
Rapid Prototyping with AUTOFOCUS

Franz Huber
Bernhard Schätz∗

Fakultät für Informatik, Technische Universität München
Arcisstraße 21, 80333 München

email:{huberf|schaetz}@informatik.tu-muenchen.de

Abstract: In most cases, it is simple inconvenience of use that keeps for-
mal methods from being put to industrial use. This paper argues that
functionalities, even though of simple formal principles, can be decisive
for the applicability of such a formal development tool. Several of those
functionalities, as found in the AUTOFOCUS tool prototype, like integrated
graphical and hierarchical description techniques, consistency checks and
code generation, are demonstrated using a simple example.

1. Introduction
The widely accepted possible benefits of formal methods on the one hand and their minor
use compared to informal or graphical description techniques on the other hand have re-
peatedly lead to the claim that formal methods should be put to a more indirect or transpar-
ent use. In [HSS96] we demonstrated how such an indirect approach can be incorporated in
the CASE tool prototype AUTOFOCUS by basing it upon formally defined hierarchical de-
scription techniques. In [HSE97] we introduced consistency checks for the description
techniques and showed how to integrate verification and validation mechanisms into the tool
concept.

Despite all the benefits gained from the formally based development, such an approach
has little relevance to industry if the specified system cannot be turned into code as the final
goal of the development process. Since manual transformation of a specification is both la-
borious and error prone, automatic code generation should be applied wherever possible.

In this article we sketch how the AUTOFOCUS tool prototype can be enhanced with code
generation for simple embedded systems to support the full range of the design process
from formal specification to rapid prototyping. The Java programming language [Fla96]
has been chosen as target for code generation because of its promising possibilities in em-
bedded and real-time system development. The process of code generation, however, is only
defined in a semiformal way, as there is currently no formal semantics available for Java
supporting a complete embedding into the formal framework of AUTOFOCUS.

2. AUTOFOCUS

2. 1 An Example Application for AUTOFOCUS

We first present a small example to introduce the description techniques used in AutoFocus
and, subsequently, to outline to code generation process. Although the example does not
cover all aspects of the description techniques, it should be sufficient to illustrate the main
ideas behind AUTOFOCUS and the code generation process within the scope of this paper.

The example is of a simple structure, yet with typical aspects of embedded systems: it
shows a traffic lights system for a pedestrian crossing. Pedestrians wishing to cross the street
can push a button, which in turn switches the lights for the cars to red and the pedestrians'
lights to green. After a sufficient delay for the pedestrians, the lights switch back to their
original state, allowing the cars to pass along again.

∗ This work was carried out within the Subproject A6 of the “Sonderforschungsbereich 342 (Werkzeuge und
Methoden für die Nutzung paralleler Rechnerarchitekturen)“ and the Project SysLab, sponsored by the German
Research Community (DFG) under the Leibniz program and by Siemens-Nixdorf.

2. 2 Description Techniques
AUTOFOCUS, like many tools and methods in practical use, covers different aspects of a dis-
tributed system, called views, by using suitable description techniques. These are outlined
using the above example in the following sections (for a detailed description see [HSS96]).
Several aspects of AUTOFOCUS’ description techniques, like component hierarchies and ex-
tensive use of Gofer-style data type definitions are not demonstrated in this example. How-
ever, within the scope of this paper, it should be sufficient to convey the basic ideas for the
prototyping process outlined in the subsequent sections.

2.2.1 Data Type Definitions (DTDs) and Component Data Definitions (CDDs)
DTDs define – additionally to basic AUTOFOCUS data types as also found, for example, in
the functional programming language Gofer [Jon91] – constructed types for the data pro-
cessed and stored by the system components and transmitted across the communication
channels. CDDs define the data items (state variables) associated with specific system com-
ponents and can use definitions from DTDs. In our example, we need to define the data
type TLS, denoting possible states of the traffic lights for cars. For the pedestrian traffic
lights, we define the data type PLS:

-- Traffic Lights for cars:
data TLS = R | Y | G | RY;
-- Traffic Lights for pedestrians:
data TLS = R | G;

The Controller component has one data item to control delays, defined in its CDD:
-- Delay counter:
T: Int;

2.2.2 System Structure Diagrams (SSDs)
SSDs describe the structure of a system including its interface, its components and the
communication paths between them, thus providing both component interface specification
and topological information. Figure 1 shows an SSD for the traffic lights example (not all
port names are shown there for reasons of clarity). It consists of the components Controller,
TrafficLights, PedsLights, ButtonA, and ButtonB (for each side of the street).

Controller

TrafficLights

ButtonB

ButtonA

PedsLights

TrafSig:TLS

BIndSig:Bool

AIndSig:Bool

PedSig:PSL

ASensSig:Bool

BSensSig:Bool

BBS

TL
PL

BAI
BAS
BBI

BI

BS

Figure 1. System Structure Diagram of the Traffic Lights Example

To cross the street, a pedestrian can press the push-button on his side (ButtonA or ButtonB)
and send a signal to the Controller to initiate a green phase. A signal light in each button
lights up confirming the action. The traffic lights switch, with some delay, from green via
yellow to red. After a short green phase for the peds light, the traffic lights are returned to
their original state. To set the traffic and indicator lights, the controller sends signals via the
channels TrafSig, PedSig, AIndSig, and BIndSig. The pressing of the buttons is transmitted
via the ASensSig and BSensSig channels. Signals sent over those channels arrive at the input
ports of the controller (BAS, BBS), signals sent to the lights originate from its output ports
(TL, PL, BAI, BBI).

Components can be hierarchically refined by networks of sub-components, a property
which is not used in this example.

2.2.3 State Transition Diagrams (STDs)
STDs are used to describe the behaviour of the system as a whole as well as of its compo-
nents. In case of hierarchical refinement of system components, it is possible to have an
STD describing a component’s behaviour and STDs describing the sub-components’ be-
haviours. This allows to use behavioural refinement in the development process. For the
prototyping approach presented here, however, it is sufficient if each leaf component in a
refinement hierarchy has an associated STD. Figure 2 shows the STD describing the behav-
iour of the Controller component.

T=0//TL!G,PL!R/

Init Green

Red

RedYellow

Yellow

T=0//TL!R,PL!G,BAI!F,BBI!F/T´=10

T=0//TL!Y/T´=5

T=0/BAS?T/BAI!T,BBI!T/T´=20
T=0/BBS?T/BAI!T,BBI!T/T´=20

T>0///T´=T-1

//TL!G,PL!R,BAI!F,BBI!F/

T=0//TL!RY/T´=5

T>0///T´=T-1

T>0///T´=T-1

T>0///T´=T-1

Red Waiting

T=0//TL!R,PL!R/T´=5

T>0///T´=T-1

 Figure 2. The Controller Component’s State Transition Diagram

Each transition has a set of annotations: a pre- and a post-condition, encoded as predicates
over the data state of the system satisfied before and after the transition, and a set of input
and output actions describing the messages that are read from or written to the input and
output ports of the corresponding component. The notation used to specify the input and
output actions is similar to CSP.
Consider, for example, the looping transition of state Green labelled with the annotation

T=0/BAS?T/BAI!T,BBI!T/T´=20
Here, the precondition T=0 will only allow the selection of the transition if the delay counter
T has the current value 0, i.e., no green phase is already initiated. Furthermore, this transi-
tion will need a button sensor signal on port BAS to be selected. If the transition is selected,
the indicator lights in the buttons will be lit by sending the corresponding signals on ports
BAI and BBI. Since the postcondition T´=20 will hold after the selection of the transition,
the green phase is initiated with an initial delay.1

2.2.4 Extended Event Traces (EETs)
EETs, similar to MSCs [Int96], illustrate the interaction of the system components and their
environment via message exchange. In AUTOFOCUS, they are often used for specification of
use cases in the early stages of development, to derive, from the requirements captured
within them, the system design using SSDs, STDs, and DTDs/CDDs. Thus, a system descrip-
tion is complete without EETs and therefore they are not used for the code generation in

1 Like in temporal logics, we use primed state variables to denote the values of variables after the transi-
tion and unprimed variables to denote the values before the transition is selected.

our prototyping approach. However, as outlined in [HSE97], it is planned to generate EETs
from runs of the generated prototype system.

Similar description techniques like SSDs, STDs, and EETs can be found in many compa-
rable specification frameworks, like system and automata diagrams in Statecharts [Har90] or
ROOM [SGW94], or system diagrams, MSCs and data type definitions used in SDL/GR.

2. 3 Consistency
In the AUTOFOCUS approach, the information describing a system is spread out across sev-
eral documents of different kinds, just like in different modules or libraries of a large pro-
gramming package. If a system specification exceeds the toy world size, keeping these de-
velopment documents consistent becomes more and more complex for the developer. Here,
simple checks based on the abstract syntax of the description techniques and carried out by
the tool can already be an enormous help. Since AUTOFOCUS uses different document
classes as well as hierarchically organized document structures, it becomes even more im-
portant to make sure that the spread out information is consistent. For a detailed description
of consistency checks, their definition, and their user interface see [HSE97].

We distinguish two forms of consistency conditions, depending on how those conditions
can be checked:

Intra-document consistency: Those are consistency conditions that can be formulated
using only elements of one document, for example, an SSD or a DTD. An example
for this consistency is the type equivalence of channels and their associated ports. In
the traffic light example, the channel AIndSig and the ports BAI and BI all have to be
of type Bool.

Inter-document consistency: Those are consistency conditions that can only be formu-
lated using two ore more different documents of the same or a different document
class. An example is the type correctness of transition annotations. In the traffic lights
example, to check the consistency of the transition annotation as discussed in section
2.2.3, we have to make sure, e.g., that the controller has ports BAS, BAI and BBI of
type Bool as well as a variable T defined to be of type Int.

Consistency of all development documents is a prerequisite for the code generation process:
in case of incomplete or contradictory development documents, the code generated using
them might be incorrect as well.

3. Prototyping
Once a consistent and complete set of SSDs, STDs and DTDs is defined, code generation
can be used to produce an executable version of the specification, thus yielding a prototype
of the system. Complementing validation and verification techniques described in [HSE97],
the prototype can be used to analyse the behaviour of the system by embedding it into an
environment where the execution of the generated code can be visualised and thus moni-
tored by the user.

Based on a synchronous semantics for the behaviour of distributed systems defined in
[HSE97], we sketch how Java code can be generated from a system specification in
AUTOFOCUS, using parts from the traffic lights example. Finally, we show how the embed-
ding of the generated code in a simulation environment can be used for on-line validation
of specifications.

3. 1 Java Code Generation
As stated before, due to the lack of a formal semantics of Java, we can only support the
claim that the generated Java code meets the formal semantics of a specification without
giving a mathematical proof. However, within the AUTOFOCUS project, this approach to code
generation makes up only a first prototypical step towards an integrated development proc-
ess from specification to implementation.

Within this approach, we made the following decisions on basic concepts for the code
generation:
1. We provide a very simple framework of Java classes encapsulating some Focus core con-

cepts, e.g., communication ports, channels, and base classes for components.
2. Components are implementations of the Java interface Runnable, each one running in-

dependently within its own thread.

3. State Transition Diagrams are generated only for leaf components in a refinement hier-
archy. Although it is possible to specify behaviour using STDs for components refined
by a network of sub-components as well, only those STDs associated with the compo-
nents at the finest level of granularity are used for code generation.

4. The component behaviour specified in STDs is generated “hard-wired” into the code
implementing the run() method of each component.

An alternative solution to decision 2 especially considering the synchronous semantics, is
based on the use of a central scheduler component to co-ordinate the runs of the individual
components, using a central clock. However, in the approach chosen, synchronicity of
communication is achieved by the implementation of the communication channels and
ports buffering at most one element. In our view, this approach has two main advantages
over using a central scheduler:
• Having each component run independently is closer to the intuition of a distributed sys-

tem of autonomous components.
• Due to the flexibility of this approach changes in the code generation algorithms are

minimised when using a different semantics. In order use an asynchronous semantics,
where the components communicate using buffered channels of an arbitrary (but lim-
ited) length, mainly the channel and port classes provided in our framework have to be
adapted to buffer data, the code generation process in this case is almost unaffected.

In the following sections we will briefly sketch how the code generation maps the elements
of the AUTOFOCUS description techniques to Java language elements.

3.1.1 The Structure: Components, Ports, and Channels
The components of a distributed system in AUTOFOCUS are individual entities. Each one of
them has its own behaviour (specified by an STD), its own set of communication ports, and
its own data attributes.

For each component, a separate Java class is generated. This is mainly due to decision 4
outlined above. By encoding the behaviour of a component “hard-wired” into its execu-
tion method, this method is naturally different among different components. A more gen-
eral approach, using instantiation of a pre-defined component class, with a state transition
table object encoding the component’s behaviour, would be more elegant, but much more
complex as well.

The generated component classes are, however, derived from a common abstract base
class FocusComponent that provides the essential protocols for the component to be exe-
cuted within a Java thread and to be embedded into an environment (see also section 3.2)
for simulation.

The data attributes as well as the ports associated with components are represented as at-
tributes in the generated class. Thus, a part of the generated class for the Controller compo-
nent from our example looks like this:

class Controller extends FocusComponent {
 protected int T;

 public IntPort TL = new IntPort("TL");
 public IntPort PL = new IntPort("PL");
 public BooleanPort BAI = new BooleanPort("BAI");
 public BooleanPort BAS = new BooleanPort("BAS");
 public BooleanPort BBI = new BooleanPort("BBI");
 public BooleanPort BBS = new BooleanPort("BBS");

 public Controller(String ident) {
 super(ident);
 state = "Init"; // set initial state
 }

 public void run() {...} // for this method, see section 3.1.3
 }

Obviously, all data associated with the Controller component are represented by protected
member variables.

The current state of a component is represented by a String-valued attribute defined in
the base class FocusComponent. It is set to its initial value as specified in the component’s
STD in the constructor.

All ports are declared public. Since they naturally define a component’s interface to its
environment, they are known to the environment, which is reflected in the Java code as well.
Java does not offer the possibility to declare generic classes (known as templates in C++).
Thus, for each data type in a distributed system, a separate port class handling that data type
has to be explicitly generated (IntPort and BooleanPort in our example). Again, these gen-
erated port classes can be derived from a pre-defined class that offers basic functionality.
Relying on the consistency of the system specification, an alternative approach is possible
by converting all data to a String representation before sending them and re-converting
them to the original format upon reception. In our view, however, such an approach is less
elegant than the previously mentioned solution.

Ports have a set of operations to allow components to read data from them or to write
data to them. In case of an IntPort these operations are
• public void write(int val) writes an int value to the port.
• public void clear() deletes any values previously present on the port.
• public boolean available() reports if a valid input value is available on the port.
• public int read() reads the value from the port.

In AUTOFOCUS, channels connect two ports. Channels have an associated data type de-
scribing the type of data sent on them. Thus the problem caused by Java’s lack of generic
classes outlined above for the ports applies here as well. A separate channel class has to be
generated for each data type used in the system.

Channels propagate data produced by a component on a port during a transition of the
component’s STD to the destination component’s input port. In case of a flat, not hierar-
chically refined component network, this process is straightforward. The originating port
writes the data to the channel, the channel in turn writes the data to the input port, making
them available for the destination component to process. However, in a network of hierar-
chically refined components, which will be the usual case in practice, this solution is not suf-
ficient. The data to be transmitted has to arrive at its destination “immediately”, even
though it has to pass a possibly large number of ports connected by a sequence of channels,
as defined in the SSDs (see, e.g., Figure 3).

CompA.A

CompA.B

CompA
CompB

CompB.A

CompB.A.A

CompB.A.B

Figure 3. Hierarchical Component Network

In this network the sub-components CompA.A and CompA.B as well as CompB.A.A and
CompB.A.B are directly connected, whereas the sub-components CompA.B and
CompB.A.A are connected via a sequence of channels and ports belonging to their super-
components CompA, CompB, and CompB.A. In this case, the generated code must ensure
that data sent from CompA.B to CompB.A.A across several port and channel objects arrives
“immediately” as well. This is accomplished by two properties in the generated code:
• Ports, upon reception of data (from the actions associated with a transition in an STD or

from an incoming channel), immediately try to write the data to the outgoing channel,
provided there is an outgoing channel. If there is none, then the port belongs to a leaf
component that is not further refined by a network of sub-components.

• Channels write data received from an incoming port directly to their corresponding out-
going port which has to exist, otherwise the system would not have passed the consistency
check.

The resulting cascade of write() method calls ensures that the data is actually transferred
to the destination component in time for the next execution step.

3.1.2 Data Type Definitions
As stated above, data associated with system components are converted to instance variables
of the corresponding component classes in Java. In this conversion, a canonical mapping
between the AUTOFOCUS basic data types and Java is used. For instance, the built-in types
Bool, Char, and Int are mapped to their respective counterparts boolean, char, and int
(primitive data types) in Java. AUTOFOCUS Strings are mapped to String objects in Java, Lists
are converted to Vector objects. Tuple types available in AUTOFOCUS can be straightfor-
wardly represented in Java by classes with public attributes corresponding to the elements
(and types of the elements) in the tuple. Simple user-defined data types, like enumeration-
style data types, are used frequently. In our traffic lights example, the declaration

data TLS = R | Y | G | RY;
can be represented in Java either by mapping the individual values to int or by wrapping
them up as symbolic, yet integer-valued constants, in a separate class:

class TLS {
public static final int R = 1;
public static final int Y = 2;
public static final int G = 3;
public static final int RY = 4;

}

The constants can then be accessed by their symbolic name, like, e.g., TLS.RY. Other user-
defined data types can easily become very complex and thus difficult to convert to Java
classes.

In any of these mappings, the operations on the AUTOFOCUS data types, that are, e.g.,
specified within textual pre- or post-conditions annotated to transitions in an STD (see also
section 3.1.3), have to be parsed and then expressed using the operations and methods
available for the respective primitive data types and classes in Java.

3.1.3 State Transition Diagrams
State transition diagrams describe component behaviour depending on the internal state
(both the control state in the sense of a finite automaton state and the state of a component’s
variables) and on the input data received on the input channels of the component. A transi-
tion is selected depending on the current control state, the state of the variables and the data
read on the input ports. A transition can result in a change of the internal state and in data
being written to the output channels. Based on the underlying synchronous semantics, one
execution step of a component, i.e., of its STD, consists of the following steps:
• Read all available data from all input channels.
• Select an applicable transition; selection is done non-deterministically if more than one

transition is applicable.
• Fire a transition, if possible; change the local variables and produce data for the output

channels, if necessary.
• Write all available data to all output channels. These data are then available for process-

ing in the next step.
From the graphical representation of STDs in AUTOFOCUS and their textual annotations to
the transitions “hard-wired” Java code is generated, in the form of nested if clauses that
cover all specified combinations of states and available inputs. This code, which actually
provides the implementation of a component behaviour, makes up the main part of the
run() method of the generated component classes. For the Controller component in our
example, a part of the “generated” code might look like this (see Figure 2 for a compari-
son with the graphical notation):

public void run() {
 String newState = "";

 while (true) {
 while (!ready()); // (1)
 if (state == "Init") {
 // pre-condition always true:
 if (true) {
 BAS.read();
 BBS.read();
 TL.write(TLS.G);
 PL.write(PLS.R);
 BAI.write(false);
 BBI.write(false);
 // set the target state:
 newState = "Green";
 } // no alternative transitions here
 } else if (state == "Green") {
 if (T == 0 && // (2)
 BAS.available() && BAS.read() == true) { // (3)
 BBS.read();
 TL.clear(); // (4)
 PL.clear()
 BAI.write(true);
 BBI.write(true);
 T = 20; // (5)

newState = "Green"; // (6)
 } else if (T == 0 &&
 BBS.available() && BBS.read() == true) {
 ...
 } ...
 } else if (state == "Yellow") {
 ...
 } ...
 // notify an observer:
 // (see section 3.2 for this)
 notifyObservers(new StateTransition(state, newState)); // (7)
 // effectively set the new state:
 state = newState; // (8)
 }
 }

Obviously, the first level of if clauses covers all states in the STD, whereas the second level
includes, for each state, all specified pre-conditions and input combinations.

Each iteration of the run() method first waits until all input ports have received their
new values from the channels connected to them (see label 1). This is achieved by a method
ready() that checks whether all ports have been assigned their new input values.
In case a transition can fire, i.e., its pre-condition is satisfied (2) and the values available on
the input ports correspond to the expected values (3), the output values are written to the
output ports (4). Note that ports that no data is written to are explicitly cleared and that ports
that not data needs to be read from to satisfy the input pattern are explicitly read from as
well. These two mechanisms, together with corresponding status flags in the ports ensure
synchronicity in the distributed system. The post-conditions specified for the transition are
then evaluated, i.e., executed (5). Upon completion, the new state of the component is stored
in a temporary variable (6), and then finally, the new state becomes the current state of the

component (8). The reason (7) for this delayed assignment of the state (6, 8) will be ex-
plained in section 3.2.

3. 2 Simulation and Embedding
In this approach, simulating a distributed system for the purpose of validation basically con-
sists of executing the generated code. For typical requirements of simulation, like visualising
the progress of runs of components, stopping, restarting, or resetting the control and data
state of components, additional functionality has to be generated. Within the component
classes, hooks have to be provided to insert calls to visualisation tools in order to regularly
update a visual representation of the states of components. To provide user control over the
simulation run, methods must be included in the component classes to stop, suspend, and
resume a run, and to view and alter the data variables of the components.

To accomplish this we use a Model/View design pattern [GHJV94] provided by the Java
libraries, namely the Observable class and the Observer interface. An Observable is an ob-
ject that maintains a list of Observer objects interested, e.g., in changes in the state of the Ob-
servable. Using a standardised notification mechanism, the Observable object can notify its
Observer objects about events of interest, optionally passing along objects as parameters that
provide more detailed information about the events.

To notify a simulation environment, into which the generated code is embedded, about
events that have to be visualised, the FocusComponent class is derived from Observable. By
defining a class

class StateTransition {
 public String previous;
 public String current;
 public StateTransition(String prev, String curr) {
 previous = prev;
 current = curr;
 }
}

an object of this class can be created upon completion of every transition performed by a
component and subsequently sent to Observers in the simulation environment. An observer
implemented by an STD viewer for that component could then highlight the graphic repre-
sentation of the new state reached by the transition.

In the opposite direction, this Model/View concept is applicable as well. By deriving con-
trol elements within the simulation environment from Observable and by implementing the
Observer interface in FocusComponent or in the thread executing a run of a component,
user interactions like stopping, suspending, and resuming the runs of individual components
can be realised.

To visualise simulation runs in the format of graphical runtime protocols, e.g., as com-
munication histories of the components involved, EETs can be used. These can be generated
using the same mechanism as described above. Upon each sending and reception of data, an
Observer object responsible for recording the communications in the system is notified, to-
gether with information about source and destination components as well as the actual data
been sent.

3. 3 Implementation
Currently, some very simple manually converted examples exist as “proof of feasibility”
for the code generation process. A subset of the ideas outlined in the previous sections is
currently implemented in a practical project course in software engineering at TU München
by a group of students during the 1997 summer term. Within this course, general
AUTOFOCUS data types and their mapping to Java will not yet be realised. A simplified ver-
sion is implemented with only simple Java data types and basic operations on them in CDDs
and in STD pre- and post-conditions instead of general data types and operations.

4. Future Work
In this paper we are primarily interested in using generated Java code for validation pur-
poses. Therefore, questions about how to generate Java code that can be directly used to im-
plement functionality of embedded controller systems, or even directly downloaded into

such systems are not treated here. With upcoming real-time Java environments2 this task be-
comes more and more important for the future development of AUTOFOCUS.

However, code generation as the goal of systems development can only be an integral
part of a formal development process if the target language is based on semantic founda-
tions as strong as the description techniques used to specify and design the system. Without
these, the generated code can only be used to validate system properties on a semiformal
basis. Thus a semantics for Java on a formal basis is required for a consistent development
process from specification to code generation. Ongoing projects aiming at a formalisation
of Java are a possible basis for this in the future.

5. Bibliography
[Fla96] Flanagan, D. Java in a Nutshell. O’Reilly & Associates, Inc. Sebastopol, CA,

1996
[GHJV94] Gamma, E. Helm, R. Johnson, R. Vlissides, J. Design Patterns: Micro-

Architectures for Reusable Object-Oriented Design. Addison-Wesley, 1994
[GKRB96] Grosu, R. Klein, C. Rumpe, B. Broy. M. State Transition Diagrams. Technical

Report TUM-I9630. Technische Universität München, 1996.
[Har90] Harel, D. StateMate: A Working Environment for the Development of Com-

plex Reactive Systems, IEEE Transactions on Software Engineering. 16:403-
413. 1990.

[HSE97] Huber, F. Schätz, B. Einert, G. Consistent Graphical Specification of Distrib-
uted Systems. To appear in proceedings of FME’97.

[HSS96] Huber, F. Schätz, B. Spies, K. AutoFocus - ein Werkzeug zur Beschreibung
verteilter Systeme. In: Herzog, U. Hermanns, H. (eds.) Formale Beschreibung-
stechniken für verteilte Systeme. Proceedings of the 6th GI/ITG Colloquium.
Universität Erlangen-Nürnberg, 1996.

[HSSS96] Huber, F. Schätz, B. Schmidt, A. Spiesk, K. AutoFocus-A Tool for Distributed
System Specification. In: Bengt, J. Parrow, J. (eds.) Proceedings FTRTFT´96.
Lecture Notes in Computer Science 1135, Springer 1996, pp. 476-470.

[Int96] International Telecommunication Union, Geneva. Message Sequence Charts
1996. ITU-T Recommendation Z.120. Geneva, 1996

[Jon91] Jones, M.P. Introduction to Gofer 2.20. Technical Report. Yale University,
1991

[SGW94] Selic, B. Gullekson, G. Ward, P. Real-Time Object-Oriented Modeling. John
Wiley & Sons, Inc. 1994

2 e.g.: PERC (Portable Executive for Reliable Control), see: http://www.newmonics.com/WebRoot/
technologies/PERC.html

