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Abstract

In this position statement we outline the key ideas behind Hybrid Sequence
Charts (HySCs) along an example system taken from the automotive industry.
HySCs are a visual description technique for communication in hybrid systems
inspired by the well known Message Sequence Charts syntax. However, they
have a completely different semantic model that is well suited for the applica-
tion domain of hybrid systems. As modeling example we consider a scenario
taken from the specification of an electronic height control system, which is
used to adjust the chassis level of a car. HySCs can be advantageously used
in the early phases of the system development process. In particular, in the
requirements capture phase they can help to improve the dialog between cus-
tomers and application experts. HySCs complement existing formalisms like
hybrid automata by focusing on the interaction between the system’s compo-
nents. A detailed presentation of HySCs together with their formal semantics

is given in [6].

1 Introduction

Requirements engineering for embedded systems usually necessitates to take intrin-

sic properties of the system’s environment into account. In many cases, e.g. in
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ABS systems of cars, the environment is characterized by discrete transitions be-
tween different modes of continuous behavior. From an abstract point of view even
some parts of the system itself may exhibit a mixture of discrete and continuous
behavior. As requirements engineering is typically performed on a high level of ab-
straction, requirements specification for such embedded systems necessitates hybrid
description techniques, i.e. techniques which are able to specify both discrete and
continuous dynamics. In further development steps the continuous properties of the
system and its environment can then be transformed into timing requirements for
the system. Note that hybrid systems generalize real time systems by considering

further physical quantities apart from time.

While a considerable number of description techniques for the behavior of hybrid
systems has been developed in recent years (see e.g. [5] as a starting point), little
work has been done to directly visualize the interaction between the components of
a hybrid system. Inspired by the beneficial role interaction based description tech-
niques, like [7, 8, 3, 2], play in the requirements specification of telecommunication
and, more generally, object-oriented systems, we developed hybrid sequence charts

(HySCs) in the attempt to carry over these advantages to hybrid systems [6].

HySCs may be seen as relatives of trajectories and timing diagrams. Trajectories
probably are the most basic approach to visualizing a system’s evolution. They
consist of drawing plots of the evolution of the system’s variables over the time axis
(Fig. 1, top left). A more abstract description is obtained if we partition the time
axis for each variable into qualitatively equivalent intervals and give a predicate
describing the evolution within the respective interval (Fig. 1, bottom left). The
result resembles timing diagrams [1], which are widely used in hardware design,
and constraint diagrams [4]. With HySCs we want to emphasize the sequence of
qualitative states each component of a hybrid system traverses in a system run. We
therefore make a further abstraction step and use only one partitioning of the time
axis into qualitatively equivalent intervals for each component of a system. In each

partition all the component’s variables evolve as specified by some predicate.

As the syntax of HySCs we adapt a subset of MSC-96 [7]. Besides the intuitive
notation, this has the further advantage that developers can use standard syntax-
directed graphic editors for their specifications. The semantics of HySCs, how-
ever, significantly differs from the semantics proposed for MSCs. In the semantic
model used for HySCs a hybrid system is regarded as consisting of a set of time-

synchronously operating components, each encapsulating a private state and com-
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Figure 1: Description techniques for the interaction in hybrid systems.

municating with the other components over shared variables. The behavior of a
component is characterized in this model by periods where the values of the vari-
ables change smoothly and by time instants at which there are discontinuities (see
Fig. 1, top left). In our approach the discontinuities are caused by discrete actions.
The smooth periods are caused by analog activities. The formal semantics of HySCs
is given in [6].

In the following we sketch the main principles of HySCs along an example scenario
of an electronic height control system. The purpose of this system is to keep the
chassis level of a car within a prescribed tolerance interval by means of a pneumatic

suspension system. The system is taken from a former case study together with

BMW AG [9].

2 A Typical Scenario of the EHC

The scenario in Fig. 1, right, depicts the interaction in the EHC system when it
changes from a state in which it had to decrease the chassis level to a state in which

the chassis level is within the required bounds again.

The HySCs has one abstract time axis (the vertical lines in the figure) for each
each of the considered components. Here, we consider a filter component Filter, a
delay component D, and the controller component Control. The filter prepares the

chassis level, as measured by sensors, for the controller. Depending on the filtered



chassis level the controller decides whether the chassis level has to be increased,
decreased, or left constant during the next time interval between two expirations
of its local timer. The delay component adds a certain delay to the signals the

controller sends to the filter.

Before we explain the diagram in Fig. 1, right, we have to sketch some of the
basic ideas behind HySC. In HySCs we use horizontal arrows to denote events. An
event arrow is drawn whenever one of the variables of the component at the arrows
origin reaches a value which may trigger a discrete action in the component at the
arrows destination. As the execution of an action by a component may depend on
the values of more than one of its input variables, a component usually receives a
sequence of events, before it executes an action which possibly results in sending

further events.

During the time intervals where no event occurs, all variables in the system evolve
smoothly. Graphically we draw angular condition bozes which refer to predicates
that describe the variables’ evolution in the respective interval. Condition boxes
may be local to one component or hierarchical, in which case they constrain the
evolution of the variables of all those components whose instance axes they cover.
A condition box remains valid up to the next condition box on the same level of
hierarchy. Basically, condition boxes indicate the state of a component, or of a set

of components, in the case of hierarchic conditions.

HySC d2i of Fig. 1, right, starts with global condition down which is refined into the
local conditions greater and a_dec for the filter and the controller, respectively.
Condition down characterizes the global system state in which the chassis level is
decreased by the controller, greater indicates that the filtered chassis level is above
the tolerance interval, and a_dec specifies that (and by what extent) the chassis level
is being decreased. Furthermore, it states that the controller’s timer has not yet

expired.

With event d21 we denote that the filter value has just reached the tolerance interval.
Condition inside determines that the value remains inside the interval. The next
event arrow t_o refers to a predicate which denotes that the controller’s timer has
just expired. Together with the current value of the filtered chassis level being inside
the tolerance interval this causes an action of the controller to be executed. The
action results in the event set which resets the timer, and the event reset which
signals the filter via the delay component that the filter’s variables must be reset

to certain predefined values.



After these events the filtered chassis level is still within the tolerance interval (con-
dition inside), the controller is in a state where it does not modify the chassis
level and waits for the next timer expiration (condition a_const). The global con-
dition inTol refers to a predicate denoting that the controller leaves the chassis

level unchanged.

We use coregions, visually depicted as dashed regions of an instance axis, to denote
that the events within the region occur simultaneously. Thus, in our example the
events t_o, set and reset occur at the same time. Furthermore, we use the timeout
and set-timer symbols from MSC-96 in HySCs (see the arrows labeled t_o and
set). We regard them as macros which are reduced to conditions and events over

continuous variables, as explained in [6].

3 Conclusion and Outlook

In this position statement we have motivated interaction based description tech-
niques for hybrid systems. Along an example scenario we informally introduced
hybrid Sequence Charts (HySCs) as a concrete visual formalism for the communi-
cation in hybrid systems. HySCs syntax is inspired by the standardized syntax of
MSC-96. Their semantics, however, is substantially different from standard MSCs.

A detailed description of HySCs is given in [6]. In order to specify the composition
of HySCs, [6] additionally introduces High-level HySCs (HHSCs), whose syntax is
also inspired in part from MSC-96. To make HHSCs applicable in the context of
hybrid systems [6] furthermore provides notation for expressing preemption, which

is an important concept for embedded systems.
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