Specification Modules for Methodical System Development

Franz Huber, Bernhard Schitz*
Fakultat fiir Informatik, Technische Universitat Miinchen
Arcisstraf3e 21, D-80333 Miinchen, Germany
Email: {huberf]schaetz}@informatik.tu-muenchen.de

Abstract: We show how an alternative approach to document-oriented specification can
ease the system design process. By identifying the modeling concepts needed for a com-
plete system specification in an underlying conceptual model a specification can be inter-
preted as one single well-formed information complex avoiding inconsistencies as found in
document oriented approaches. Besides a more intuitive development and treatment of
specifications, an immediate benefit of a design process based on a conceptual model is the
possibility to define specification modules that can be used as building blocks to assemble
complex specifications.

1 Introduction

From a developer’s perspective a major benefit of tool-supported system development should be an
efficient management of specifications and a modular approach to development and reuse. Such
modularity can be best achieved if tools allow developers to deal with the actual modeling concepts
provided by a method instead of artifacts such as documents, which are still a basic modeling con-
cept in many tools. Documents are basically an arbitrarily chosen grouping of descriptions or de-
scription parts providing partial information on specific views of a system. Maintaining the con-
tained information, which is often spread throughout several of them and often bears many redun-
dancies, is a laborious task both from the perspective of methodical specification development and
from the fool developer’s perspective. Even further, with respect to reuse of system descriptions this
approach is not satisfactory since it is not always clear which specific documents are affected or
need to be considered when reusing a particular system specification. From a tool-oriented perspec-
tive, a meta-model oriented approach, based on a conceptual model describing the elements of a
method, has been recognized as an adequate way to provide an efficient internal structure to manage
and store system specifications. Here, description techniques are regarded as visual representations
of parts of the conceptual model.

In this paper, we show that such a formally based conceptual model can be useful not only for the
implementation of efficient storage systems for CASE tools but as well in a methodical sense. Us-
ing a subset of a real development method for distributed systems, closely related to the concepts of
the Focus methodology ([BDD+92], [BHS98]) and the AuTOFOCUS tool [HSS96], we first describe
a simplified version of such a conceptual model capturing the method’s basic modeling elements
(Section 3). These elements—components, ports, channels, data types and data elements, control
states, and the like—which are actually specifications or descriptions of them, are the terms in
which developers characterize systems. Concrete syntactical notations, mostly on a graphical, partly
on a textual basis, visually represent them. These notations, together with the represented modeling
concepts and the relationships between them, make up description techniques in our approach. A
specification can then be interpreted as a graph consisting of vertices of different types—the types
of modeling elements from the conceptual model—and of edges pertaining to the relationships in

* The authors of this paper were funded by the sub-project A6 of the DFG Sonderforschungsbereich 342 “Werkzeuge
und Methoden fiir die Nutzung paralleler Rechnerarchitekturen” and the “Forschungsverbund Software Engineering
(FORSOFT)*.

the conceptual model. The conceptual model describes which graphs, from the universe of all pos-
sible graphs of modeling elements, are valid, well-formed specifications. We give a more detailed
characterization of the well-formedness, consistency, and completeness of specifications in Section
5. There, we also show how to define specification modules that can be reused in other specifica-
tions and how to apply these specification modules on the basis of the mathematical model of col-
ored graphs. A short conclusion with an outlook to further work ends the paper.

2 Example: The Production Cell

Throughout this paper, we will use parts of the fault-tolerant production cell described in [L6tz96]
as a running example. The production cell—as shown in Figure l—processes metal blanks using
two presses. Using its first arm, a robot picks up a piece from a rotary table fed by the feed belt and
places it into one of two available presses. Using its second arm, processed pieces are picked out of
the presses and transported to a deposit belt.

S19 deposit belt S18 Sl
TE G ‘1 S13
[) s12

Ss11

traffic light for deposit

S20 robot
press 2

arm 2
S17

traffic light for insertion

- -

S1 feed belt 2) 3 press 1
elevating rotary table

®» © == T

system clock alarm signal

S7

Figure 1. The Fault Tolerant Production Cell

Besides the actuation units (belts, arms, presses, etc.), the system has several sensory units signaling
the state of the robot arms, presses, tables, blanks on a belt, and the like.

3 The Conceptual Model

This section introduces a simplified version of the conceptual model for describing distributed sys-
tems in our method. Its instances are abstract specifications describing systems. Developers create
and manipulate them by means of concrete notations, which provide views upon them. Possibly
even several different graphical or textual views on the same parts of the model can be offered.
Some of the notations used have been introduced in [HSS96], and an example will be given in Sec-
tion 4.

From a description technique-oriented point of view the elements in the conceptual model make up
the essence (or the abstract syntax) of the information given by the notations used, quite similar to
abstract syntax trees generated by parsers for common programming languages. In programming
languages, however, source code “documents” are the important modeling concept and the syntax
tree is just generated by the parser, in general unnoticeable from the user’s perspective. Many soft-
ware engineering tools offer a similar approach, treating system descriptions as—at most loosely

related—documents of different kinds. In our methodology, the abstract model is the central con-
cept, both from the tool developer’s and from the methodologist’s point of view. Developers deal
directly with the elements of the abstract model without encapsulation in artificial constructs such
as documents. The modeling elements of our example method are shown in Figure 2 in a UML-
style notation. For a more detailed description of the modeling concepts we again refer to [HSS96].

*
DataElement 0. L DataType L
0..* 1| | 1
|o..* 0..*
0..* 2 0..2
—@| Component @ Port : Channel At most two channels can
" 4 ! be connected to a port:
ﬁ T ,ﬂ?t } Bty -1 One to the environment of a
SubComponents 0. N component and one to its
X internal sub-structure
ControlState InputPort OutputPort - 1| Pattern 0 internal sub-structure
1 i
1
0..* 0..* —
- Expression constructed
Connector 0.% InoutPattern * according to the rules
pu for the associated data type,
2 0. * not treated here in detail
0.* -
0..2 ,—OutputPattern 1..*
- S
Transition
0..* "
PreCondition ----| Predicates over the
component's encapsulated
0. data elements, not treated
“—PostConditionf---| here in detail

Figure 2. Simplified Conceptual Model
Subsequently, we briefly describe the elements in the conceptual model.

Components are the basic elements. They are units encapsulating data, structure, and behavior,
communicating with their environment. They are reactive; that is, they respond to stimuli from
the environment according to their defined behavior. Components can be hierarchically struc-
tured, i.e., consist of a set of communicating sub-components.

Data types define data structures used by components. Data types are described in terms of product
and summation types.

Data are encapsulated by a component and provide a means to store “persistent” state information
inside a component. They are realized by typed state variables.

Ports are a component’s means of communicating with its environment. Components read data on
input ports and send data on output ports. Ports are named and typed, allowing only specific
kinds of values to be sent/received on them.

Channels are directed, named, and typed. They connect component ports. They define the commu-
nication structure, i.e., the topology, of a distributed system.

Control States and Transitions between their entry and exit points—called Connectors
here—define the flow of control within a component. Transitions carry four kinds of annota-
tions that determine their firing conditions,

e pre-conditions and post-conditions, which are predicates over the data elements in the com-
ponent that have to be fulfilled before and after the transition, respectively, as well as

e input and output patterns, determining which values have to be available on the compo-
nent’s input ports to execute the transition and which values are then written to the output
ports.

Input and output values are given by patterns, like in functional programming languages, using
the constructor terms available for the respective data types.

Behavior describes how a component reacts to input from its environment. This reaction is a result
of the inputs from the environment and of the component’s internal state. The latter can be par-
titioned into two separate aspects: the state of the data encapsulated by the component and the
state of control, given by the component’s internal state-based control flow description.

With respect to an underlying formal model, the elements in the conceptual model can be regarded
as abstractions of both the formal model and the concrete notations used to describe them. Thus, the
conceptual model represents the common denominator of both the description techniques and a
formal model.

Viewing specifications as graphs, as sketched in Section 1, it is obviously possible to construct a
multitude of such graphs when using only the elements and relationships in the conceptual model,
leaving aside the arities given for the relationships. Then, of course, most of the possible graphs will
not conform to the conceptual model." In this respect, the conceptual model acts as a requirement
specification for well-formedness (see Subsection 5.1.1), discriminating well-formed from ill-
formed specifications.

4 Description Techniques — an Example

Using the structural decomposition of a component as an example, we briefly sketch informally our
understanding of the term description technique in the context of this paper.

A description technique consists of

1. a(sub-)set of modeling elements given in the conceptual model,

2. aconcrete syntax—a graphical or textual notation—describing these elements, and

3. aset of rules how the concrete syntax is mapped to the modeling elements and vice-versa.

As shown in Figure 2, components may be structurally decomposed into networks of sub-
components. Such a network can be graphically described by a system structure diagram (SSD,
[HSS96]). An example is given in Figure 3, which shows a very simplified network of two compo-
nents in our production cell, the system clock and the production cell controller component with a
subset of their communication channels.

For this description technique, the relevant modeling elements are Component, InputPort, OutputPort,
Channel, and DataType as well as their associations (see Figure 2). Graphical representations of these
elements are rectangles for components, hollow and filled circles for input and output ports, and
directed arcs for channels. All of these graphical elements—as well as their counterparts in the con-
ceptual model—have a name to designate them (invisible in case of the ports). Data types are repre-
sented by their names as strings. Both channels and ports have a data type assigned, again invisible
in the case of ports.

! Although well-formedness is considered an invariant in the development process (see Subsection 5.1.1), allowing ill-
formed specifications can be reasonable for some, mostly internal, operations on specifications invisible to the user (see
Subsection 5.4.2).

r: RobotOp | pl: PressOp |p2: PressOp |t: TableOp

ProductionCellController

)))

rs: RobotStatus SystemTime: int | pl: PressStatus

SystemClock

Figure 3. Component Network Description Using an SSD

Most of the mapping rules between the graphical representation and the modeling elements are ele-
mentary. For instance, it is quite obvious that the names and types of the modeling elements and
their graphical representations must correspond; in case a developer changes a name, the name in
the modeling element has to be changed accordingly. The relationships between modeling elements
and syntactical elements are generally simple 1:1 relationships. There are, however, a number of
more complex relationships. Adding, e.g., an additional communication path from the production
cell controller to the environment (another channel with an unconnected destination port, see upper
part of Figure 3) obviously has to generate the corresponding modeling elements and add the source
port to the set of output ports of the controller. However, this operation also changes the port set of
the enclosing component, since this view presents both its decomposition aspect and its interface
aspect (given by the port set).

Additionally, a textual notation could be used as a concrete syntax to specify the same aspects of
component networks, such as the language ANDL, defined in [SS95]. Both representations could
then be used interchangeably for the same modeling elements.

Technically, such an update mechanism between modeling elements and their visual representations
can be implemented according to a Model-View-Controller (MVC) pattern [GHIJV94].

5 Specification Modules

The conceptual model introduces the terms and relations needed to describe the system specified by
the system developer. In this section we show how those terms and relations are combined to form
specifications. Furthermore, we show that this formulation of a specification naturally extends to
the notion of specification modules and illustrate the definition and application of those specifica-
tion modules.

In Subsection 5.1 we define when a description of a system using the conceptual model is consid-
ered a system specification. In Subsection 5.2 we show how specifications and specification mod-
ules are related and what it means to define an incomplete specification module. Finally, in Subsec-
tion 5.4 we demonstrate how specification modules are applied to support reuse of specifications.

5.1 Module Criteria

To support reuse of specifications or specification parts, a clear meaning of a specification has to be
defined. Based on the conceptual model discussed above we introduce the notion of a specification
of a system. A specification

1. is a well-formed description of one or more aspects of a system,

2. may fulfill additional consistency conditions (see [HSE97]),
3. does not necessarily need to be complete.

Like the conceptual model itself, a specification is an abstract concept and can have several con-
crete syntactical representations to manipulate it. The choice of the properties of the conceptual
model determines the notion of a specification by defining the well-formedness and the consistency
of a specification. The first describes invariant conditions of a specification, the latter conditions
required only at certain development steps. Since the distinction between a well-formedness condi-
tion and a consistency condition depends on the definition of the conceptual model, this defini-
tion—as a methodological decision—influences the strictness of the design process. For example,
the assignment of a data type to a port or channel may be considered a well-formedness condition as
well as a consistency condition. In the first case the creation of a port or a channel is not possible
without possibly defining and assigning an appropriate type. In the latter case, a type may be as-
signed at a later step in the design process.

5.1.1 Well-Formedness

Well-formedness conditions are invariant conditions that hold for specifications invariantly
throughout the design process. Those invariances are defined by the conceptual model and typically
include syntactic properties.

Examples are:
e Each specification entity (component, port, channel, data type, etc.) has a non-empty name.

e Each channel has two adjacent ports, an output port at its beginning, and an input port at its end,
and an associated data type.

e Each transition has two adjacent connectors.

5.1.2 Consistency

Consistency conditions are defined as additional properties of the conceptual model that must hold
for formally well-defined specifications, but may be violated throughout the design process. How-
ever, at certain steps in the design process, consistency of the specification is required. Typical steps
are code generation, simulation, validation, verification, and specification module definition. Dif-
ferent consistency conditions may be required for different design steps. While code generation or
simulation require completely defined data types, this is not necessary for verification or specifica-
tion module definition.

Examples are:
e Each port, channel, etc. has a defined (i.e., non-empty) type.
e Port names are unique for each system component.

While the first condition is a necessary consistency condition for simulation or code generation, the
second consistency condition is not required by any design step suggested in this paper; it may,
however, be formulated and checked to support better readability or clarity of documents generated
from the conceptual model.

5.1.3 Completeness

A third condition to be raised throughout the development process but not mentioned so far is the
completeness of a specification. A specification is considered to be complete if all relevant objects
of the specification are contained in the specification itself.

Similar to the consistency of a specification, completeness is only required at certain steps of the
development process like simulation, code generation or verification. As a matter of fact, complete-
ness of a specification can be defined as a consistency condition and checked the same way (see
[HSE97]). However, the incompleteness of a specification module can be used to define param-
eterized modules, and is thus treated as a separate property for methodological reasons: since an
instantiation mechanism is needed for incomplete or parameterized specification modules, incom-
plete modules are distinguished form other forms of inconsistency. Subsection 5.2.2 treats this
question in more detail.

5.2 Module Definition

Given the modeling concepts introduced above, the notion of a specification module can be intro-
duced. Typical examples of specification modules needed for a system specification are:

e Data type specification modules: The data type definition part of a specification or a sub-part of
it.

e System structure specification module: A specification module of a system as defined by a cor-
responding component possibly including its sub components.

e Behavioral specification module: The behavior assigned to a component or a subpart of it.

In our approach we will not distinguish between different classes of specification modules. Fur-
thermore, a specification module is not distinguished from a specification in general. Therefore,
basically every well-formed part of a specification is considered a specification module. Addition-
ally, a well-formed part of a specification does not necessarily have to be complete. However, for a
reasonable reuse of a specification module, it has to obey several consistency conditions as intro-
duced in [HSE97]. This leads to a simple distinction of two different specification module concepts:

e Complete specification module: A specification module is considered to be complete if all refer-
enced elements of the conceptual model (e.g., type definitions of used port types or local data,
sub-components of a component) are contained in the module.

e Parameterized specification module: A specification module is considered to be parameterized
if some referenced elements of the conceptual model are not included in the specification (e.g.,
incomplete type definitions of a component, undefined behavior of a component).

Specification modules are defined as well-formed specification parts possibly obeying additional
consistency conditions. Therfore, specification modules can either be developed as in the case of a
usual specification or reused form a larger specification by a selection process based on the con-
ceptual model.

5.2.1 Complete Modules

The simplest form of a specification module concerning reuse is the one containing all relevant in-
formation. Since—unlike in the parameterized case—no more instantiating of the module is needed,
all information of the module can simple be added o the target specification.

A simple example of a complete specification module is the press controller module consisting of
e the data types describing the actuatory and sensory data,
e the interface description of the controller consisting of typed input and output ports,

e the (empty) list of variables of the controller unit, and

e the behavioral description of the controller unit given by a state transition diagram using the
typed port, component, and transition variables of the controller.

This module is complete since all entities referenced in this module (data types, ports, variables,
etc) are also defined in this module.

5.2.2 Parameterized Modules

As a simple example we define a behavioral specification module as shown in Figure 4. The mod-
ule, described using a state transition diagram, is used to cope with fault situations of the production
cell units. Upon entering the module, an error report is generated. The unit is then brought to a de-
fined state and stability of the unit is reported. Finally, upon receipt of a restart message, the unit is
restarted in normal mode. Since all of the units of the production cell must support this kind of error
treatment, it is useful to define a general fault correction module that can be instantiated for all
components.

Press2 - .
i7except.alarm,s?x/o!offline

Robot

(:)i:msg c:msg:o
: Pressl i
os:sdi 0:Sts@

i?x,s?data.y/clexcept.reset

ProductionCellController fault

Figure 4. Parameterized Error Treatment Module
The defined specification module consists of three parts:

e The specification of the minimal interface that must be supplied by a system component in-
tended to offer this fault recovery strategy. The interface is defined by the corresponding ports
(i,0,c,s).

e The specification of the type of messages that are used to indicate the status of such a fault-
correcting unit and to influence its behavior. Since the behavior is independent of the kind of
unit (press, rotating table, robot arm, etc.), the unit-dependent part of the message types (data,
control) is not specified by the specification module but defined as a specification module pa-
rameter to be instantiated upon use of the module.

e The specification of the behavior relevant for fault recovery. Only a part of a complete behav-
ioral description of a production cell unit is described by giving the necessary states (offline, re-
setting, ready), and the corresponding transitions and entry- and exit-points. Thus applying the
module only adds the fault-recovery routine to the target specification which has to be extended
to a complete specification for the corresponding unit.

To apply a parameterized specification module to a target specification the parameters must be in-
stantiated and the resulting module is added to the specification. In Section 5.3 we give a more pre-

cise definition of the concepts of specification modules and their elements; in Section 5.4 we show
how to apply complete or parameterized modules to a target specification.

5.3 Mathematical Model

In the previous sections we gave an intuitive interpretation of the terms specification and complete
and parameterized specification module. However, to introduce the application or reuse of specifi-
cation modules we need a more precise definition of those terms. Therefore, we define a mathe-
matical model for the above-introduced concepts.

In Subsection 5.3.1 we define the mathematical concept of specification modules and of their com-
bination using the notion of colored graphs and typed binary relations. Based on this model we will
introduce the necessary formal operations union construction and renaming, which will be used to
define the module application in Section 5.4.

5.3.1 Model of Specification Modules

A specification is considered a graph with the specification elements of the conceptual model as
nodes and the relations between these elements as the edges of the graph.” Since the conceptual
model is typed (the elements of the conceptual model are elements of distinct classes like compo-
nents, ports, channels, etc.), the graph is colored. Thus a specification or specification module can
be described by a pair (E,R) with

e acollection of sets of elements E = (E,Ey,...,En-1,En)
e acollection of binary relations R=(R,Ry,...,Ry_1, Ry)
withE ¢ & and Rj c T}, where Tj =&y X &|, as well as corresponding definitions for £ and 2.

The definition of £; and & depends on the definition of the conceptual model as described in Sec-
tion 3. In the AUTOFOCUS conceptual model, for example,

e the collection £ contains the set of input ports 7, the set of system components S, the set of
channels ¢ or the set of types 7, and

e the collection 2 contains the relation SS between a system component and its sub components,
the relation 7¢ between an input port and connected channel, 77 between an input port and its
associated type as well as @7 between an channel and its associated type.

In general, R; will not cover the complete range of sub relations of Z. For example, if an input port
is part of a specification module, it also has a defined type
Vil 3t:T.G,t)elT
e since a system component cannot be its own sub component, the sub component relation will
not contain the identical relation
VX:Sy:S(X,y)e SS= x#Yy
e since it is not possible to connect one port to two input channels, the channel-input port relation
will not contain two different channels for one port:

Vi:l,c:C,:C.(i,c)elCA(i,c)elC=c =c,

? For reasons of simplicity we will only consider binary relations; relations of higher cardinality can be reduced to bi-
nary normal form.

Furthermore, the collection of relations will not cover the complete range of possible sets of rela-
tions fulfilling those above conditions. For example, if a pattern is defined for an input port in a
state transition diagram, both pattern and input port are of the same type

Viil,p:PtL:Tt2: T.((i,t) e ITA(p,t12) e PT A(i,p) € IP) > t1=12
Those additional conditions fulfilled by the pair (E,R) of a specification module represent the well-
formedness or consistency conditions described in Subsection 5.1. Some of those conditions as de-
scribed above are typically described using arity-annotations of E/R diagrams. Those conditions can
be expressed in typed first-order predicate logic with equality and can thus be automatically
checked by a consistency checker as described in [HSE97].

5.3.2 Operations on Specification Modules

To combine two specification modules (E,R)and (E’,R’) as described above, simply the union
(Eu E’,RUR) is constructed with

EUE=(FUE BBUE/,. . .ELUEY)

RUR = (&U %_,, R2 U R2’,...,Rq U R{)
Note that in general well-formed but otherwise arbitrary specification modules are used in con-

structing the union. Especially, £ and £ are neither required to be disjoint nor to be identical. Thus,
the union of two specification modules can

e introduce new specification elements like new components, ports, channels, types, states, etc.

e introduce new associations to the relations between both old and new specification elements like
adding a new port to an already existing system component, adding a collection of new sub-
states to an already existing state, etc.

It is important to note, however, that the union construction of two well-formed or consistent non-
disjoint specification modules in general will not lead to a well-formed or consistent specification.
Subsection 5.4.2 will consider this aspect.

Finally, specification modules can be renamed prior to the union application to allow the identifica-
tion of specification elements. Thus, parameterized specification modules can be applied to specifi-
cations. To rename specification modules, an isomorphic mapping M :E X2 — £ X is defined
with M :(Mg1 X...X Mgm,le X...XxMg), Mg : & — &, and sz &) — &) as well as

Mg (R)={ (Mg (.M, (e2)|(eLe2) e RAR =& X&)

Based on the techniques of renaming and union construction we will describe how a specification
module can be applied as a complete or parameterized module in the following section.

5.4 Module Application

Basically, the application of a specification module can be defined as an embedding operation on
the conceptual model with additional mappings of common elements of the module and the specifi-
cation. Therefore, in Subsection 5.4.1 we outline the renaming as the basic difference between the
application of a complete and a parameterized specification module. Subsection 5.4.2 sketches how
such a renaming mapping is used to define parameterized modules using the example of Subsection
5.2.2.

5.4.1 Complete and Parameterized Specification Modules

As mentioned in Subsection 5.2 we distinguish between parameterized and complete specification
modules. However, having introduced a mathematical model for specification modules, it becomes
obvious that this distinction is not a technical but only a methodical one. To add a complete specifi-
cation module we simply construct the union of both as defined above. Assuming disjoint sets of
specification elements no further renaming of the added specification module is necessary.

For example, we can simply add the press controller module defined in Subsection 5.2.1 to the
specification to add another press to the system. To make use of the controller module we then must
connect the ports of the module to the ports of the system.

On the other hand, to make use of a parameterized specification module it is necessary to instantiate
the parameters of the module before adding it to the system specification. Therefore, a renaming of
the parameter elements of the specification module to elements of the target specification has to be
applied prior to the union construction. The parameter elements of the specification can be consid-
ered the interface of a specification module that is used to apply the module to the target specifica-
tion. Thus, module interfaces can be compared to specification parameters as found in algebraic
specification languages like SPECTRUM [GN94]. However, even more sophisticated techniques are
definable using the consistency condition mechanism since the mathematical framework does not
distinguish between parameters or regular elements of a specification module.

Again, we consider the example of the press controller module defined in Subsection 5.2.2. The
specification can be used as a behavioral specification module with type parameters (control and
data), a system component parameter (Pressl) and a state parameter (fault). To avoid the introduc-
tion of new types for the actuatory and sensory data we identify the types used in the press control-
ler module with the types already defined in the system specification.

5.4.2 Module Instantiation

As mentioned in Subsection 5.4.1, specification modules can be compared to (parameterized) alge-
braic specifications. Thus, the combination of specification modules is similar to the combination of
algebraic specifications: elements of the interface of the applied specification module are identified
with elements of the specification (or specification module) the module is applied to. Thus, to apply
a specification module, a mapping must be constructed to map the interface elements to elements of
the same type in the target application. Furthermore, the resulting specification must again be well-
formed.

To illustrate module application we consider the module introduced in Figure 4. Here, the mapping

e introduces new port elements (i,0,s,c), new type elements (msg, except, alarm, etc.), new state
elements (offline, resetting, online), as well as the new transition elements and pattern elements
found in Figure 4,

e identifies old and new elements like the system component Pressl, the type elements data or
control and the state fault, and therefore

e introduces new relations, like the component-port relation between Press1 and i, or the state-sub
state relation between fault and offline.

? The disjointness condition might be relaxed to support the common use of predefined data types like bool or int as
well as identifiers of specification elements.

Figure 4 shows the resulting specification after the mapping and the union construction including
the newly introduced elements, the already defined elements (grayed out) and the identified ele-
ments (dashed).

6 Conclusion and Outlook

We have outlined an approach to specification development closely related to CASE tool design
principles. Using the same approach—a conceptual model—as a basis both for tool development
and for the methodological basis, a schematic way of dealing with specifications can be applied. In
CASE tool design, the suggested, model- and view-based approach helps to avoid many redundan-
cies and sources of inconsistency commonly found in document-based approaches. This results in
major benefits with respect to a clear tool design. But advantages are to be expected from the meth-
odological point of view as well. Working directly with the modeling concepts of a method—in our
view—yields a more natural way of system development. Furthermore, we showed that a simple
mathematical model can be used to define the necessary operations for the definition and the reuse
of specification modules.

To validate the practicability of the suggested approach the conceptual model and the defined op-
erations will be implemented in the formal development tool prototype AUTOFOCUS.

Acknowledgements
We thank Annette Lotzbeyer for letting us use the picture from Figure 1.

7 Bibliography

[BDD+92] M. Broy, C. Dendorfer, F. Dederichs, M. Fuchs, T. Gritzner, and R. Weber. The Design of
Distributed Systems - An Introduction to Focus. Technical Report TUM-19225, Technische
Universitiat Miinchen, 1992.

[BHS98] M. Breitling, U. Hinkel, K. Spies. Formale Entwicklung verteilter reaktiver Systeme mit
FOCUS. In this collection.

[GHJV94] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Micro-Architectures for
Reusable Object-Oriented Design. Addison-Wesley, 1994.

[GN94] R. Grosu, D. Nazareth. The Specification Language SPECTRUM — Core Language Report V1.0.
Technical Report TUM-19429. Institut fiir Informatik. Technische Universitdt Miinchen, 1994.

[HSE97] F. Huber, B. Schitz, G. Einert. Consistent Graphical Specification of Distributed Systems. In: J.
Fitzgerald, C. B. Jones, P. Lucas (Eds.). Proceedings of FME ’97, 4th International Symposium
of Formal Methods Europe, Lecture Notes in Computer Science 1313, Springer, 1997.

[HSS96] F. Huber, B. Schitz, K. Spies. AutoFocus — Ein Werkzeugkonzept zur Beschreibung verteilter
Systeme. pp. 165-174. In U. Herzog, H. Hermanns (Eds.). Formale Beschreibungstechniken fiir
verteilte Systeme. Universitit Erlangen - Niirnberg, 1996.

[L6tz96] A. Lotzbeyer. Task Description of a Fault-Tolerant Production Cell. Forschungszentrum
Informatik, Karlsruhe. 1996. URI: http://www.fzi.de/prost/projects/korsys/korsys.html.

[SS95] B. Schitz, K. Spies. Formale Syntax zur logischen Kernsprache der Focus-Entwicklungsmetho-
dik. Technical Report TUM-19529. Institut fiir Informatik. Technische Universitdt Miinchen,
1995.

