Higher-Order Narrowing with Definitional Trees

Michael Hanus! and Christian Prehofer?

! Informatik II, RWTH Aachen, D-52056 Aachen, Germany
hanus@informatik.rwth-aachen.de
2 Fakultat fir Informatik, TU Minchen, D-80290 Miinchen, Germany
prehofer@informatik.tu-muenchen.de

Abstract. Functional logic languages with a sound and complete opera-
tional semantics are mainly based on narrowing. Due to the huge search
space of simple narrowing, steadily improved narrowing strategies have
been developed in the past. Needed narrowing is currently the best nar-
rowing strategy for first-order functional logic programs due to its opti-
mality properties w.r.t. the length of derivations and the number of com-
puted solutions. In this paper, we extend the needed narrowing strategy to
higher-order functions and A-terms as data structures. By the use of def-
initional trees, our strategy computes only incomparable solutions. Thus,
it is the first calculus for higher-order functional logic programming which
provides for such an optimality result. Since we allow higher-order logical
variables denoting A-terms, applications go beyond current functional and
logic programming languages.

1 Introduction

Functional logic languages [7] with a sound and complete operational semantics
are mainly based on narrowing. Narrowing, originally introduced in automated
theorem proving [20], is used to solve goals by finding appropriate values for vari-
ables occurring in arguments of functions. A narrowing step instantiates variables
in a goal and applies a reduction step to a redex of the instantiated goal. The
instantiation of goal variables is usually computed by unifying a subterm of the
goal with the left-hand side of some rule.

Ezample 1. Consider the following rules defining the less-or-equal predicate on
natural numbers which are represented by terms built from 0 and s:

0 <X = true
$(X) <0 — false
s(X)<s(Y) = X <Y

To solve the goal s(X) <Y, we perform a first narrowing step by instantiating Y
to s(Y7) and applying the third rule, and a second narrowing step by instantiating
X to 0 and applying the first rule:

S(X)SY Y is(Y1)} X <Y ~x0} true

Since the goal is reduced to true, the computed solution is {X — 0,V +— s(¥7)}.

Due to the huge search space of simple narrowing, steadily improved narrowing
strategies have been developed in the past. Needed narrowing [2] is based on the
idea to evaluate only subterms which are needed in order to compute some result.
For instance, in a goal t; < tq, it is always necessary to evaluate ¢ (to some head
normal form) since all three rules in Example 1 have a non-variable first argument.
On the other hand, the evaluation of ¢5 is only needed if ¢; is of the form s(--).
Thus, if ¢; 18 a free variable, needed narrowing instantiates it to a constructor,
here 0 or s. Depending on this instantiation, either the first rule is applied or the
second argument ¢ is evaluated. Needed narrowing is the currently best narrowing
strategy for first-order functional logic programs due to its optimality properties
w.r.t. the length of derivations and the number of computed solutions [2]. More-
over, 1t can be efficiently implemented by pattern-matching and unification due to
its local computation of a narrowing step (see, e.g., [8]).

In this paper, we extend the needed narrowing strategy to higher-order func-
tions and A-terms as data structures. We introduce a class of higher-order in-
ductively sequential rewrite rules which can be defined via definitional trees. Al-
though this class is a restriction of general higher-order rewrite systems, it covers
higher-order functional languages. As higher-order rewrite steps can be expensive
in general, we show that finding a redex with inductively sequential rules can be
performed as in the first-order case.

Since our narrowing calculus LNT is oriented towards previous work on higher-
order narrowing [19], we show in the first part that LNT coincides with needed
narrowing in the first-order case. For the higher-order case, we show soundness
and completeness with respect to higher-order needed reductions, which we define
via definitional trees. Furthermore, we show that the calculus is optimal w.r.t. the
solutions computed, i.e., no solution is produced twice. Optimality of higher-order
reductions is subject of current research. It is however shown that higher-order
needed reductions are in fact needed for reduction to a constructor normal form.

This strategy is the first calculus for higher-order functional logic programming
which provides for optimality results. Moreover, it falls back to the optimal needed
narrowing strategy if the higher-order features are not used, i.e., our calculus is a
conservative extension of an optimal first-order narrowing calculus. Since we allow
higher-order logical variables denoting A-terms, applications go beyond current
functional and logic programming languages. In general, our calculus can compute
solutions for variables of functional type. Although this is very powerful, we show
that the incurring higher-order unification can sometimes be avoided by techniques
similar to [4]. Due to lack of space, some details and the proofs are omitted. They
can be found in [9].

2 Preliminaries

We briefly introduce the simply typed A-calculus (see e.g. [10]). We assume the
following variable conventions:

— F,G, H, P, X,Y denote free variables,
— a,b,c, f, ¢ (function) constants, and

— z,y, z bound variables.

Type judgments are written as ¢ : 7. Further, we often use s and ¢ for terms and
u, v, w for constants or bound variables. The set of types T for the simply typed
A-terms is generated by a set 7g of base types (e.g., int, bool) and the function
type constructor —. The syntax for A-terms is given by

t = Fla]|c] et] (t1t2)

A list of syntactic objects s1,...,s, where n > 0 is abbreviated by 5,. For in-
stance, n-fold abstraction and application are written as AZ,.s = Axy...Ax,.s
and a(5,) = ((-+- (a s1) -+ +) sp), respectively. Substitutions are finite mappings
from variables to terms, denoted by {X,, + ¢, }, and extend homomorphically from
variables to terms. Free and bound variables of a term ¢ will be denoted as FV(¥)
and BY(t), respectively. A term t is ground if FV(¢) = {}. The conversions in
A-calculus are defined as:

— a-conversion: Az.t =, Ay.({z — y}t),
— f-conversion: (Az.s)t =3 {z — t}s, and
— n-conversion: if x ¢ FV(t), then Az.(tz) =, t.

The long Sn-normal form [14] of a term ¢, denoted by tig, is the n-expanded
form of the f-normal form of ¢. Tt is well known [10] that s =4, t iff 533 =4 1}
As long fn-normal forms exist for typed A-terms, we will in general assume that
terms are in long Br-normal form. For brevity, we may write variables in n-normal
form, e.g., X instead of AT, . X (Z,). We assume that the transformation into long
fn-normal form is an implicit operation, e.g., when applying a substitution to a
term.

A substitution € is in long Sn-normal form if all terms in the image of § are in
long An-normal form. The convention that a-equivalent terms are identified and
that free and bound variables are kept disjoint (see also [5]) is used in the following.
Furthermore, we assume that bound variables with different binders have different
names. Define Dom(f) = {X | 6X # X} and Rng(0) = Uxepome) FV(0X).
Two substitutions are equal on a set of variables W, written as § =y 6,
if o = #' v for all @ € W. The restriction of a substitution to a set of variables
W is defined as Ojya = o if @« € W and 0o = o otherwise. A substitution
6 is idempotent iff # = 0. We will in general assume that substitutions are
idempotent. A substitution ¢’ is more general than 8, written as 8 < 6, if § = o6’
for some substitution o. We describe positions in A-terms by sequences over natural
numbers. The subterm at a position p in a A-term ¢ is denoted by #|,. A term ¢
with the subterm at position p replaced by s is written as t[s],.

A term t in f-normal form is called a higher-order pattern if every free occur-
rence of a variable F' is in a subterm F'(u,) of ¢ such that the %, are n-equivalent
to a list of distinct bound variables. Unification of patterns is decidable and a
most general unifier exists if they are unifiable [12]. Examples are Az, y.F(x,y)
and Az.f(G(Az.x(2))).

A rewrite rule [14] is a pair [= r such that [is a higher-order pattern but
not a free variable, [and r are long fgr-normal forms of the same base type, and

FV() DO FV(r). Assuming a rule [— r and a position p in a term s in long
Gn-normal form, a rewrite step from s to t is defined as

s —>é,75r t & s, =00 nt=s[0r],

For a rewrite step we often omit some of the parameters [— r p and 8. It is
a standard assumption in functional logic programming that constant symbols
are divided into free constructor symbols and defined symbols. A symbol f is
called a defined symbol or operation, if a rule f(---) — ¢ exists. A construc-
tor term is a term without defined symbols. Constructor symbols and constructor
terms are denoted by ¢ and d. A term f({,) is called operation-rooted (respec-
tively constructor-rooted) if f is a defined symbol (respectively constructor). A
higher-order rewrite system (HRS) R is a set of rewrite rules. A term is in
R-normal form if no rule from R applies and a substitution 6 is R-normalized
if all terms in the image of # are in R-normal form.

By applying rewrite steps, we can compute the value of a functional expression.
However, in the presence of free variables, we have to compute values for these free
variables such that the instantiated expression is reducible. This is the motivation
for narrowing which will be precisely defined in the following sections. Narrowing is
intended to solve goals, where a goal is an expression of Boolean type that should
be reduced to the constant ¢rue. This is general enough to cover the equation
solving capabilities of current functional logic languages with a lazy operational
semantics, like BABEL [13] or K-LEAF [6], since the strict equality ~! can be
defined as a binary operation by a set of orthogonal rewrite rules (see [2, 6, 13] for
more details about strict equality). An important consequence of this restriction
on goals is the fact that during the successful rewriting of a goal the topmost
symbol 1s always an operation or the constant ¢rue. This property will be used to
simplify the narrowing calculus.

Notice that a subterm 5|p may contain free variables which used to be bound
in s. For rewriting it i1s possible to ignore this, as only matching of a left-hand
side of a rewrite rule is needed. For narrowing, we need unification and hence we
use the following construction to lift a rule into a binding context to facilitate the
technical treatment. An Fg-lifter of a term ¢ away from W is a substitution o =
{F = (pF)(T%) | F € FV(t)} where p is a renaming such that Dom(p) = FV(t),
Rng(p) "W ={}and pF .1y —» - > m > rifey:m, ..., 05 1 and F o7
A term ¢ (rewrite rule | — r) is Tg-lifted if an Tg-lifter has been applied to ¢ ({
and r). For example, {G — G'(z)} is an z-lifter of ¢(G) away from any W not
containing G.

3 First-Order Definitional Trees

Definitional trees are introduced in [1] to define efficient normalization strategies
for (first-order) term rewriting. The idea is to represent all rules for a defined

! The strict equality ¢ & ¢’ holds if t and ¢’ are reducible to the same ground constructor
term. Note that normal forms may not exist in general due to non-terminating rewrite
rules.

symbol in a tree and to control the selection of the next redex by this tree. This
technique is extended to narrowing in [2]. We will extend definitional trees to the
higher-order case in order to obtain a similar strategy for higher-order narrowing.
To state a clear relationship between the first-order and the higher-order case, we
review the first-order case in this section and present the needed narrowing calculus
in a new form. Thus, we assume in this section that all terms are first-order, i.e.,
A-abstractions and functional variables do not occur.

Traditionally [7], a term ¢ is narrowed into a term ¢’ if there exist a non-
variable position p in ¢ (i.e., t|, is not a free variable), a variant [— r of a rewrite
rule with FV(¢) N FV(I — r) = {} and a most general unifier o of ¢|, and {
such that ¢t = o(¢[r],). In this case we write t ~, t'. We write tg ~, ¢, if there
i1s a narrowing derivation tg ~+y, 11 ~rg, o ~rp, Uy With 0 = 0, - 0207,
In order to compute all solutions by narrowing, we have to apply all rules at all
non-variable subterms in parallel. Since this simple method leads to a huge and
often infinite search space, many improvements have been proposed in the past
(see [7] for a survey). A narrowing strategy determines the position where the
next narrowing step should be applied. As shown in [2], an optimal narrowing
strategy can be obtained by dropping the requirement for most general unifiers
and controlling the instantiation of variables and selection of narrowing positions
by a data structure, called definitional tree. 7 is a definitional tree with pattern
7 iff its depth 1s finite and one of the following cases holds:

T = rule(! = r), where [— r is a variant of a rule in R such that [= .

T = branch(r, o, Tk), where o0 1s an occurrence of a variable in 7, ¢ are different
constructors of the type of w|, (k > 0), and, for i = 1,... k, 7; is a definitional
tree with pattern 7[e;(Xy,)]o, where n; is the arity of ¢; and X,,, are new

distinct variables.

A definitional tree of an n-ary function f is a definitional tree 7 with pattern
f(X,), where X,, are distinct variables, such that for each rule | — r with [= f(%,,)
there is a node rule(l’ — r') in 7 with [variant of I’.? For instance, the rules in
Example 1 can be represented by the following definitional tree:

branch(X <Y, 1,rule(0 <Y — true),

branch(s(X') <VY,2,rule(s(X’) <0 = false),
rule(s(X') < s(Y') = X' <Y"))

A definitional tree starts always with the most general pattern for a defined symbol
and branches on the instantiation of a variable to constructor-headed terms, here
0 and s(X'). Tt is essential that each rewrite rule occurs only once as a leaf of the
tree. Thus, when evaluating the arguments of a term f(%,) to constructor terms,
the tree can be incrementally traversed to find the matching rule.

A function f is called inductively sequential if there exists a definitional
tree of f such that each rule node corresponds to exactly one rule of the rewrite
system R. The term rewriting system R 1s called inductively sequential if each
function defined by R is inductively sequential.

2 This corresponds to Antoy’s notion [1] except that we ignore ezempt nodes.

A definitional tree defines a strategy to apply narrowing steps.> To narrow a
term t, we consider the definitional tree 7 of the outermost function symbol of ¢
(note that, by our restriction on goals, the outermost symbol is always a Boolean
function). If 7 = rule(l — r), we apply the rule { — r to t. If T = branch(w, o, Tx),
we consider the subterm ¢|,. If ¢|, has a function symbol at the top, we narrow
this subterm (to a head normal form) by recursively applying our strategy to ¢|,.
If t|, has a constructor symbol at the top, we narrow ¢ with 7;, where the pattern
of 7; unifies with ¢. If ¢|, is a variable, we non-deterministically select a subtree
7;, instantiate t|, to the constructor of the pattern of 7; at position o, and narrow
this instance of ¢ with 7;. This strategy is called needed narrowing [2] and is
the currently best narrowing strategy due to its optimality w.r.t. the length of
derivations (if terms are shared) and the number of computed solutions.

In order to extend this strategy to higher-order functions, another representa-
tion is required since it is shown in [17] that the direct application of narrowing
steps to inner subterms should be avoided in the presence of A-bound variables.
For this purpose we transform the needed narrowing calculus into a lazy narrow-
ing calculus in the spirit of Martelli/Montanari’s inference rules. In a first step, we
integrate the definitional trees into the rewrite rules by extending the language of
terms and providing case constructs to express the concrete narrowing strategy. A
case expression has the form

case X of ¢1(Xpn,) : X1, o en(Xn,) 0 g

where X is a variable, ¢q,...,c; are different constructors of the type of X, and
X1, ..., Ay are terms possibly containing case expressions. Using such case expres-
sions, each inductively sequential function symbol can be defined by exactly one
rewrite rule. For instance, the rules for the function < defined in Example 1 are
represented by the following rule:

X <Y — case X of 0:true, s(X1): (case Y of 0: false, s(Y1): X1 <Y7)

To be more precise, we translate a definitional tree 7 into a term with case ex-
pressions by the use of the function dte(7) which is defined as follows:
dte(rule(l — 1)) =r
dte(branch(m, O,Tk)) =case 7|, of wi|o s dte(Th), ..., 7klo : dte(Tk)
where 7; 1s the pattern of 7;

If 7 is the definitional tree with pattern f(X_n) of the n-ary function f, then
F(Xn) — dte(T) is the new rewrite rule for f. A case expression case X of py : X
can be considered as a function with arity 2n + 1 where the semantics is defined

by the following n rewrite rules:*

case p; of pn : Xy = X; (i=1,...,n)

? Due to lack of space, we omit a precise definition which can be found in [2].

* To be more precise, different case functions are needed for case expressions with differ-
ent patterns, i.e., the case functions should be indexed by the case patterns. However,
for the sake of readability, we do not write these indices and allow the overloading of
the case function symbols.

Bind
e —" 7,G = o(G)

if e is not a case term and o = {Z +— e}
Case Select
case c(tn) of px : Xy = Z,G =7 o(X;) =" 7, G

where p; = c(X_n) and 0 = {X,, — tn}
Case Guess

case X of px : Xy — 7,G =7 o(X;) =" Z, (@)

where o = {X — p;}
Case Eval
case f(tn) of pr: Xx —' Z,G =7 a(X) =" X, case X of pr: X — Z,G

if f(X,) — X € R'is a rule with fresh variables,
o ={X, — ts}, and X is a fresh variable

Fig. 1. Calculus LNT for lazy narrowing with definitional trees in the first-order case

In the following, we denote by R an inductively sequential rewrite system, by R’
its translated version containing exactly one rewrite rule for each function defined
by R, and by R, the additional case rewrite rules. The following theorem states
that needed narrowing w.r.t. R and leftmost-outermost narrowing w.r.t. R’ UR.
are equivalent, where leftmost-outermost means that the selected subterm is
the leftmost-outermost one among all possible narrowing positions.®

Theorem 1. Lett be a term with a Boolean function at the top. For each needed
narrowing derwation t ~% true w.r.t. R there exists a leftmost-outermost narrow-
ing derivation t ~7, true w.r.t. R' UR. with ¢ =Fy(;) o', and vice versa.

As mentioned above, in the higher-order case we need a narrowing calculus
which always applies narrowing steps to the outermost function symbol which is
often different from the leftmost-outermost narrowing position. For this purpose,
we transform a leftmost-outermost narrowing derivation w.r.t. R’ U R, into a
derivation on a goal system G (a sequence of goals of the form ¢t —7 X) where
narrowing rules are only applied to the outermost function symbol of the leftmost
goal. This is the purpose of the inference system LNT shown in Figure 1. The
Bind rule propagates a term to the subsequent case expression. The Case rules
correspond to the case distinction in the definition of needed narrowing, where the
narrowing of a function is integrated in the Case Ewval rule. Note that the only
possible non-determinism during computation with these inference rules is in the
Case Guess rule. Since we are interested in solving goals by reduction to {rue,
we assume that the initial goal has always the form case t of true : true =" T.
We use this representation in order to provide a calculus with few inference rules.
Note that T+ true if such a goal can be reduced to the empty goal system.

5 A position p is leftmost-outermost in a set P of positions if there is no p’ € P with
p' prefix of p,orp' =¢q-t-¢ and p=y¢q-5-¢" and ¢ < j.

Theorem 2. Let t be a term with a Boolean function at the top and X a fresh
variable. For each leftmost-outermost narrowing derivation t ~+% true w.r.t. R' U
R. there exists a LNT-derivation case t of true : true —° X 2 frue 57 X
w.r.t. R' such that o' =zy) o, and vice versa.

Theorems 1 and 2 imply the equivalence of needed narrowing and the calculus
LNT. Since we will extend LNT to higher-order functions in the next section,
the results in this section show that our higher-order calculus is a conservative
extension of an optimal first-order narrowing strategy.

4 Higher-Order Definitional Trees

In the following we extend first-order definitional trees to the higher-order case.
To generalize from the first-order case, it is useful to recall the main ideas: When
evaluating the arguments of a term f(%,,) to constructor terms, the definitional tree
can be incrementally traversed to find the (single) matching rule. Tt is essential
that each branching depends on only one subterm (or argument to the function)
and that for each rigid term (non-variable headed), a single branch can be chosen.
For this purpose, we need further restrictions in the higher-order case, where we
employ A-terms as data structure, e.g., higher-order terms with bound variables
in the left-hand sides. For instance, we permit the rules

diff(Ay.y, X) -1
diff(Ay.sin(F(y)), X) = cos(F (X)) * diff(Ay.F (y), X)
diff(Ay.In(F(y)), X) — diff(xy.F(y), X)/F(X)

where diff(F, X) computes the differential of F at X.

A shallow pattern is a linear term of the form A%, .v(Hp (7)). We will use
shallow patterns for branching in trees. In contrast to the first-order case, v can
also be a bound variable.

Definition 3. 7T is a higher-order definitional tree (hdt) iff its depth is finite
and one of the following cases holds:

fT:pf:caseXoan
— T =p; :rhs,

where p; are shallow patterns with fresh variables, X is a free variable and 7, are
hdts in the first case, and rhs is a term (representing the right-hand side of a rule).
Moreover, all shallow patterns of the hdts 7,, must be pairwise non-unifiable.

We write hdts as py : X', where X' stands for a case expression or a term. To simplify
technicalities, rewrite rules f(X,) — X are identified with the hdt f(X,) : X.
With this latter form of a rule, we can relate rules to the usual notation as follows.
The selector of a tree T of the form 7 = py : X is defined as sel(7) = py. For
a node 7' in a tree 7, the constraints in the case expressions on the path to it
determine a term, which is recursively defined by the pattern function pat7r(77):

(T = sel(T") if T =7 (i.e., T' is the root)
patz(T7) = {X s sel(T")}patr (T") if T' has parent 7" = p; :case X of Tp,

Each branch variable must belong to the pattern of this node, i.e., for each node
T' =ps :case X of 7, in a tree T, X is a free variable of pat7 (T7'). Furthermore,
each leafl 7/ = p : rhs of a hdt T is required to correspond to a rewrite rule [— r,
i.e., patr (T') — rhs is a variant of { = r. 7 is called hdt of a function f if for
all rewrite rules of f there is exactly one corresponding leaf in 7.

As in the first-order case, rewrite rules must be constructor based. This
means that in a hdt only the outermost pattern has a defined symbol. An HRS,
for all of which defined symbols hdts exits, is called inductively sequential.

For instance, the rules for diff above have the hdt

diff(F, X) — case F of Ay.y 1,
Ay.sin(F'(y)) : cos(F'(X)) * diff(Ay.F'(y), X),
Mo dn(F'(y)) - diffi g (y), X)/F/(X)

Note that free variables in left-hand sides must have all bound variables of the
current scope as arguments. Such terms are called fully extended. This important
restriction, which also occurs in [16], allows to find redices as in the first-order case,
and furthermore simplifies narrowing. For instance, Flex-Flex pairs do not arise
here, in contrast to the full higher-order case [18, 19]. Consider an example for
some non-overlapping rewrite rules which do not have a hdt:

fAz.e(z)) = a
fAze.H) —=b

The problem is that for rewriting a term with these rules the full term must be
scanned. For example, if the argument to f is the rigid term Az.c(G(t)), it is not
possible to commit to one of the rules (or branches of a tree) before checking if
the bound variable z occurs inside ¢. In general, this may lead to an unexpected
complexity w.r.t. the term size for evaluation via rewriting.

We define the Tp-lifting of hdts by schematically applying the Zg-lifter to all
terms in the tree, i.e.; to all patterns, right-hand sides, and free variables in cases.

5 Narrowing with Higher-Order Definitional Trees

In the higher-order case, the rules of LNT of Section 3 must be extended to ac-
count for several new cases. Compared to the first-order case, we need to maintain
binding environments and higher-order free variables, possibly with arguments,
which are handled by higher-order unification. For this purpose, the Imitation,
the Function Guess and the Projection rules have been added in Figure 2. These
three new rules, to which we refer as the Guess Rules, are the only ones to com-
pute substitutions for the variables in the case constructs. The Case Guess rule of
the first-order case can be retained by applying Imitation plus Case Select. The
Imitation and Projection rules are taken from higher-order unification and com-
pute a partial binding for some variable. The Function Guess rule covers the case
of non-constructor solutions, which may occur for higher-order variables. It thus
enables the synthesis of functions from existing ones. Note that the selection of
a binding in this rule is only restricted by the types occurring. For all rules, we
assume that newly introduced variables are fresh, as in the first-order case.

Bind
e—' 7,4 =1 6(G)
where 0 = {Z +— ¢} and e is not a case term
Case Select
ATg.case Ay1.v(tm) of =1 ATr.o(X;) ='z.aq

P A — 2,G if p; = AJ.0(Xm(T%, 7)) and o = { X — ATk, §i-tm }

Imitation
ATr.case \y1. X (Im) of =° o(ATr.case Ay X (tm) of pn: Xn "z, G)
Pty — 2,6 if pi = AT.o(Xo(@e,90) and o = (X — Azm.c(Ho(zo)))

Function Guess
ATr.case \y1. X (Im) of =° o(ATr.case Ay X (tm) of pn @ Xn "z, G)
pn Xy — Z,G if A\Tx, 7. X (Im) is not a higher-order pattern,
0 ={X — ATp.f(Ho(Tm))}, and f is a defined function

Projection

ATr.case \y1. X (Im) of =7 o(ATr.case Ay X (tm) of pn: Xn - Z, G)
o Xy =" Z,G where 0 = {X — AT .3:(Ho(Tm)) }

Case Eval

ATg.case Ay f(Tm) of =0 ATy, gr.o(dX) - X,
P N/ Ne: ATx.case Ay X (Tr, 71) of pn : Xn -"Z,G
where o = {X,,, = ATx, yi.tm}, and
f(Xm(Tx,31)) — X is a Ty, yr-lifted rule

Fig. 2. System LNT for needed narrowing in the higher-order case

Notice that for goals where only higher-order patterns occur, there is no choice
between Projection and Imitation and furthermore Function Guess does not apply.
This special case is refined later in Section 8.

For a sequence =1 ... =0 of LNT steps, we write =, where 0 = 0, ---6;. In
contrast to the calculus in Section 3 not all substitutions are recorded for =; only
the ones produced by guessing are needed for the technical treatment. Informally,
all other substitutions only concern intermediate (or auxiliary) variables similar
to [18].

As in the first-order case, we consider only reductions to the dedicated constant
true. This is general enough to cover reductions to a term without defined symbols
¢, since a reduction { —» ¢ can be modeled by f@) —5 true with the additional
rule f(¢) — true and a new symbol f. Hence we assume that solving a goal
t =" true is initiated with the initial goal I(t) = case t of true : true —" X.

As an example, consider the goal Az.diff(Ay.sin(F(z,y)),z) —° Azr.cos(z)
w.r.t. the rules for diff and the hdt for the function x*:

XY —case Y of 1: X, s(Y): X+ X xY’

To solve the above goal, we simply add the rule f(Axz.cos(x)) — true to solve the
following goal. Since each computation step only affects the two leftmost goals, we
often omit the others.

case f(Az.diff(Ay.sin(F(z,y)),z)) of true : true —7 X

= Case Eval
case Az.diff Ay.sin(F(z,y)),z) of cos : true =" X,
case Xo of true : true — X1
= Case Eval
Az.case Ay.sin(F(x,y)) of ..., Ay.sin(G(z,y)) :...,... =" X3,
case X3 of cos : true —° Xo, case Xo of true : true —° X3
= Case Select
Ax.cos(F(z,z)) * diff \y. F(z,y),) =7 X3, case X3 of cos :true =" Xo, ...
= Bind
case Az.cos(F(z,z)) * diff(A\y.F(x,y),x) of cos : true =" Xo, ...
= Case Eval
Az.case diff Ay.F(z,y),z) of 1:cos(F(z,z)),... =" X§,...
= Case Eval
Ax.case Ay.F(z,y) of Ayy:1,... =7 X4, Az.case Xa(z) of 1:cos(F(z,z)),...

{F—=Az,y.y}
:>Projection

Az.case Ay.y of Ady.y:1,... =" Xa, Az.case X4(x) of 1:cos(x),... =" X4, ...
= Case Select

A1 =" Xy, Ax.case Xy(z) of 1:cos(x),... =" X5, ...
= Bind

Ax.case 1 of 1:cos(z),... =" X} case X} of cos :true =" Xo, ...
= Case Select =" Bind=Case Select = Bind

case true of true 1 true —° X1 =Case Setect true = X1 =ping {}

Thus, the computed solution is {F + Az, y.y}.

6 Correctness and Completeness

As in the first-order case, we show completeness w.r.t. needed reductions. We
first define needed reductions and then lift needed reductions to narrowing. In the
following we assume an inductively sequential HRS R and assume LNT is invoked
with the corresponding definitional trees.

For our purpose it is convenient to define needed reductions via LNT. Then
we show that they are in fact needed. For modeling rewriting, the Guess rules are
not needed: For LNT we have S :*>{L}}VT S’ if and only if no Guess rules are used
in the reduction. Hence no narrowing is performed. This can also be seen as an
implementation of a particular rewriting strategy.

In order to relate a system of LNT goals to a term, we associate a position p
with each case construct and a substitution 6 for all newly introduced variables on
the right. For each case expression 7 = case X of ...in arule 7' = f(X,) = X
we attach the position p of X in the left-hand side of the corresponding rewrite

rule. Formally, we define a function I7 such that {7 (f(X,) : X') yields the labeled

tree for a rule 7 = f(X,)) = A"

— I (ps s case X of Tp) = py : case, X of I (Tyn) .
where p is the position of X in patr(ps : case X of Ty)
—lr(ps:r)=ps:r

We assume in the following that definitional trees for some inductively sequential
HRS R are labeled.

The following invariant will allow us to relate a goal system with a term:

Theorem 4. For an initial goal with case. t of true : true —° X1 :*>{L}}VT S, S is
of one of the following two forms:

1. MT.casep, s of ... =" X, AT.case,, | AJXn(Z,9) of ... =" Xn_1,.. .,
MT.casep, NY.X3(Z,7) of ... =" Xa, casep, Xz of true :true =" X3

2. r =" Xpt1, \T.case,, A7 Xn41(T,9) of ... =" Xp,
MT.casep, , AYX, (T, 9) of ... =" Xn_1,...,
MT.casep, NY.X3(Z,7) of ... =" Xa, casep, Xz of true :true =" X3

Furthermore, all X,41 are distinct and each variable X; occurs only as shown
above, i.e. at most twice in ... e =" X; case X; of

Notice that the second form in the above theorem is created by a Case Select rule
application, which may reduce a case term to a non-case term, or by Case Eval
with a rule f(X_n) — r. As only the Bind rule applies on such systems, they are
immediately reduced to the first form. As we will see, the Bind rule corresponds
to the replacement which 1s part of a rewrite step. Since we now know the precise
form of goal systems which may occur, bound variables as arguments and binders
are often omitted in goal systems for brevity.

The next goal is to relate LNT and rewriting. For a goal system S, we write

S| for the normal form obtained by applying Case Eval and Case Select.

Definition5. We define an associated substitution for each goal system in-
ductively on :*>LNT3

— For an initial goal system of the form S = case. t of true : true —° X, we
define the associated substitution s = {X — ¢}.
— For the Case Eval rule on S = AZ.case, Ay.f(f) of ... =" X, G with

S = AT, g.0(X) =" X' AF.case, \g.X'(T,7) of ... =" X,G = &
we define 65 = 05 U{X' — AT.(65X)|,}.
For all other rules, the associated substitution is unchanged.

For a goal system S we write the associated substitution as fs. Notice that the
assoclated substitution is not a “solution” as used in the completeness result and
only serves to reconstruct the original term.

We can translate a goal system produced by LNT into one term as follows. The
idea is that case, t of ... —7 X should be interpreted as the replacement of the
case term ¢ at position p in 65X, ie., (sX)[t],. Extending this to goal systems
yields the following definition:

Definition 6. For a goal system S of the form
r—" X,] MT.case, sof ...—=" Xn,... case, Xo of true:true = X;
Pn P1

(where [r —" X] is optional) with associated substitution § we define the asso-

ciated term 7'(5) as (6X1)[(0X2)[. .. (6Xn(F))[0slp,. - Jpalps-

For instance, if we start with a goal system S| = case, t of true : true =" X,
then T'(S1) = ¢.

For a goal system S, we write Bind(S) to denote the result of applying the
Case Bind rule. Notice that the substitution of the Bind rule only affects the two
leftmost goals.

Lemma 7. Let S = I(t). If S| is of the form of Invariant 2, then t = T(S])
is reducible at position p = py---pn. Furthermore, if t —, t', then I(t')| =
Bind(S])].

Now, we can define needed reductions:

Definition8. A term ¢ has a needed redex p if I(¢)] is of Invariant 2 with p =
P1-Pn-

It remains to show that needed reductions are indeed needed to compute a con-
structor headed term.

Theorem 9. If ¢ reduces to true, then t has a needed redex at position p and t
must be reduced at p eventually. Otherwise, t is not reducible to true.

The next desirable result i1s to show that needed reductions are normalizing. This
is suggested from related works [15, 11], but is beyond the scope of this paper.

For a goal system .S, we call the variables that do not occur in 7'(S) dummies.
In particular, all variables on the right and all variables in selectors in patterns of
some tree in S are dummies.

Lemma10. IfS :*>€LNT {}, then 65 :*>{L}}VT i

Theorem 11 (Correctness of LNT). IfI(t) =9 . {} for atermt, then 6t —
true.

We first state completeness in terms of LNT reductions.

Lemmal2. If8S :*>{L}}VT {} and 0 is in R-normal form and contains no dummies
of 5,5 then S =4\ {} with ¢ < 4.

Theorem 13 (Completeness of LNT). If 6t — true and 0 is in R-normal
form, then I(t) =9 v {} with ¢’ < 4.

7 Optimality regarding Solutions

We show here another important aspect, namely uniqueness of the solutions com-
puted. Compared to the more general case in [19], optimality of solutions is possible
here, since we only evaluate to constructor-headed terms. For this to hold for all
subgoals in a narrowing process, our requirement of constructor-based rules is also
essential. For these reasons, we never have to chose between Case Select and Case
Eval in our setting and optimality follows easily from the corresponding result of
higher-order unification.

¢ Le., FV(8) N FV(S) = FV(T(S))

Theorem 14 (Optimality). If I(t) =4 vp {} and I(t) =4 vp {} are two differ-
ent derivations, then 6 and 6’ are incomparable.

It is also conjectured that our notion of needed reductions is optimal (this is
subject to current research [16, 15, 3]). Note, however, that sharing is needed for
optimality, as shown for the first-order case in [2].

8 Avoiding Function Synthesis

Although the synthesis of functional objects by full higher-order unification in
LNT is very powerful, it can also be expensive and operationally complex. There
is an interesting restriction on rewrite rules which entails that full higher-order
unification is not needed in LNT for (quasi) first-order goals.

We show that the corresponding result in [4] is easy to see in our context,
although lifting over binders obscures the results somewhat unnecessarily. Lifting
may instantiate a first-order variable by a higher-order one, but this is only needed
to handle the context correctly.

A term t is quasi first-order if f is a higher-order pattern without free higher-
order variables. A rule f(X,,) — X is called weakly higher-order,if every higher-
order free variable which occurs in X is in {X,}. In other words, higher-order
variables may only occur directly below the root and are immediately eliminated
when hdts are introduced in the Case Eval rule.

Theorem 15. If I(1) SoNT S where t is quasi first-order w.r.t. weakly higher-
order rules, then T(S) is quasi first-order.

As a trivial consequence of the last result, Function Guess and Projection do not
apply and Imitation is only used as in the first-order case.

9 Conclusions

We have presented an effective model for the integration of functional and log-
ic programming with completeness and optimality results. Since we do not re-
quire terminating rewrite rules and permit higher-order logical variables and A-
abstractions, our strategy is a suitable basis for truly higher-order functional logic
languages. Moreover, our strategy reduces to an optimal first-order strategy if the
higher-order features are not used. Further work will focus on adapting the explicit
model for sharing using goal systems from [19] to this refined context.

References

1. S. Antoy. Definitional trees. In Proc. of the 3rd International Conference on Alge-
braic and Logic Programming, pages 143—-157. Springer LNCS 632, 1992.

2. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In Proc. 21st
ACM Symposium on Principles of Programming Languages, pages 268-279, Portland,
1994.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Andrea Asperti and Cosimo Laneve. Interaction systems I: The theory of optimal

reductions. Mathematical Structures in Computer Science, 4:457-504, 1994.

. J. Avenhaus and C. A. Lorfa-Sdenz. Higher-order conditional rewriting and narrow-

ing. In Jean-Pierre Jouannaud, editor, st International Conference on Constraints
in Computational Logics, Munchen, Germany, September 1994. Springer LNCS 845.

. Hendrik Pieter Barendregt. The Lambda Calculus, its Syntaz and Semantics. North

Holland, 2nd edition, 1984.

. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A logic plus

functional language. Journal of Computer and System Sciences, 42(2):139-185, 1991.
M. Hanus. The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming, 19&20:583-628, 1994.

. M. Hanus. Efficient translation of lazy functional logic programs into Prolog. In

Proc. Fifth International Workshop on Logic Program Synthesis and Transformation,
pages 252-266. Springer LNCS 1048, 1995.

. M. Hanus and C. Prehofer. Higher-order narrowing with definitional trees. Technical

report 96-2, RWTH Aachen, 1996.

J.R. Hindley and J. P. Seldin. Introduction to Combinators and A-Calculus. Cam-
bridge University Press, 1986.

Jan Willem Klop. Combinatory Reduction Systems. Mathematical Centre Tracts
127. Mathematisch Centrum, Amsterdam, 1980.

Dale Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. J. Logic and Computation, 1:497-536, 1991.

J.J. Moreno-Navarro and M. Rodriguez-Artalejo. Logic programming with functions
and predicates: The language BABEL. Journal of Logic Programming, 12:191-223,
1992.

Tobias Nipkow. Higher-order critical pairs. In Proc. 6th IFEFE Symp. Logic in Com-
puter Science, pages 342-349, 1991.

Vincent van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD
thesis, Vrije Universiteit, 1994. Amsterdam.

Vincent van Oostrom. Higher-order families; 1996. In this volume.

Christian Prehofer. Higher-order narrowing. In Proc. Ninth Annual IFEE Sympo-
stum on Logic in Computer Science, pages 507-516. IEEE Computer Society Press,
1994.

Christian Prehofer. A Call-by-Need Strategy for Higher-Order Functional-Logic Pro-
gramming. In J. Lloyd, editor, Logic Programming. Proc. of the 1995 International
Symposium, pages 147-161. MIT Press, 1995.

Christian Prehofer. Solving Higher-order Fquations: From Logic to Programming.
PhD thesis, TU Minchen, 1995. Also appeared as Technical Report 19508.

J.R. Slagle. Automated theorem-proving for theories with simplifiers, commutativity,
and associativity. Journal of the ACM, 21(4):622-642, 1974.

