Functional Specification of Real-Time and
Hybrid Systems *

Olaf Miiller Peter Scholz
Institut fiir Informatik, Technische Universitit Miinchen
D-80290 Miinchen, Germany

E-mail: {mueller,scholzp}@informatik.tu-muenchen.de

Abstract. Functional specifications have been used to specify and verify designs of a
number of reactive, discrete systems. In this paper we extend this specification style
to deal with real-time and hybrid systems. As mathematical foundation we employ
Banach’s fixed point theory in metric spaces. The goal is to show that the theory used
for discrete functional specifications smoothly carries over to real-time and hybrid
systems. An example of a thermostat specification illustrates the method.

1 Introduction

Hybrid systems are dynamical systems consisting of both discrete and contin-
uous components. They are used to model the behavior of embedded real-time
systems in a physical environment. Recently, a number of description and spec-
ification languages for reactive and/or real-time systems together with their
proposed methodology for analysis, verification, and refinement were extended
to deal with hybrid systems. For example, for model checking purposes a the-
ory of hybrid automata has been developed [ACH'95], TLA has been extended
to TLA+ [Lam93], I/O Automata have been extended to describe hybrid sys-
tems [LSVWO95], and there are many other [GNRR93, AKNS95] hybrid descrip-
tion techniques.

In this paper we extend the formalism of functional specification [BDD193,
Bro93] to deal with real-time and hybrid systems. Functional specifications de-
scribe the behavior of a system as a network of functions, where every function
processes infinite streams of incoming messages and yields infinite streams of
outgoing messages. In the discrete setting, several approaches have been taken
to give functional specifications a semantics:

— In [Bro93] domain theory is used to develop a semantic model for discrete
stream processing functions together with a tailored refinement methodology.

— In [GS96] metric spaces are employed to give a semantics for functionally
specified, discrete mobile data-flow networks.

We follow the second approach and extend the static parts of [GS96] to a descrip-
tion and specification method for hybrid systems. Our goal is to show that only

* This work is partially sponsored by the German Federal Ministry of Education and
Research (BMBF) as part of the compound project “KorSys” and by BMW (Bay-
erische Motoren Werke AG).



slight modifications must be carried through, so that the whole theory smoothly
carries over to the hybrid world.

The paper is organized as follows: Section 2 introduces stream processing func-
tions and relates them to the corresponding notions in the theory of metric
spaces. In Section 3 composition operators are defined that are used to build
networks out of single functions. In particular, the mathematical foundation of
the feedback operator is presented. Finally, Section 4 illustrates the specification
method with the simple example of a thermostat.

2 Specification with Stream Processing Functions

We regard a distributed system as a network of components that exchange mes-
sages via directed channels. On every input or output channel messages are
received from, or sent to, the environment. Therefore, every channel reflects
an input or output communication history of the system. The system itself is
described by a set of functions, where each function processes input histories
and produces output histories according to its specification. To describe under-
specification or nondeterminism we use sets of functions instead of single func-
tions.

2.1 Dense Communication Histories

Communication histories of discrete systems can be modeled by sequences of
messages, i.e., functions of type IN — M, where M denotes the set of all mes-
sages [Bro93, BDD"93]. For hybrid systems this model has to be extended to
incorporate real time. One possibility is to add real time stamps. In the literature
this is known as sampling semantics [MP93]. Here, instead, we develop a super
dense semantics and therefore introduce real time or dense streams.

Let M be the (potentially infinite) set of all messages. A dense stream x over a
set M is represented by a total function z : IR — M, where IR, denotes the
set of all non-negative real numbers. Since we describe reactive systems, which
continuously respond to stimuli from the environment, time never halts, and we
use IR, as the time scale instead of time intervals. The set of all dense streams is
denoted by M™%+, For every dense stream z we abbreviate the restriction |[0,¢)
by z|t.

In order to motivate the usefulness of this definition we have adapted the exam-
ple of a thermostat from [ACH'95], where it is presented by means of hybrid
automata.

Ezxample 1 Dense Stream. The temperature of a room in a cool environment can
be modeled by a dense stream x. We assume that without the presence of any
heater, the temperature decreases according to the exponential function z(t) =
Oe~ Kt where t denotes the time, © the initial temperature, and K is a positive
constant determined by the room.



A mathematical treatment of functional specifications requires dealing with feed-
back loops. In the discrete case, dealing with streams of type IN — M, the
semantics of such loops has been successfully described as least fixed points of
functions over domains [Bro93, BDD*93]. The underlying mathematical model
is Scott’s domain theory [SG90, Win93]. Fixed points of stream processing func-
tions over dense streams, however, are more naturally and elegantly described
by the fixed point theory of Banach. It is based upon the mathematical back-
ground of metric spaces. In order to specify loops of stream processing functions
in Section 3, we therefore introduce the main concepts of metric space theory.

Definition 1 Metric Space. A metric space is a pair (D,d) consisting of a
nonempty set D and a mapping d : D x D — IR, called a metric or a distance,
which has the following properties:

()Ve,yeD: d(z,y)=0 <& =xz=y

(2)Vz,y e D: d(z,y) =d(y,z)

(8) Vz,y,2 € D 1 d(z,y) < d(z,z) +d(z,y).

We need a metric for dense streams, which is defined in the sequel.

Definition 2 The Baire Metric of Streams. The Baire metric space of dense
streams (MF+ d) is for all 2,y € ME+ defined as follows (see [Eng77]):

d(z,y) =inf{27t|t€ Ry ANz|t=ylt}.

From this definition a metric d(™ for n-tuples of streams (M T+)" can be easily
derived. Let n € IN and z,y € (M™+)" then d™ (z,y) is defined as

d™ (z,y) = maz{d(z;,y;) | 1 <i<n}.

A metric space (D,d) is called complete whenever each Cauchy sequence con-
verges to an element of D [Eng77]. The Baire metric space on stream tuples
((M™+)7 d™), we consider in this paper, is complete [Eng77]. Complete met-
ric spaces are a presupposition for Banach’s fixed point theorem. This theorem,
which will be explained later on, guarantees — under certain assumptions —
the existence of a unique fixed point of loops in functional specifications.

2.2 Stream Processing Functions

Components of real time or hybrid systems can be functionally specified by
stream processing functions over dense streams. First ideas in this area come
from system theory [MT75]. Components are connected by directed channels to
form a network. Each channel links an input port to an output port. A (m,n)-ary
stream processing function with m input and n output ports is a function f with

fo Q™ = ()



Fig. 1. Stream Processing Function

where M; and M, represent two (not necessarily different) sets of messages. The
graphic notation of f is pictured in Fig. 1. If we want to express some kind of
nondeterminism we describe components by a set of stream processing functions
rather than by a single function.

Our operational understanding that stream processing functions model interact-
ing components leads to a basic requirement for them. An interactive component
is not capable to take back an output message that it has already emitted. This
requirement can be fulfilled by a certain kind of stream processing functions,
namely behaviors.

A stream processing function is said to be a behavior if its input until time ¢
completely determines its output until time ¢. It is said to be a delayed behavior if
its input until time ¢ completely determines its output until time ¢ + § for § > 0.
In other words, a delayed behavior imposes a delay of at least an arbitrarily
small real value between input and output. Here, § denotes the delay of f. It
is quite realistic to assume components to be delayed because reactive systems
always need a certain time to react. Instantaneous reactions, however, can be
expressed by (non-delayed) behaviors.

Definition 3 (Delayed) Behavior. A (m,n)-ary stream processing function
f is called a behavior if

Va,y € (MB)", t€ Ry :alt =ylt = f(z)lt = f(y) It
and a delayed behavior (with delay § > 0) if

Va,y € (M) t € Ry sawlt =ylt= f(z)L(t+0) = f(y) L(t+9).

Note that the operator | is overloaded to stream tuples in a point-wise style, i.e.,
x|t for a stream tuple z € (M ™+)™ denotes the tuple we get by applying ¢ to
each component of z.

The equivalent property in Scott’s theory is monotonicity. From a theorem by
Knaster and Tarski it is well-known that monotonic functions over complete
partial orders have a least fixed point [Win93].



We model specifications by sets of (delayed) behaviors. They can be composed
into networks of functions, which themselves behave as (delayed) behaviors. For
this purpose, we will introduce three composition operators in the next section.
For one of them, the feedback operator, the existence of a unique fixed point of
the feedback loop is guaranteed only for delayed behaviors. To prove this formally
we introduce a notion corresponding to delayed behaviors in metric space theory.

Definition 4 Lipschitz Functions. Let (D1, d;) and (D2, d>) be metric spaces
and let f: Dy — Dy be a function. We call f a Lipschitz function if there is a
constant ¢ > 0 such that the following condition is satisfied for all z,y € D;:

dy(f (), f(y)) < c-dilz,y).

The Lipschitz constant Lip(f) of a Lipschitz function f is denoted by the infi-
mum of all ¢ that fulfill the above mentioned inequation. If Lip(f) < 1 we call
f mon-expansive. If Lip(f) < 1 we call f contractive.

The following theorem relates the notions of behaviors and delayed behaviors to
non-expansiveness and contractivity. Whereas the first ones have a operational
justification, the latter ones represent their transfer to metric space theory and
will be used as a requirement for Banach’s fixed point theorem.

Theorem 5. A stream processing function is a delayed behavior iff it is contrac-
tive with respect to the metric of stream tuples. A stream processing function is
a behavior iff it is non-expansive with respect to the metric of stream tuples.

Proof. We prove the first statement of the theorem. First, we prove the only-
if-direction. Suppose that d(™ (z,y) = 2% and that f is a delayed behavior
with delay 6. d"™ (z,y) = 27% implies that = |ty = y | to. Therefore, f(z) |
(to +0) = f(y) L (to + 6). Finally, we get inf{27" |t € Ry A f(z) 1t = f(y) !
t} <2 (to+9) = 2-0 . q(m) (g y). Since 2% < 1 for all § > 0, f is contractive.
Now, we prove the if-direction. Suppose that d™ (z,y) = 2%, d™ (f(z), f(y)) =
27t and that f is contractive, i.e., 3¢ < 1 : Va,y : d™(f(z),f(y)) < c-
d™ (z,y). As ¢ < 1 we can find a positive § such that 2% = ¢. Then 201~% < ¢ =
279 This implies because of the monotonicity of the logarithmic function that
t14+0 < ts. As aconsequence we get zlt; = ylt1 = f(z)l(t1+6) = f(y)d (t1+6)
because f(z)lta = f(y) | t2 implies f(z) | (t1 +0) = f(y) | (t1 + J). In other
words, f is a delayed behavior. The second equivalence can be proven accord-
ingly.

3 Composition Operators

The definition of networks is the main structuring principle on the functional
specification level. There is no (semantical) difference in principle between a
single component and a network of components. A network can be defined ei-
ther by recursive equations or by special composition operators. We choose the



second alternative and consider three basic composition operators, namely se-
quential/parallel composition and feedback.

In our functional specification technique, networks of components can be rep-
resented by directed graphs, where the nodes represent components and the
edges represent point-to-point, directed communication channels (see, for in-
stance, Fig. 2).

3.1 Sequential Composition

Sequential composition is simply defined by functional composition of two stream
processing functions. The graphic representation of this composition is pictured
in Fig. 2.

Definition 6 Sequential Composition. Let f and g be (m,n)-ary and (n, k)-
ary stream processing functions, respectively. Then fog is the (m, k)-ary stream
processing function defined by (f o g)(z) = g(f(x))-

Fig. 2. Sequential Composition

The following theorem and corollary depict important properties of the sequen-
tial composition:

Theorem 7. The sequential composition of two Lipschitz functions f : Dy — Dy
and g : Dy — D3 is a Lipschitz function with constant Lip(f) - Lip(g).

Proof.



Corollary 8. The sequential composition of two behaviors is a behavior. The se-
quential composition of two delayed behaviors with delays §, and 0, respectively,
is a delayed behavior with delay 61 + d2. The sequential composition of a behavior
and a delayed behavior is a delayed behavior.

Due to the above theorem, the proof of this corollary is obvious.

3.2 Parallel Composition

The parallel composition is defined intuitively. Sticking two components orthog-
onally together yields a component which input/output ports consists of all
input/output ports of the composed components (see Fig. 3). Formally:

Definition 9 Parallel Composition. Let f and g be (m,n)-ary and (k,[)-ary
stream processing functions. Then f||g is the (m+k, n+1)-ary stream processing
function defined by

(f”g)(ml: .- '7xm+k) = (.f(mla s 7mm)vg(mm+17 .- '7xm+k))'

Fig. 3. Parallel Composition

As for the sequential composition, an equivalent property can also be formulated
for the parallel composition:

Theorem 10. The parallel composition of two behaviors is a behavior. The par-
allel composition of two delayed behaviors with delays §1 and do, respectively, is
a delayed behavior with delay min(d1,02). The parallel composition of a behavior
and a delayed behavior is a behavior.

Proof. We prove the second statement of the theorem. Let f be a (m,n)-ary
delayed behavior with delay d; and g be a (k,[)-ary delayed behavior with delay
d>. Without loss of generality we assume that §; < &>. Let z,y € (MF+)* then
g(x) L(t + d2) = g(y) | (t + 02) implies that g(z)] (t+ 1) = g(y) L (t + 61). The
other statements can be proven accordingly.



Note that the sequential composition of a behavior and a delayed behavior is a
delayed behavior, whereas the parallel composition of a behavior and a delayed
behavior is “only” a behavior.

3.3 Feedback Operator

Systems described by functional specifications may contain loops. In the graphic
notation, this is denoted by circular graphs (Fig. 4). The feedback operator
feeds k output channels back to k input channels of a (m + k,n + k)-ary delayed
behavior.

Definition 11 Feedback Operator. Let f : (M1R+)m><(M’R+)k — (M2R+)”><
(M™+)k be a (m + k,n + k)-ary delayed behavior. Then u* f is a (m,n)-ary de-
layed behavior such that the value (zy,...,2,) of (u¥ f)(z1,...,2,) is calculated
as follows:

(217"'7Zn7y17"'7yk) :f(wla"'axmayla"'ayk)

where (y1,...,yx) is the solution of the equation

(yl; o )yk) = g(ml,...,xm)(yly o )yk)

Here g(4,,....2,,) is defined as a (k, k)-ary delayed behavior:

m

g(zl,...,zm)(yla s 7yk) = 7Tn+17n+k(f($1, e Tmy Y1, - - 7yk))

where 7,41 041 denotes the projection on the last k ports.

,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 4. Feedback Operator



The central issue of our contribution is that the fixed point operator is well-
defined, i.e., that the unique solution of

(yl; o )yk) = g(ml,...,xm)(yly o )yk)

exists. The existence of this fixed point is guaranteed by Banach’s fixed point
theorem:

Theorem 12 Banach’s Fixed Point Theorem. Let (D,d) be a complete met-
ric space and f : D — D a contractive function. Then there exists an x € D,
such that the following holds:
(1) z = f(x) (z is a fized point of f)
2)VyeD: y=f(y) = y=uz (zis unique)
(B)Vze D: x =1limy o0 f"(2) where
fola) ==
i (z) = f(f(2)

Proof. For instance, see [Sut75].

In the context of this paper, we can apply Banach’s theorem in the following way.
First of all, the metric space ((MT+)* d*)) is complete. Secondly, f is a (m +
k,n+ k)-ary delayed behavior and therefore contractive. Remember that f need
not to be a basic stream processing function, but can also be a composed, delayed
behavior. Moreover, also g(z,,...2,,) : (ME+)k — (ME+)* is by definition a
contractive function. Altogether, all assumptions of Banach’s fixed point theorem
are fulfilled and the existence of a unique fixed point (y1,...,yx) of 9(z,,....2,.) 18
ensured. Hence, the feedback part of every delayed behavior has a unique fixed
point.

Banach’s fixed point theorem is the counterpart of Knaster/Tarski’s fixed point
theorem in the theory of metric spaces. However, note that Knaster/Tarski’s
theorem only guarantees the existence of a least fixed point, i.e., that potentially
more than one fixed point can exist. In contrast, Banach’s fixed point theorem
guarantees the existence of a unique fixed point.

Again it is a straightforward proof to show that the feedback u* f is a delayed
behavior, provided that f is a delayed behavior.

4 Example

In this section we give a functional specification of a thermostat, a simple hy-
brid system used as an introductory example in [ACH'95]. The temperature of
a room is controlled by a thermostat, which continuously senses the temperature
and turns a heater on and off. The temperature is governed by differential equa-
tions. When the heater is off, the temperature T'emp of the environment, denoted
by the dense stream z, decreases according to the function z(t) = @e~K?t (see
Example 1). When the heater is on, the temperature of the environment follows



the function z(t) = @e Kt + h(1 — e K?), where h is a constant that depends
on the power of the heater, @ is the initial temperature of the room, and K
is a constant determined by the environment. K can be considered to be direct
proportional to the geometric size of the room. We wish to keep the temperature
between min and max degrees and turn the heater on and off accordingly.

4.1 Thermostat as Open System

The controlling part of the resulting system for this informal description is shown
in Fig. 5. The system consists of the two components Control and Heater. The
first one is described by a function fo of type

fo : Temp™+ — {on, off} B+

that produces signals off or on, if the incoming stream of temperature signals
overshoots max or undershoots min, respectively. These signals serve as an input
stream for the Heater fy:

Fig. 5. Thermostat Modeled as Open System

fr - {on,off} B+ — {0, h}F+

that produces the corresponding heating power, which can be 0 or h. Note that
we model only the heating power of the heater, but not the resulting absolute
temperature. The temperature of the room is regarded as part of the system’s
environment. This is different from [ACH™T 95], where the temperature is an inher-
ent part of the system description. Therefore, the environment is there modeled
as part of the system.

In fact, the model of hybrid automata does not emphasize on an interface concept
to the environment, so that [ACH95] describes merely closed systems without
dividing the overall specification into system and environment. The advantage
of our approach is its modularity, which allows us to separate the environment
from the system specification. This is one of the essential issues of our approach.
The application of our functional specification method to the thermostat example



shows that indeed only the environment behaves continuously. The system itself,
i.e., Controller and Heater behave as value-discrete components. They produce
signals on, off, 0, and h. The environment, however, is characterized by the
temperature, which is denoted by a real-valued (T'emp) stream. In the sequel,
we give the precise specifications of the components Control and Heater. First
of all, we define Control:

fe(z) =y
where the output stream y € {on,off} ¥+ is for all + € IR, defined as follows:
z(t) < min = y(t +dc) =on
x(t) > max = y(t + dc) = off

min < z(t) < max = y(t + dc) = y(¢).

Here d¢ > 0 denotes the delay of the component Control. However, this speci-
fication leaves the value y(t) in the interval [0, d¢) unspecified. We can abolish
this under-specification by simply defining y(¢) = off in this interval. Now, we
specify the Heater:

fuly) ==

where the output stream z € {0, h} B+ is for all t € IR, defined as follows:

y(t) =off = z(t + dg) =0
y(t) =on = z(t+ dg) = h.

Again, to avoid under-specification, we define z(t) = 0 for t € [0, dr). The whole
thermostat can then be described using the sequential composition

foo fm.

This function has delay §¢ + dg according to Corollary 1.

4.2 Thermostat as Closed System

To model the continuous part of the specification, we add the environment to it,
yielding a closed system (Fig. 6):

fe : {0, A} B+ — Temp®+

Env is specified as a component that cools the temperature down according to
the exponential function @e~? (see also Example 1), if the Heater is off. When
it is on, the temperature follows the function ©e Xt + h(1 — e %%). We combine
these two functions to one function z(t) = @e Kt + 2(¢) - (1 — e K?) and get:

fe(z) =«
where the output stream z € Temp™+ is defined by the differential equation:

z'(t) = 2(t) — KOxz(t)



Ml(fc o fuyo fE)

x € Temp™+ y € {on, off} 7+ z € {0, h} 1+

Fig. 6. Thermostat Modeled as Closed System

where z'(t) denotes the first differentiation of z(t). fr and fo o fy form a closed
system in the shape of a feedback:

u' (fo o fu o fE).

This function is well-defined, as the occurring fixed point is uniquely determined
according to our theory in Section 3: as fc o fg is contractive with delay d¢ 4+,
fo o fu o fg is contractive according to Corollary 1, even if fr has no delay at
all. Therefore Banach’s fixed point theorem can be applied.

5 Conclusion and Further Work

We have shown that the specification formalism of discrete timed stream process-
ing functions can easily be extended to deal with real-time and hybrid systems.
We could give functional specifications with feedback a semantical foundation by
introducing the concept of delayed behaviors that allows us to employ Banach’s
fixed point theorem. Characteristic of our approach is that our functional model
naturally reflects the physical and conceptual structure of the system and its en-
vironment. In particular, it is possible to distinguish clearly between system and
environment. In the thermostat example this structural clarity has been docu-
mented. Furthermore, we have the impression that the concept of well-known
mathematical functions leads to a simple and clear specification style. Moreover,
this generic approach fulfills the major requirement for any reasonable modeling
formalism, namely modularity. In the discrete case a verification methodology
by (structural, behavioral, and interface) refinements is well studied and un-
derstood. It is work in progress to carry over these results to our setting. It
would also be interesting to analyze another type of streams as functions of type
IN - M x IR, yielding a sampling semantics.



Acknowledgment

Thanks are owed to Manfred Broy who provided first ideas concerning both
dense streams and behaviors. The authors have benefited from many discussion
with Ketil Stglen and from the technical report by Radu Grosu and Ketil Stglen.

References

[ACH"95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analy-
sis of hybrid systems. Theoretical Computer Science, 138(1):3-34, 1995.

[AKNS95] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry. Hybrid Systems II, vol-
ume 999. Springer Verlag, 1995. Lecture Notes in Computer Science.

[BDD193] M. Broy, F. Dederichs, C.Dendorfer, M. Fuchs, T.F. Gritzner, and
R. Weber. The Design of Distributed Systems: An Introduction to Focus
— Revised Version. Technical Report TUM-19202-2, Technische Universitat
Miinchen, Fakultat fir Informatik, 80290 Miinchen, Germany, 1993.

[Bro93] M. Broy. Interaction Refinement — The Easy Way. In M. Broy, editor,
Program Design Calculi, volume 118 of NATO ASI Series F: Computer and
System Sciences. Springer, 1993.

[Eng77] R. Engelking. General Topology. PWN - Polish Scientific Publishers, 1977.

[GNRRY3] R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel. Hybrid Systems,
volume 736. Springer Verlag, 1993. Lecture Notes in Computer Science.

[GS96] R. Grosu and K. Stglen. A Model for Mobile Point-to-Point Dataflow Net-
works without Channel Sharing. In Proc. of the 5th International Confer-
ence on Algebraic Methodology and Software Technology AMAST’96, Mu-
nich, volume 1101 of Lecture Notes in Computer Science, pages 513-519,
1996. Also available as Technical Report TUM-19527, Technische Univer-
sitdt Miinchen.

[Lam93] L. Lamport. Hybrid Systems in TLA+. In R.L. Grossman et al., editor,
[GNRRYJ5], 1993.

[LSVW95] N. Lynch, R. Segala, F. Vaandrager, and H.B. Weinberg. Hybrid I/O au-
tomata. Technical Report CS-R9578, CWI, Computer Science Department,
Amsterdam, 1995. Available under http://www.cs.kun.nl/"fvaan/.

[MP93] Z. Manna and A. Pnueli. Verifying Hybrid Systems. In Grossman et al.,
editor, [GNRR93], 1993.

[MT75] M.D. Mesarovic and Y. Takahara. General Systems Theory: Mathematical
Foundations, volume 113. Academic Press, 1975. Mathematics in Science
and Engineering.

[SG90] D. Scott and C. Gunter. Semantic Domains and Denotational Semantics.
In Handbook of Theoretical Computer Science, chapter 12, pages 633 — 674.
Elsevier Science Publisher, 1990.

[Sut75]  W. A. Sutherland. Introduction to metric and topological spaces. Claredon
Press - Oxford, 1975.

[Win93] G. Winskel. The Formal Semantics of Programming Languages. The MIT
Press, 1993.

This article was processed using the BTEX macro package with LLNCS style



