7)
like parameterization or rule inheritance.

Layout: As the Presentation Units and the concrete UI ele-
ments can require customizations, the layout need to be cus-
tomized as well. This can either be performed in the abstract
UI model to specify general layout rules on abstract UI level
or in the model transformation from abstract UI model to con-
crete UI model (using the same techniques like for the con-

6http://www.eclipse.org/atl/
7http://www.eclipse.org/gmt/epsilon/doc/etl/
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Figure 5. Abstract UI model for a online shop product line including presence conditions.

crete UI elements). Fine-tuning of single layouts can be spec-
ified in the concrete UI model.

Visual appearance: The visual appearance has often to be
customized, e.g., to make different applications look less uni-
form or according to concrete customer requirements like
the corporate identity. Customizing the visual appearance
can be performed without changing the UI itself using, e.g.,
stylesheets and dynamic loading of text and images at run-
time.

Other CUI properties: Properties of UI elements which are
directly related to functionality, e.g., whether a list allows
multiple selections, should be derived automatically during
product derivation. Other properties are set during the trans-
formation from abstract to concrete UI and can be customized
there in the same way as described for the concrete UI ele-
ments.

PROPOSED DOMAIN ENGINEERING CONCEPTS
In the remainder of the paper we show how the proposed pro-
cess from Figure 2c can be realized in detail based on the
analysis results in the previous section. We have implemented
the complete proposed approach to ensure the feasibility of
the concepts proposed. Due to space limits we will focus in
this paper on the most important concepts only. Interested
readers can find all implementation details in [9].

In this section we explain the domain engineering (see Fig-
ure 2c), i.e. definition of an appropriate abstract UI model
and a feature mapping. Thereby, according to our approach,
we need to distinguish between the application logic and the
(abstract) UI.

Abstract User Interface Modeling: According to the analy-
sis in the previous section, tasks, temporal operators, abstract
UI elements, and their relationships to the domain model do
not require customization. Hence, they need to be specified
just once and can afterwards automatically be derived using

the common SPL product derivation concepts. Moreover, as
in MBUID the abstract UI elements are a more concrete rep-
resentation of tasks, the tasks can be omitted here as they
contain no extra information. This means that for the prod-
uct derivation we need a model which contains the abstract
UI elements, their relationships to the domain model, and the
temporal operators. In the following, we introduce such a
model.

Figure 5 shows our abstract UI model for the online shop ex-
ample SPL. It is annotated with exemplary presence condi-
tions analogous to Figure 3. The nodes in this model are the
abstract UI elements. They are structured using the concepts
from CTT task models [14], i.e., in a tree hierarchy and with
temporal operators between them. The abstract UI elements
supported are the same like in common model-based UI de-
velopment approaches, like input, output, selection, and ac-
tion, which must be leaves in the tree. All non-leaf nodes are
UI containers. An exception is the selection element which
can be either used as simple abstract UI element or as special
container. In the former case, it is used for a simple value
selection, in the latter case it is used to select from a list of
objects represented by its children. For instance in Figure 5,
the selection element articleSelection allows to select from a
list of articles, which are represented by multiple children.

The abstract UI model also supports specification of multi-
plicities for elements whose number is not specified yet as
it is either product-specific or calculated at runtime (like the
number of articles in the articleSelection). It is also possible to
reuse a container multiple times by defining multiple copies.
For instance, shippingAddress and billingAddress are both copies
of the container Address (defined elsewhere) which is denoted
by a colon after the container name followed by the name of
the copied container.

The semantics of the temporal operators refers to the task as-
sociated with the abstract UI Element, i.e., input of data for
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input elements, output of data for output elements, etc. The
available operators are the same like in CTT [14] (see legend
in Figure 5)8. Abstract UI elements required for the navi-
gation (like a “Submit” button in a web application) are not
specified in the abstract UI model here as those have to be
generated based on the navigation which is specified later.

Each leaf is associated with a property or operation from the
application logic (not visualized in the figure). This can also
be non-persistent helper classes used only for return values
or for database queries, etc. We briefly introduce a model for
the application logic in the next section.

Application Logic: The models and model transformation
used to specify and generate the application logic in a SPL
are often specific to the domain and the target platforms. For
instance, a SPL for web applications uses a different approach
than a SPL for infotainment systems in a car.

We use here an existing model-driven approach for web ap-
plications as example, called UWE (UML-based Web Engi-
neering) [11]. UWE supports, in conjunction with its exten-
sion UWE4JSF9, model-driven development of Rich Internet
Applications based on Java Server Faces (JSF).

UWE provides five kinds of platform-independent models,
three of which can be considered as application logic in terms
of Figure 2c: The UWE Content Model and the UWE User
Model describe the application structure in terms of extended
UML class diagrams, whereas the UWE Process Model spec-
ifies the application logic in terms of extended UML activity
diagrams.

As UWE supports generation of complete web applications,
it comes also with its own models to describe the applica-
tion’s UI. These are the UWE Navigation Model (describes
the navigation structure between web pages) and the UWE
Presentation Model (specifies the UI of pages). This means
that our model-driven process for the UI has to end up with
these two models (instead of generating a UI implementation
directly) to be able to leverage the UWE approach.

Feature Mapping and Derivation Rules: For the feature
mapping and the resulting derivation, we use the “negative
variability” approach based on [7] as previously explained by
Figure 3. Each abstract UI element can be mapped to a fea-
ture. If containers are removed their content is removed as
well.

For the temporal operators we use the following derivation
rule: If a deleted abstract UI Element has two neighbor sib-
lings (in the tree structure) then the temporal relationship with
the higher priority (see legend in Figure 5) is deleted and the
remaining one is used to connect the two siblings. If a deleted
abstract UI element has only one neighbor sibling (i.e., it is a
leftmost or rightmost sibling in the abstract UI tree), then its
temporal relationship to its neighbor is deleted as well.

8In CTT, additional operators allow to specify whether information
is passed between two tasks. We do not need this distinction here,
as information passing is managed by the application logic anyway.
9http://uwe.pst.ifi.lmu.de/toolUWE4JSF.html
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Figure 6. UI Model transformation process.

For the application logic, the negative variability approach is
applied as well (derivation of UML class and UML activity
diagrams in case of UWE) but this is not further discussed
here.

PROPOSED APPLICATION ENGINEERING CONCEPTS
This section shows the application engineering within our
model-driven process (see Figure 2c), i.e. the derivation
of concrete products with support for UI customization on
model level. This process is shown in more detail in Fig-
ure 6. It starts with the derivation of the product-specific
abstract model UI model based on the feature mapping and
the derivation rules described in the previous section. The
product derivation performed so far resulted in an abstract,
product-specific UI model ( in Figure 6) and an incomplete
UWE model containing only the application logic for
the configured application. The result of the process should
be the complete UWE model including the UI specification,
i.e., UWE navigation and UWE presentation model .
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Figure 7. Two alternative clusterings for a product-specific UI.

The steps in between should support customization of the UI
for all aspects identified in Table 1. We describe them in the
following.

Presentation Units and Navigation: As discussed before,
the decomposition of the UI into Presentation Units (i.e, the
single windows or web pages) often needs to customized due
to spatial and other product-specific constraints. We support
this on the level of the abstract UI model by specifying clus-
ters which results in a so-called Abstract UI Cluster Mod-
els (inspired by [3]) shown in Figure 7. Abstract UI Cluster
Models support two cluster types: AUI-Clusters are the basic
cluster type to group several abstract UI elements. They will
become a single Presentation Unit later on. AUI-Fragments
are also used to group various abstract UI elements but will
not become independent Presentation Units in the later UI.
Instead, they will become reusable components that can be
embedded into AUI-Clusters, to realize (sub-)views which
are available within multiple other views, like a “search bar”
available on multiple web pages.

Figure 7 gives an example for two alternative clusterings of
a product-specific abstract UI. For instance, the UI contain-
ers shoppingCart and result (and their children) are clus-
tered into AUI-Clusters of their own. The UI containers ship-
ping and payment (and their children) are clustered together
with the action element confirm into a single AUI-Cluster .
The container Search and its children are clustered as an AUI-
Fragment which means that it will be embedded into other
clusters. The two alternatives (Figure a) and b)) differ in the
clusters used to present the products in the shop (UI container
products and its children): In Figure 7a there is a single clus-
ter 1a to display the list of products, including product details.
The multiplicity of productSelection is set to “2” which means
that two products are displayed at once. Figure 7b shows an
alternative decision where the product list is more condensed
(showing only the product’s name, description, price) so that
five products are displayed on a single view 1b . Instead, an
additional view (dark colored cluster 1c in Figure 7b) is used
to show the product details.

Based on the clustering and the temporal operators, the Pre-
sentation Units and the navigation between them are calcu-
lated in a model transformation. The result is stored as an Ab-
stract UI Navigation Model F which specifies the navigation
between Presentation Units as a simple kind of state diagram

and allows the developers to perform manual refinements, if
desired. The calculation extends the algorithms used in [14,
13] to calculate Presentation Units based on the temporal op-
erators. For instance, if multiple clusters are defined as con-
current (e.g., because they are connected by a concurrency
operator) they must be accessible at the same time. There-
fore, the UI must allow the user to switch between the re-
sulting Presentation Units for example by providing links for
navigating between them. AUI-Fragments are a special case
in this calculation: An AUI-Fragment will never become an
independent Presentation Unit, instead it is included into all
concurrent AUI-Clusters. The details of the transformation
are described in [9].

Concrete UI Elements: While the basic UWE models are
platform-independent, UWE provides transformations to dif-
ferent target platforms like JSF. The concrete UI elements are
hence generated by this transformation. Therefore, UWE de-
fines a Default Presentation Mapping which maps UWE
UI elements to JSF elements. In addition, UWE provides a so
called Concrete Presentation Model containing mappings
for individual UI elements. Both mappings can be adapted
to customize either the default mapping or the mapping for
individual UI elements.

Layout: The layout of presentation units is specified in the
UWE Presentation Model by assigning UWE presentation
groups. By hierarchical nesting, it is possible to equip several
web pages at once with an equal layout or to define templates
for the general site layout.

Visual Appearance and Adornments: The generated JSF
application has to be extended with static, not generated ar-
tifacts like images, stylesheets and property files which al-
low to easily customize the final visual appearance and adorn-
ments.

CONCLUSIONS AND OUTLOOK
Model-driven SPLs are highly efficient and have strong in-
dustrial relevance when developing a family of products.
However, although SPL concepts have been applied to var-
ious types of interactive applications, like online shops, the
specific challenges caused by the UI have been neglected so
far. In this paper we provide the following contributions:

1. We demonstrate how SPL concepts can be applied to the
UI (p.2/3).
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2. We expose (and classify) general practical problems of ap-
plying SPL concepts to UIs (p.4). This analysis is based on
reports from industry like [4].

3. We point out the problems of purely manual UI design
within an SPL (p.4/5) based on reports from industry.

4. We develop a general model-driven SPL approach for UIs
which overcomes the problems identified in 2) and 3) (p.5–
9).

We demonstrate the feasibility of the approach by an example
implementation based on UWE which is described in more
detail in [9].

To our knowledge, UI development within SPLs has not
been addressed by existing work so far (except our first work
in [15]). In turn, a SPL approach differs from existing genera-
tive approaches for UIs (like MBUID) as the initial UI (for the
whole SPL) is designed manually which prospectively results
in higher quality UIs than purely generated UIs.

A more detailed evaluation – like empirical studies on the im-
pact of the process proposed – is planned for future projects.
For this, future work includes the development of more ad-
vanced tool support to create and manage the models and,
ideally, to provide early visual feedback on the resulting UIs.
In addition, SPLs in practice will use their own modeling lan-
guages instead of UWE as used in our implementation so the
overall process has to be adapted accordingly. This requires
mainly to adapt the final transformations from the AUI Navi-
gation model to the final UI specification.
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