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Abstract� Functional speci�cations have been used to specify and verify designs of a
number of reactive� discrete systems� In this paper we extend this speci�cation style
to deal with real�time and hybrid systems� As mathematical foundation we employ
Banach�s �xed point theory in metric spaces� The goal is to show that the theory used
for discrete functional speci�cations smoothly carries over to real�time and hybrid
systems� An example of a thermostat speci�cation illustrates the method�

� Introduction

Hybrid systems are dynamical systems consisting of both discrete and contin�
uous components� They are used to model the behavior of embedded real�time
systems in a physical environment� Recently� a number of description and spec�
i�cation languages for reactive and	or real�time systems together with their
proposed methodology for analysis� veri�cation� and re�nement were extended
to deal with hybrid systems� For example� for model checking purposes a the�
ory of hybrid automata has been developed 
ACH����� TLA has been extended
to TLA
 
Lam���� I	O Automata have been extended to describe hybrid sys�
tems 
LSVW���� and there are many other 
GNRR��� AKNS��� hybrid descrip�
tion techniques�

In this paper we extend the formalism of functional speci�cation 
BDD����
Bro��� to deal with real�time and hybrid systems� Functional speci�cations de�
scribe the behavior of a system as a network of functions� where every function
processes in�nite streams of incoming messages and yields in�nite streams of
outgoing messages� In the discrete setting� several approaches have been taken
to give functional speci�cations a semantics�

� In 
Bro��� domain theory is used to develop a semantic model for discrete
stream processing functions together with a tailored re�nement methodology�

� In 
GS��� metric spaces are employed to give a semantics for functionally
speci�ed� discrete mobile data��ow networks�

We follow the second approach and extend the static parts of 
GS��� to a descrip�
tion and speci�cation method for hybrid systems� Our goal is to show that only

� This work is partially sponsored by the German Federal Ministry of Education and
Research �BMBF� as part of the compound project �KorSys	 and by BMW �Bay�
erische Motoren Werke AG��



slight modi�cations must be carried through� so that the whole theory smoothly
carries over to the hybrid world�

The paper is organized as follows� Section � introduces stream processing func�
tions and relates them to the corresponding notions in the theory of metric
spaces� In Section � composition operators are de�ned that are used to build
networks out of single functions� In particular� the mathematical foundation of
the feedback operator is presented� Finally� Section � illustrates the speci�cation
method with the simple example of a thermostat�

� Speci�cation with Stream Processing Functions

We regard a distributed system as a network of components that exchange mes�
sages via directed channels� On every input or output channel messages are
received from� or sent to� the environment� Therefore� every channel re�ects
an input or output communication history of the system� The system itself is
described by a set of functions� where each function processes input histories
and produces output histories according to its speci�cation� To describe under�
speci�cation or nondeterminism we use sets of functions instead of single func�
tions�

��� Dense Communication Histories

Communication histories of discrete systems can be modeled by sequences of
messages� i�e�� functions of type IN � M � where M denotes the set of all mes�
sages 
Bro��� BDD����� For hybrid systems this model has to be extended to
incorporate real time� One possibility is to add real time stamps� In the literature
this is known as sampling semantics 
MP���� Here� instead� we develop a super
dense semantics and therefore introduce real time or dense streams�

Let M be the �potentially in�nite� set of all messages� A dense stream x over a
set M is represented by a total function x � IR� � M � where IR� denotes the
set of all non�negative real numbers� Since we describe reactive systems� which
continuously respond to stimuli from the environment� time never halts� and we
use IR� as the time scale instead of time intervals� The set of all dense streams is
denoted by M IR� � For every dense stream x we abbreviate the restriction xj���t�
by x�t�

In order to motivate the usefulness of this de�nition we have adapted the exam�
ple of a thermostat from 
ACH����� where it is presented by means of hybrid
automata�

Example � Dense Stream� The temperature of a room in a cool environment can
be modeled by a dense stream x� We assume that without the presence of any
heater� the temperature decreases according to the exponential function x�t� �
�e�Kt� where t denotes the time� � the initial temperature� and K is a positive
constant determined by the room�



A mathematical treatment of functional speci�cations requires dealing with feed�
back loops� In the discrete case� dealing with streams of type IN � M � the
semantics of such loops has been successfully described as least �xed points of
functions over domains 
Bro��� BDD����� The underlying mathematical model
is Scott�s domain theory 
SG��� Win���� Fixed points of stream processing func�
tions over dense streams� however� are more naturally and elegantly described
by the �xed point theory of Banach� It is based upon the mathematical back�
ground of metric spaces� In order to specify loops of stream processing functions
in Section �� we therefore introduce the main concepts of metric space theory�

De�nition � Metric Space� A metric space is a pair �D� d� consisting of a
nonempty set D and a mapping d � D �D � IR� called a metric or a distance�
which has the following properties�

��� �x� y � D � d�x� y� � � � x � y

��� �x� y � D � d�x� y� � d�y� x�
��� �x� y� z � D � d�x� y� � d�x� z� 
 d�z� y��

We need a metric for dense streams� which is de�ned in the sequel�

De�nition � The Baire Metric of Streams� The Baire metric space of dense
streams �M IR� � d� is for all x� y �M IR� de�ned as follows �see 
Eng�����

d�x� y� � inff��t j t � IR� � x�t � y�tg�

From this de�nition a metric d�n� for n�tuples of streams �M IR��n can be easily
derived� Let n � IN and x� y � �M IR��n then d�n��x� y� is de�ned as

d�n��x� y� � maxfd�xi� yi� j � � i � ng�

A metric space �D� d� is called complete whenever each Cauchy sequence con�
verges to an element of D 
Eng���� The Baire metric space on stream tuples
��M IR��n� d�n��� we consider in this paper� is complete 
Eng���� Complete met�
ric spaces are a presupposition for Banach�s �xed point theorem� This theorem�
which will be explained later on� guarantees � under certain assumptions �
the existence of a unique �xed point of loops in functional speci�cations�

��� Stream Processing Functions

Components of real time or hybrid systems can be functionally speci�ed by
stream processing functions over dense streams� First ideas in this area come
from system theory 
MT���� Components are connected by directed channels to
form a network� Each channel links an input port to an output port� A �m�n��ary
stream processing function with m input and n output ports is a function f with

f � �M
IR�

� �m � �M
IR�

� �n
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Fig� �� Stream Processing Function

whereM� andM� represent two �not necessarily di�erent� sets of messages� The
graphic notation of f is pictured in Fig� �� If we want to express some kind of
nondeterminism we describe components by a set of stream processing functions
rather than by a single function�

Our operational understanding that stream processing functions model interact�
ing components leads to a basic requirement for them� An interactive component
is not capable to take back an output message that it has already emitted� This
requirement can be ful�lled by a certain kind of stream processing functions�
namely behaviors�

A stream processing function is said to be a behavior if its input until time t

completely determines its output until time t� It is said to be a delayed behavior if
its input until time t completely determines its output until time t
 � for � � ��
In other words� a delayed behavior imposes a delay of at least an arbitrarily
small real value between input and output� Here� � denotes the delay of f � It
is quite realistic to assume components to be delayed because reactive systems
always need a certain time to react� Instantaneous reactions� however� can be
expressed by �non�delayed� behaviors�

De�nition � �Delayed� Behavior� A �m�n��ary stream processing function
f is called a behavior if

�x� y � �M IR��m� t � IR� � x�t � y�t� f�x��t � f�y��t

and a delayed behavior �with delay � � �� if

�x� y � �M IR��m� t � IR� � x�t � y�t� f�x���t
 �� � f�y���t
 ���

Note that the operator� is overloaded to stream tuples in a point�wise style� i�e��
x�t for a stream tuple x � �M IR��m denotes the tuple we get by applying �t to
each component of x�

The equivalent property in Scott�s theory is monotonicity� From a theorem by
Knaster and Tarski it is well�known that monotonic functions over complete
partial orders have a least �xed point 
Win����



We model speci�cations by sets of �delayed� behaviors� They can be composed
into networks of functions� which themselves behave as �delayed� behaviors� For
this purpose� we will introduce three composition operators in the next section�
For one of them� the feedback operator� the existence of a unique �xed point of
the feedback loop is guaranteed only for delayed behaviors� To prove this formally
we introduce a notion corresponding to delayed behaviors in metric space theory�

De�nition � Lipschitz Functions� Let �D�� d�� and �D�� d�� be metric spaces
and let f � D� � D� be a function� We call f a Lipschitz function if there is a
constant c 	 � such that the following condition is satis�ed for all x� y � D��

d��f�x�� f�y�� � c 
 d��x� y��

The Lipschitz constant Lip�f� of a Lipschitz function f is denoted by the in��
mum of all c that ful�ll the above mentioned inequation� If Lip�f� � � we call
f non�expansive� If Lip�f� � � we call f contractive�

The following theorem relates the notions of behaviors and delayed behaviors to
non�expansiveness and contractivity� Whereas the �rst ones have a operational
justi�cation� the latter ones represent their transfer to metric space theory and
will be used as a requirement for Banach�s �xed point theorem�

Theorem	� A stream processing function is a delayed behavior i� it is contrac�
tive with respect to the metric of stream tuples� A stream processing function is
a behavior i� it is non�expansive with respect to the metric of stream tuples�

Proof� We prove the �rst statement of the theorem� First� we prove the only�
if�direction� Suppose that d�m��x� y� � ��t� and that f is a delayed behavior
with delay �� d�m��x� y� � ��t� implies that x � t� � y � t�� Therefore� f�x� �
�t� 
 �� � f�y� � �t� 
 ��� Finally� we get inff��t j t � IR� � f�x� � t � f�y� �
tg � ���t���� � ��� 
 d�m��x� y�� Since ��� � � for all � � �� f is contractive�

Now� we prove the if�direction� Suppose that d�m��x� y� � ��t� � d�n��f�x�� f�y�� �
��t� � and that f is contractive� i�e�� �c � � � �x� y � d�n��f�x�� f�y�� � c 

d�m��x� y�� As c � � we can �nd a positive � such that ��� � c� Then �t��t� � c �
���� This implies because of the monotonicity of the logarithmic function that
t�
� � t�� As a consequence we get x�t� � y�t� � f�x���t�
�� � f�y���t�
��
because f�x� � t� � f�y� � t� implies f�x� � �t� 
 �� � f�y� � �t� 
 ��� In other
words� f is a delayed behavior� The second equivalence can be proven accord�
ingly�

� Composition Operators

The de�nition of networks is the main structuring principle on the functional
speci�cation level� There is no �semantical� di�erence in principle between a
single component and a network of components� A network can be de�ned ei�
ther by recursive equations or by special composition operators� We choose the



second alternative and consider three basic composition operators� namely se�
quential�parallel composition and feedback�

In our functional speci�cation technique� networks of components can be rep�
resented by directed graphs� where the nodes represent components and the
edges represent point�to�point� directed communication channels �see� for in�
stance� Fig� ���

��� Sequential Composition

Sequential composition is simply de�ned by functional composition of two stream
processing functions� The graphic representation of this composition is pictured
in Fig� ��

De�nition 
 Sequential Composition� Let f and g be �m�n��ary and �n� k��
ary stream processing functions� respectively� Then f �g is the �m� k��ary stream
processing function de�ned by �f � g��x� � g�f�x���
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Fig� �� Sequential Composition

The following theorem and corollary depict important properties of the sequen�
tial composition�

Theorem�� The sequential composition of two Lipschitz functions f � D� � D�

and g � D� � D� is a Lipschitz function with constant Lip�f� 
 Lip�g��

Proof�

d��g�f�x���� g�f�x���� � Lip�g� 
 d��f�x��� f�x��� ���

� Lip�g� 
 Lip�f� 
 d��x�� x��� ���



Corollary �� The sequential composition of two behaviors is a behavior� The se�
quential composition of two delayed behaviors with delays �� and ��� respectively�
is a delayed behavior with delay ��
��� The sequential composition of a behavior
and a delayed behavior is a delayed behavior�

Due to the above theorem� the proof of this corollary is obvious�

��� Parallel Composition

The parallel composition is de�ned intuitively� Sticking two components orthog�
onally together yields a component which input	output ports consists of all
input	output ports of the composed components �see Fig� ��� Formally�

De�nition 
 Parallel Composition� Let f and g be �m�n��ary and �k� l��ary
stream processing functions� Then fkg is the �m
k� n
l��ary stream processing
function de�ned by

�fkg��x�� � � � � xm�k� � �f�x�� � � � � xm�� g�xm��� � � � � xm�k���

... ...
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n l

f g

fkg

Fig� �� Parallel Composition

As for the sequential composition� an equivalent property can also be formulated
for the parallel composition�

Theorem��� The parallel composition of two behaviors is a behavior� The par�
allel composition of two delayed behaviors with delays �� and ��� respectively� is
a delayed behavior with delay min���� ���� The parallel composition of a behavior
and a delayed behavior is a behavior�

Proof� We prove the second statement of the theorem� Let f be a �m�n��ary
delayed behavior with delay �� and g be a �k� l��ary delayed behavior with delay
��� Without loss of generality we assume that �� � ��� Let x� y � �M IR��k� then
g�x�� �t 
 ��� � g�y�� �t
 ��� implies that g�x�� �t
 ��� � g�y�� �t
 ���� The
other statements can be proven accordingly�



Note that the sequential composition of a behavior and a delayed behavior is a
delayed behavior� whereas the parallel composition of a behavior and a delayed
behavior is �only� a behavior�

��� Feedback Operator

Systems described by functional speci�cations may contain loops� In the graphic
notation� this is denoted by circular graphs �Fig� ��� The feedback operator
feeds k output channels back to k input channels of a �m
 k� n
 k��ary delayed
behavior�

De�nition �� Feedback Operator� Let f � �M
IR�

� �m��M IR��k � �M
IR�

� �n�
�M IR��k be a �m
 k� n
 k��ary delayed behavior� Then �kf is a �m�n��ary de�
layed behavior such that the value �z�� � � � � zn� of ��

kf��x�� � � � � xm� is calculated
as follows�

�z�� � � � � zn� y�� � � � � yk� � f�x�� � � � � xm� y�� � � � � yk�

where �y�� � � � � yk� is the solution of the equation

�y�� � � � � yk� � g�x������xm��y�� � � � � yk��

Here g�x������xm� is de�ned as a �k� k��ary delayed behavior�

g�x������xm��y�� � � � � yk� � �n���n�k�f�x�� � � � � xm� y�� � � � � yk��

where �n���n�k denotes the projection on the last k ports�
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Fig� �� Feedback Operator



The central issue of our contribution is that the �xed point operator is well�
de�ned� i�e�� that the unique solution of

�y�� � � � � yk� � g�x������xm��y�� � � � � yk�

exists� The existence of this �xed point is guaranteed by Banach�s �xed point
theorem�

Theorem�� Banach�s Fixed Point Theorem� Let �D� d� be a complete met�
ric space and f � D � D a contractive function� Then there exists an x � D�
such that the following holds	

��� x � f�x� �x is a �xed point of f�
��� �y � D � y � f�y�� y � x �x is unique�
��� �z � D � x � limn��f

n�z� where
f��z� � z

fn���z� � f�fn�z��

Proof� For instance� see 
Sut����

In the context of this paper� we can apply Banach�s theorem in the following way�
First of all� the metric space ��M IR��k � d�k�� is complete� Secondly� f is a �m 

k� n
k��ary delayed behavior and therefore contractive� Remember that f need
not to be a basic stream processing function� but can also be a composed� delayed
behavior� Moreover� also g�x������xm� � �M IR��k � �M IR��k is by de�nition a
contractive function� Altogether� all assumptions of Banach�s �xed point theorem
are ful�lled and the existence of a unique �xed point �y�� � � � � yk� of g�x������xm� is
ensured� Hence� the feedback part of every delayed behavior has a unique �xed
point�

Banach�s �xed point theorem is the counterpart of Knaster	Tarski�s �xed point
theorem in the theory of metric spaces� However� note that Knaster	Tarski�s
theorem only guarantees the existence of a least �xed point� i�e�� that potentially
more than one �xed point can exist� In contrast� Banach�s �xed point theorem
guarantees the existence of a unique �xed point�

Again it is a straightforward proof to show that the feedback �kf is a delayed
behavior� provided that f is a delayed behavior�

� Example

In this section we give a functional speci�cation of a thermostat� a simple hy�
brid system used as an introductory example in 
ACH����� The temperature of
a room is controlled by a thermostat� which continuously senses the temperature
and turns a heater on and o�� The temperature is governed by di�erential equa�
tions� When the heater is o�� the temperature Temp of the environment� denoted
by the dense stream x� decreases according to the function x�t� � �e�Kt �see
Example ��� When the heater is on� the temperature of the environment follows



the function x�t� � �e�Kt 
 h�� 
 e�Kt�� where h is a constant that depends
on the power of the heater� � is the initial temperature of the room� and K

is a constant determined by the environment� K can be considered to be direct
proportional to the geometric size of the room� We wish to keep the temperature
between min and max degrees and turn the heater on and o� accordingly�

��� Thermostat as Open System

The controlling part of the resulting system for this informal description is shown
in Fig� �� The system consists of the two components Control and Heater� The
�rst one is described by a function fC of type

fC � TempIR� � fon� o�gIR�

that produces signals o� or on� if the incoming stream of temperature signals
overshoots max or undershoots min� respectively� These signals serve as an input
stream for the Heater fH �

fC � fH

fC fH
x � TempIR� y � fon� o�gIR� z � f
� hgIR�

Fig� �� Thermostat Modeled as Open System

fH � fon� o�gIR� � f�� hgIR�

that produces the corresponding heating power� which can be � or h� Note that
we model only the heating power of the heater� but not the resulting absolute
temperature� The temperature of the room is regarded as part of the system�s
environment� This is di�erent from 
ACH����� where the temperature is an inher�
ent part of the system description� Therefore� the environment is there modeled
as part of the system�

In fact� the model of hybrid automata does not emphasize on an interface concept
to the environment� so that 
ACH���� describes merely closed systems without
dividing the overall speci�cation into system and environment� The advantage
of our approach is its modularity� which allows us to separate the environment
from the system speci�cation� This is one of the essential issues of our approach�
The application of our functional speci�cation method to the thermostat example



shows that indeed only the environment behaves continuously� The system itself�
i�e�� Controller and Heater behave as value�discrete components� They produce
signals on� o�� �� and h� The environment� however� is characterized by the
temperature� which is denoted by a real�valued �Temp� stream� In the sequel�
we give the precise speci�cations of the components Control and Heater� First
of all� we de�ne Control�

fC�x� � y

where the output stream y � fon� o�gIR� is for all t � IR� de�ned as follows�

x�t� � min � y�t
 �C� � on

x�t� 	 max � y�t
 �C� � o�

min � x�t� � max� y�t
 �C� � y�t��

Here �C � � denotes the delay of the component Control� However� this speci�
�cation leaves the value y�t� in the interval 
�� �C� unspeci�ed� We can abolish
this under�speci�cation by simply de�ning y�t� � o� in this interval� Now� we
specify the Heater�

fH�y� � z

where the output stream z � f�� hgIR� is for all t � IR� de�ned as follows�

y�t� � o�� z�t
 �H� � �
y�t� � on � z�t
 �H� � h�

Again� to avoid under�speci�cation� we de�ne z�t� � � for t � 
�� �H�� The whole
thermostat can then be described using the sequential composition

fC � fH �

This function has delay �C 
 �H according to Corollary ��

��� Thermostat as Closed System

To model the continuous part of the speci�cation� we add the environment to it�
yielding a closed system �Fig� ���

fE � f�� hgIR� � TempIR�

Env is speci�ed as a component that cools the temperature down according to
the exponential function �e�Kt �see also Example ��� if the Heater is o�� When
it is on� the temperature follows the function �e�Kt
h��
 e�Kt�� We combine
these two functions to one function x�t� � �e�Kt 
 z�t� 
 ��
 e�Kt� and get�

fE�z� � x

where the output stream x � TempIR� is de�ned by the di�erential equation�

x��t� � z�t�
K�x�t�



fHfC

fE

���fC � fH � fE�

x � TempIR� y � fon� o�gIR� z � f
� hgIR�

Fig� �� Thermostat Modeled as Closed System

where x��t� denotes the �rst di�erentiation of x�t�� fE and fC �fH form a closed
system in the shape of a feedback�

���fC � fH � fE��

This function is well�de�ned� as the occurring �xed point is uniquely determined
according to our theory in Section �� as fC �fH is contractive with delay �C
�H �
fC � fH � fE is contractive according to Corollary �� even if fE has no delay at
all� Therefore Banach�s �xed point theorem can be applied�

� Conclusion and Further Work

We have shown that the speci�cation formalism of discrete timed stream process�
ing functions can easily be extended to deal with real�time and hybrid systems�
We could give functional speci�cations with feedback a semantical foundation by
introducing the concept of delayed behaviors that allows us to employ Banach�s
�xed point theorem� Characteristic of our approach is that our functional model
naturally re�ects the physical and conceptual structure of the system and its en�
vironment� In particular� it is possible to distinguish clearly between system and
environment� In the thermostat example this structural clarity has been docu�
mented� Furthermore� we have the impression that the concept of well�known
mathematical functions leads to a simple and clear speci�cation style� Moreover�
this generic approach ful�lls the major requirement for any reasonable modeling
formalism� namely modularity� In the discrete case a veri�cation methodology
by �structural� behavioral� and interface� re�nements is well studied and un�
derstood� It is work in progress to carry over these results to our setting� It
would also be interesting to analyze another type of streams as functions of type
IN �M � IR� yielding a sampling semantics�
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