
Making UML Precise

A� Evans

Department of Computer Science

University of York� York� UK

J�M� Bruel

Laboratoire TASC

Pau University� France

R� France

Department of Computer Science

Colorado State University� Colorado� USA

K� Lano

Department of Computing

Imperial College� London� UK

B� Rumpe

Department of Computer Science

Munich University of Technology� Munich� Germany

http���www�cs�york�ac�uk�� puml

December �� ����

� Introduction

The Uni�ed Modeling Language �UML� �BJR��� is a set of description tech�
niques for specifying� visualising and documenting object�oriented �OO� sys�
tems	 The language has been developed by Grady Booch� James Rumbaugh
and Ivar Jacobson as a synthesis of their well known object�oriented meth�
ods and also combines a number of ideas from other methods and description
techniques such as Harel Statecharts	 UML is rapidly becoming an important
industry standard for modelling software systems	 Recently� UML version 
	

has been accepted by the the Object Management Group as a standard notation
for object�oriented analysis and design	

Like other software engineering �methods� UML provides a set of graphi�
cal and textual modelling techniques that aim to be understandable to system
developers and customers	 Each technique is used to model the system from
a number of di
erent perspectives	 For example� class diagrams are used to
model static �data� properties� sequence diagrams are used to model �ow of
messages between objects	 However� an important feature of UML is that it is a
modelling language� not a method� and therefore does not prescribe any partic�






ular development process	 Furthermore� UML provides a semantics documents
which aims to precisely document the meaning and structure of the language	

It has long been recognised that many OO methods� including those from
which UML is derived� su
er from a lack of a precise semantics	 These methods
only provide a very imprecise interpretation of the meaning of the diagrams
they used	 This can lead to a number of problems�

Interpretation� a lack of precise semantics can result in confusion and dis�
agreement between the creator and reader of diagram over its precise
meaning	 Developers can waste considerable time resolving disputes over
the meaning of a diagram and may walk away with di
erent and con�ict�
ing views	 If the system is being implemented by someone other than the
creator of the diagram� they may implement an incorrect interpretation
of the required design	

Design� a rigorous design process cannot be used unless there is a semantics
upon which to develop re�nement conditions	

Rigorous Analysis� without a precise semantics it is impossible to carry out
a rigorous semantic analysis of a diagram	 In practice� OO diagrams are
validated and veri�ed informally	 These informal techniques are often
inadequate� they cannot be used to rigorously establish that implementa�
tions and models are consistent with each other� or that models capturing
di
erent views of the system are consistent with each other	

Although UML provides a semantics document� it is clearly essential to
determine whether it can resolve the problems outlined above	 The precise
UML group was formed in late 
��� with the aim of both inevstigating the
completeness of the UML semantics and developing novel approaches to using
UML more precisely	 This paper aims to brie�y present some of the issues its
members have considered with regards to making UML precise and to describe
progress that has been made over the last 
� months	

� Formalization

One of the core issues considered by the group has naturally been that of for�
malization� i	e	 should UML be formalized� is UML already formal enough and
how should it be best formalized�

The desire to formalize UML was originally motivated by the overall wish to
develop practical� industrial strength� formal methods	 Members of the group
had already worked with earlier OO methods in an e
ort to give them a sounder
formal basis	 The advent of the UML as a likely de�facto industry standard�
and its recognition that as a standard it needs to be precisely described� made
UML a natural choice for a combined investigation	

The original 
	� version of the UML semantics did not provide a precise
description of the language� nor did one of its predecessors UML �	�� UML �	��

�



OMT �RBP��
�� the Jacobson Method �Jac���� or the Booch Method �Boo���	
A meta�modelling approach was used to describe the language� in which class
diagrams were used to capture the static relationship between modelling con�
cepts	 However� the well�formedness rules and semantics of the language were
expressed in English rather than formal text	 In version 
	
� a serious attempt
has been to provide a more precise description of the language	 Version 
	
 now
supports the use of a semi�formal constraint language� the object constraint
language �OCL�� which is used to describe well formedness for the modelling
abstractions supported by UML	 Certain dynamic semantics properties of the
model �e	g	 the meaning of associations as object links� are also captured within
the model	

How incomplete are the semantics of version 
	
 and indeed is meta�modelling
a suitable approach to take in their de�nition� A �purist� answer to the latter
question is that class diagrams and OCL are insu�ciently precise to describe the
semantics of a langauge	 OCL itself does at present not have a formal semantics
and a number of modelling abstractions used in UML class diagrams have still
to be resolved	 For example� the problems associated with aggregation have
been extensively investigated in �SFLP���	 An opposing view is that that acces�
sibility and compatibility of the language used to de�ne the semantics should
have precedance over formality	 In this respect� class diagrams and OCL are
an intuitive and intelligent choice of language as they will be understandable to
users of UML	

With respect to the completeness of the semantics of version 
	
� it is clear
that a signi�cant amount of work is required in order to make them �formally
complete�	 In particular� �Eva��b� identi�es three core areas where the static
semantics model of version 
	
 is incomplete� the meaning of inheritance� de��
nitions of constraints on inheritance hierarchies and the meaning of aggregation
and abstract operation descriptions	 In all cases� however� it is shown how the
UML semantic model can be conservatively extended to incorporate a more
precise description	

Given the assumption that the UML semantics are incomplete and the
debate about the suitability of meta�modelling as a formalization strategy� a
number of formalization approaches have been tested by the group� The �rst
approach to the problem has been to make the notations more precise and
amenable to rigorous analysis by integrating them with a suitable formal speci�
�cation notation	 A number of integrated OO and formal notations have been
proposed �e	g	� see �BFLP��� JK����	 Most works focus on the generation of
formal speci�cations from less formal OO models	 This can reveal signi�cant
problems that are easily missed in less formal analyses of the models	 Further�
more� the formal speci�cations produced can be rigorously analyzed� providing
another opportunity for uncovering problems	 However� a serious limitation of
this approach is that it requires an in�depth knowledge of the formal notation
and its proof system	 This is often a signi�cant barrier to industrial use	 Often
the formal notation is perceived by industrial practioners as being too mathe�
matical and low level to be of practical use� and the gap between the graphical
notation and formal notation as being too large	

�



The second approach to the problem has been to extend formal notations
with OO features� thus making them more compatible with OO notations	 Sev�
eral extensions exist in literature �e	g	� Z�� �LH��� and Object�Z �Duk�
��	
However� although a rich body of formal systems have resulted� they are still
too di
erent from current industrial methods to be suitable for general industrial
application	 In addition� there is also a lack of available analysis tools	

The third approach has been to directly express the semantics of UML in
a formal language such as Z	 This has the advantage of enabling a formally
precise and unambiguous model of the semantics to be written �Z is well de�ned
and formal�	 However� it is di�cult to decide on the criteria to be used in
constructing the model	 If the UML meta�model semantics is exactly adhered to�
then any mismatch between the formal language and the meta�model language
is likely to result in a large� cumbersome� translation	 On the other hand� if one
uses the meta�model as a requirements document it may be possible to produce
a smaller� more elegant description of the semantics	 Unfortunately� there is
also the risk that the standard semantics may not be captured fully or are mis�
interpreted	 Whichever strategy is employed� it is important to remember that
the semantics of UML are part of a standard� and that to develop an alternative
model �unless it a provides a miraculous simpli�cation or considerably improves
usability� e	g	 through better composition� abstraction and re�nement concepts�
is unlikely to be well received by industry	 Thus� to ensure the best chance of
the work having an in�uence on industry� the most sensible approach would be
to stay as close to the standard as possible	

The �nal approach used by France� has concentrated on formalizing speci�c
OO modelling concepts	 This has the advantage of making the formalization
process more manageable and also has helped to identify concepts which are
particularly weakly de�ned in OO methods	

Taken together� the experience of using these di
erent approaches has helped
members gain a valuable understanding of the limitations and advantages of the
present UML semantics	 This will form the cornerstone for work being carried
out to develop formal development methods� analysis and re�nement techniques
for UML	

� Re�nement

Once a formal de�nition is available it is possible to use it as foundation for
developing formal re�nement techniques for UML	 Re�nement has the same
meaning in UML as for any formal language� it is the process by which an
abstract model of a system �containing relatively little implementation detail�
can be incrementally transformed into a model that can be readily implemented
in a speci�c programming language	 At each stage the correctness of the more
detailed model must be veri�ed against the abstract model	 The most obvious
way to achieve this is to check that each more detailed model satis�es the
conditions necessary for it to be a valid re�nement of its predecessor	 Of course�
this requires that the conditions for re�nement have been precisely laid down	

�



Another approach is to pre�verify commonly used design steps	 For example�
a common step in the re�nement of a many to many association is to resolve
it with a many to one and one to many association	 Given that the re�nement
conditions are known� a simple set of conditions can be given for ensuring that
the step is valid with respect to the model semantics	 Thus� such design steps
may be used with a much reduced knowledge of formal proof techniques than
the �invent and verify� approach described previously	

Where UML does di
er from other �formal� languages is in its use of di�
agrams	 Whereas re�nement in a textual formal language �like Z� involves
manipulating textual syntax� re�nement in UML is most naturally thought of
in terms of diagrammatical manipulations	 In other words� the re�nement of
a UML model implies a process of diagrammatical transformation	 Moreover�
because UML uses di
erent diagrams to model a complete system� di
erent
transformations must be applied to di
erent diagrams in order to e
ect a com�
plete re�nement process	 Understanding the nature of these transformations
and how they can be constructed in a compositional manner is currently an
important issue being investigated by the group	

� Deduction

As stated previously� UML provides a number of diagrammatical modelling tools
for describing systems	 Each diagram is intended to provide a di
erent �view�
of the complete system model	 For example� a class diagram is used to describe
static �data� properties� whilst a sequence diagram aims to describe system be�
haviour	 Although these diagrams are visually intuitive� their informality makes
it di�cult to rigorously deduce properties about the models they represent	

Just as with re�nement� deduction can be thought of as a transformational
process �Eva��a�	 If a diagram� representing the desired properties of another
diagram� can be obtained by applying a set of correctness preserving transfor�
mations then the property can be proven valid	 In addition� it is often the case
that properties expressed using the constraint language can be visualised as a
diagrammatical object	 Thus� it is possible to visually verify the correctness
of the property with respect to the original diagram	 Again� it is possible to
develop a set of basic deductive transformations on UML diagrams which can
be used as part of a rigorous analysis process for UML	

� Conclusion

This short note has brie�y described some of the issues being investigated by
the precise UML group	 As this work has progressed� it is increasingly been the
case that members have sought to view UML as a formal language in its own
right	 Thus� an on�going goal has been to develop generic proof and re�nement
techniques which manipulate the basic components and abstractions of UML
rather than those derived by language translation	

�



Appendix

This appendix brie�y describes work that is being carried out individually and
in cooperation by members of the precise UML group	

Imperial College� UK

At Imperial College current work is focussed on the semantics of dynamic mod�
elling notations in the UML� such as interactions and sequence diagrams� using
Real�time Action Logic �RAL�	

We are also working on the development of a method for using the UML
in conjunction with formal transformations	 For highly critical applications
�systems where the consequence of incorrect functioning may include loss of
life or severe �nancial loss�� it is important that the development process used
can help detect and eliminate errors	 The process should in particular support
the veri�cation of re�ned models against abstract models by comparing their
semantics	

Our proposed process can be summarised as follows�


	 Requirements � modelled using Yourdon context diagrams and UML use
case diagrams �without dependencies between use cases�	

�	 Essential Speci�cation � described using UML class diagrams� operation
schemas �from Fusion and Octopus� and statecharts	

�	 Design � modelled using UML class diagrams� statecharts� sequence dia�
grams and collaboration diagrams	

The veri�able relationships between these models are�


	 Each input event�message on the system context diagram should have a
system response described by an operation schema	

�	 The e
ect described by the operation schema for an event e must be
established by the completed response sequence to e described in design
level statecharts� that is� by the transitions speci�ed for e and the set of
their generated events and transitions	

A re�nement relationship should be de�ned between the abstract state
used in the operation schemas� and the state used in the statecharts	

�	 Design level class diagrams should enforce all the properties asserted in
the speci�cation level class diagrams	

�	 Sequence diagrams should be consistent with collaboration diagrams� the
structure of object inter�calling should be the same	

�	 Collaboration diagrams should be consistent with statecharts� messages
sent by an object in response to a message m should correspond to events
generated from transitions for m in the statechart of the object	

�



University of Munich� Germany

In Munich Bernhard Rumpe is elaborating the notion of re�nement and com�
position in the context of UML diagrams and especially behavior descriptions	
As textual notations and formalisms show� a notation becomes more useful� if
it cannot not only be used to capture knowledge gained from analysis or de�
cided during design� but if manipulation techniques exist that allow to deal with
pieces of knowledge	 Manipulating diagrams for example allows to

� iteratively add information and such provide more details of the system
under consideration �re�nement��

� transform one model into another one� which exhibits new properties or is
more oriented towards an implementation �e	g	 mapping State Diagrams
into Code� mapping Sequence Diagrams into State Diagrams� or trans�
forming between Sequence and Collaboration Diagrams� �view transfor�
mation�

� derive pieces of information from a given� detailed model� where the pieces
of interest have been hidden by other details �derivation�	

This work e	g	 includes a re�nement calculus for State Diagrams in several
timed and untimed variants �Rum��� PR��a� RK��� PR���� re�nement tech�
niques for Sequence Diagrams �BGH���a�� and for Class Diagrams �BHH����
Rum���	 Beyond the UML� some work was done manipulate and especially
re�ne data�ow networks �PR��b�	 The work is based on a rigourous� precise
de�nition of what the kinds of target systems are �RKB��� KRB���	

Based on the experiences gained from these works� some general conclu�
sions about the usefulness of and the path to a formal semantics of UML
�Rum��� EFLR��� BGH���b� BGH���� BHH���� have been drawn	 One im�
portant conclusion is� that people will not use formality in a sense that diagrams
�regarded as informal� are transformed into a set of logic formulae �regarded
as formal�	 If the principles of re�nement� composition� proof derivation� etc	
developed in various logics shall be used in the context of UML� then these
techniques have to be transfered into techniques for the UML diagrams	 E	g	 a
rule allowing to split a state in a State Diagram in such a way� that the overall
described behavior will persist� is a valid �semantic� re�nement rule	

Formalization� e	g	 as a mapping from a diagrammatic notation into a well
known semantic domain is a �rst important step into this direction� but not
useful in itself	

Universities of Boca Raton� and Colorado� US

At the University of Boca Raton� Florida� previous research led by Robert
France focused on integrating UML with some of the more mature formal spec�
i�cation notations� for example� Z and Object�Z �e	g	� see �SF��� SF����	 The
process model supporting the use of integrated techniques that was developed
required that developers �rst develop the OO models and then transform them

�



to Z or Object�Z speci�cations	 The generated formal speci�cations could then
be used to support rigorous analysis of the models �via theorem�proving or ani�
mation�� and they can provide a more precise speci�cation of desired behavior	

The integrated techniques developed have been applied by students in a
graduate program and on a case study �FB��� with some success� but their
application also raised some issues that could deter their industrial uptake	 A
major concern is that such techniques require OO modelers to be familiar with
both OO notations and formal speci�cation notations if they are to be used
e
ectively	 Developers that are not familiar with formal notations can �nd it
di�cult to relate the mathematical concepts on which formal speci�cations are
built to elements in their OO models	 For this reason� carrying out analyses and
interpreting analysis results can be problematic	 One solution to this problem
is to have modeling teams that consist of both experts in the OO and formal
notations� but this may not be cost�e
ective for some organizations	

Discussions that led to the formation of pUML concluded that a formal�
ization of UML should not require that developers manipulate mathematical
expressions that are extraneous to their OO models	 Rather� an attempt should
be made to evolve UML to a formal language by associating a precise semantics
with the notation that can be used as the basis for reasoning about the models	
Such reasoning should require the developer to manipulate only the OO models
they created	 As a �rst step we are developing precise characterizations of what
we consider basic OO modeling concepts as described in the popular literature
and embedded in OO CASE tools	 To date we have developed characteriza�
tions of the notion of aggregation �SFLP��� and have suggested extensions to
the UML that can be used to more precisely capture the form of aggregation
required �SLPFE���	 The characterizations should give us a good foundation
on which a formal semantics for UML concepts can be built	 This work is being
carried out at Colorado University	

Pau University� France

We are developping an environment for the speci�cation of complex software
systems that is based on the Formal Speci�cation Technique �FST� Z	 This en�
vironment supports the development of precise and analyzable structured speci�
�cations of the desired behavior� and the validation of qualitative and quantita�
tive properties	 Speci�cations are developed using an integrated Z and object�
oriented method �Fusion�	 The object�oriented method provides the structural
constructs needed to manage the complexity of the model building activity	

In our approach� both structural and dynamic aspects are modeled using a
unique formal notation	 This environment supports the analysis of graphical�
structured� and precise models of complex systems	 This work was partially
funded by NSF grant CCR���
����	

�



York University

At York University� work is being undertaken by Andy Evans to develop a
sound formal semantics and deductive system for UML diagrams based on the
standard UML semantics	 It is hoped to develop a diagrammatical deductive
system for UML which can be used to verify important properties of UML
models	 In addition� work is beginning on the development of a rigorous� real�
time development method for UML� supported by the real�time systems group
at York	

References

�BFLP��� J	M	 Bruel� R	B	 France� and M	 Larrondo�Petrir	 Case�based rig�
orous object�oriented methods	 In A	S	Evans and D	J	Duke� edi�
tors� Proceedings of the �st Northern Formal Methods Workshop�
Springer eWiC series� 
���	

�BGH���a� Ruth Breu� Radu Grosu� Christoph Hofmann� Franz Huber� Ingolf
Kr�uger� Bernhard Rumpe� Monika Schmidt� and Wolfgang Schw�
erin	 Exemplary and complete object interaction descriptions	 In
Haim Kilov� Bernhard Rumpe� and Ian Simmonds� editors� Pro�
ceedings OOPSLA��� Workshop on Object�oriented Behavioral Se�
mantics	 TUM�I����� 
���	

�BGH���b� Ruth Breu� Radu Grosu� Franz Huber� Bernhard Rumpe� andWolf�
gang Schwerin	 Towards a precise semantics for object�oriented
modeling techniques	 In Jan Bosch and Stuart Mitchell� edi�
tors� Object�Oriented Technology� ECOOP��� Workshop Reader	
Springer Verlag �NCS 
���� 
���	

�BGH���� Ruth Breu� Radu Grosu� Franz Huber� Bernhard Rumpe� andWolf�
gang Schwerin	 Systems� views and models of UML	 In Martin
Schader and Axel Korthaus� editors� The Uni�ed Modeling Lan�
guage� Technical Aspects and Applications� pages ���
��	 Physica
Verlag� Heidelberg� 
���	

�BHH���� Ruth Breu� Ursula Hinkel� Christoph Hofmann� Cornel Klein� Bar�
bara Paech� Bernhard Rumpe� and Veronika Thurner	 Towards a
formalization of the uni�ed modeling language	 In Proceedings of
ECOOP���	 Springer Verlag� LNCS� 
���	

�BJR��� G	 Booch� I	 Jacobson� and J	 Rumbaugh	 The Uni�ed Modeling
Language � a reference manual	 Addison Wesley� 
���	

�Boo��� G	 Booch	 Object Oriented Analysis and Design with Applications	
Benjamin�Cummings Publishing Company� Inc	� 
���	

�Duk�
� D	 Duke	 Object�Oriented Formal Speci�cation	 PhD thesis� 
��
	

�



�EFLR��� Andy Evans� Robert France� Kevin Lano� and Bernhard Rumpe	
Developing the UML as a formal modelling notation	 In Pierre�
Alain Muller and Jean Bezivin� editors� UML��� Beyond the nota�
tion� International Workshop Mulhouse France� Ecole Superieure
Mulhouse� Universite de Haute�Alsace� 
���	

�Eva��a� Andy Evans	 Reasoning with UML class diagrams	 In Proceedings
of WIFT���	 IEEE� 
���	

�Eva��b� Andy Evans	 UML class diagrams � �lling the semantic gap �draft�	
Technical report� York University� 
���	

�FB��� Robert B	 France and Jean�Michel Bruel	 Applying fusion�UML
to the invoicing problem	 In Proceedings of the Int� Workshop on
Comparing Systems Speci�cation Techniques� Nantes� France� eds�
Michel Allemand� Chritian Attiogbe and Henri Habrias� Institut de
Recherche en Informatique de Nantes� 
���	

�Jac��� I	 Jacobson	 Object�Oriented Software Engineering � a Use Case
Driven Approach	 Addison Wesley� 
���	

�JK��� D	 Randolph Johnson and H	 Kilov	 Can a �at notation be used
to specify an oo system� using Z to describe RM�ODP constructs	
In Elie Najm and Jen�Bernard Stephani� editors� Proceedings of
the �st IFIP Workshop on Formal Methods for Open Object�based
Distributed Systems	 Chapman and Hall� 
���	

�KRB��� Cornel Klein� Bernhard Rumpe� and Manfred Broy	 A stream�
based mathematical model for distributed information processing
systems � syslab system model �	 In Elie Naijm and Jean�Bernard
Stefani� editors� FMOODS��	� Formal Methods for Open Object�
based Distributed Systems	 ENST France Telecom� 
���	

�LH��� K	 Lano and H	 Haughton	 The z�� manual	 Technical report�
Imperial College� 
���	

�PR��� Barbara Paech and Bernhard Rumpe	 A new concept of re�nement
used for behaviour modelling with automata	 In FME��
� Formal
Methods Europe� Symposium ��
	 Springer� 
���	

�PR��a� Barbara Paech and Bernhard Rumpe	 State based service descrip�
tion	 In John Derrick� editor� Formal Methods for Open Object�
based Distributed Systems	 Chapman�Hall� 
���	

�PR��b� Jan Philipps and Bernhard Rumpe	 Re�nement of information
�ow architectures	 In M	 Hinchey� editor� ICFEM��� Proceedings�
Hiroshima� Japan� IEEE CS Press� 
���	


�



�RBP��
� J	 Rumbaugh� M	 Blaha� W	 Premerlani� F	 Eddy� and
W	 Lorensen	 Object�Oriented Modeling and Design	 Prentice Hall�

��
	

�RK��� B	 Rumpe and C	 Klein	 Automata describing object behavior	
In H	 Kilov and W	 Harvey� editors� Speci�cation of Behavioral
Semantics in Object�Oriented Information Modeling� P� �	����		
Kluwer Academic Publishers� 
���	

�RKB��� B	 Rumpe� C	 Klein� and M	 Broy	 Ein strombasiertes mathematis�
ches Modell verteilter informationsverarbeitender Systeme � Syslab
Systemmodell �	 Technical Report TUM�I��
�� Technische Univer�
sit�at M�unchen� March 
���	

�Rum��� Bernhard Rumpe	 Formale Methodik des Entwurfs verteilter objek�
torientierter Systeme	 Tum doktorarbeit� Technische Universit�at
M�unchen� 
���	

�Rum��� Bernhard Rumpe	 A note on semantics �with an emphasis on
UML�	 In Haim Kilov and Bernhard Rumpe� editors� Second
ECOOP Workshop on Precise Behavioral Semantics	 Technische
Universit�at M�unchen TUM�I��
�� 
���	

�SF��� Malcolm Shro
 and Robert B	 France	 Towards a Formalization
of UML Class Structures in Z	 In Proceedings of COMPSAC����
August 
���	

�SFLP��� Monika Saksena� Robert B	 France� and Maria M	 Larrondo�Petrie	
A characterization of aggregation	 In Proceedings of the �th In�
ternational Conference on Object�Oriented Information Systems

OOIS����� 
���	

�SLPFE��� Monika Saksena� Maria Larrondo�Petrie� Robert France� and
Matthew Evett	 Extending the notion of aggregation in UML	 In
Proceedings of the UML��� International Workshop� 
���	






