
AutoFocus � A Tool for Distributed Systems

Speci�cation�

Franz Huber� Bernhard Sch�atz� Alexander Schmidt� Katharina Spies
Institut f�ur Informatik� Technische Universit�at M�unchen

D������ M�unchen� Germany
e�mail� �huberfjschaetzjschmialejspiesk�	informatik
tu�muenchen
de

Abstract� We describe the concept of AutoFocus� a tool for the speci�
�cation of distributed systems
 AutoFocus is based on the formal devel�
opment method Focus and uses graphical description formalisms embed�
ded into its semantical framework� thus o�ering well�accepted notations
while retaining the ability for exact consistency checks of a system under
development
 The tool uses a client
server architecture� with a central
repository and distributed client applications in a computer network
 The
paper at hand focuses on the architectural and implementation�related
issues of AutoFocus


� Introduction

In this paper� we describe AutoFocus� a tool intended to be used for specifying
distributed systems on a formal basis� This basis is provided by the semantical
framework of the Focus method �BDD����� �BFG����� With Focus being a
mathematically founded method for specifying distributed systems� AutoFo�
cus adds graphical description formalisms to this framework that are well�known
and well�accepted in industrial systems development� thus o	ering advantages
of both approaches�

The following section 
 brie�y outlines the basis of AutoFocus� the graphi�
cal description formalisms� whereas section �� the main part of this paper� focuses
on the implementation�related aspects of the tool�

� Description Techniques

��� System Structure Diagrams � SSDs

System structure diagrams describe the static aspects of a distributed system
by a network of interconnected components� exchanging data over channels�
Each component has a unique identi�er and a set of input and output channels

� This work was carried out within the Subproject A� of the �Sonderforschungsbereich
���� and the Project SysLab� sponsored by the German Research Community �DFG�
under the Leibniz program and by Siemens�Nixdorf



attached to it� Each channel is characterized by a channel identi�er and a data
type describing the set of messages that may be sent on it� Thus system structure
diagrams provide both the topological view of a distributed system and the
signature 
syntactic interface� of each individual component�

Graphically� system structure diagrams are represented as graphs� where rect�
angular vertices symbolize components and arrow�shaped edges stand for chan�
nels�

��� Datatype De�nitions

The types of the data processed by a distributed system are de�ned in a textual
notation� We use the basic types and data type constructors from the functional
programming language Gofer �Jon��� for this purpose� Data de�ned in this way
may be referenced e�g� in SSDs and STDs�

��� State Transition Diagrams � STDs

State transition diagrams� which are extended �nite automata similar to the
concepts introduced in �GKRB�� are used to describe the dynamic aspects� i�e�
the behaviour� of a distributed system and of its components� Each system com�
ponent can be associated with an automaton� Each transition has a set of anno�
tations� a pre� and a postcondition� encoded as predicates over the data state of
the system� which are satis�ed before and after the transition� and a set of input
and output patterns describing the messages that are read from or written to
the input and output channels of the corresponding component�

Graphically� automata are represented as graphs with labeled ovals as states
and arrows as transitions�

��� Extended Event Traces � EETs

Extended event traces are used to describe exemplary system runs from a com�
ponent�based view� We use a notation similar to ITU�standardized message se�
quence charts 
MSCs� with core concepts taken from MSC��� �Int����

��� The Concept of Hierarchy

A common property shared by all of AutoFocus� graphical description for�
malisms is the concept of hierarchy� Both structure diagrams and state transi�
tion diagrams � which are essentially graphs � as well as extended event traces
allow hierarchical re�nement� In a structure diagram� a system component may
be viewed as a conceptual unit comprising a network of sub�components� In the
same way� a state in a state transition diagram can be re�ned by another STD
which details this state� In EETs� we allow so�called �boxes� as an abbreviating
notation for parts of system runs speci�ed in other EETs�



� The AutoFocus Tool

��� Architectural Overview

The development of large systems requires a developer team to work on a project
simultaneously� Therefore� the AutoFocus tool is designed as a distributed en�
vironment with a common repository containing all project�related documents
and multiple clients connected over a network� The core of an AutoFocus

client is the project browser� displaying all projects� their documents� and ver�
sions available in the repository� By selection of a document� the project browser
requests the document from the repository and opens a window using the ap�
propriate editor�

��� Project and Version Management

In AutoFocus� a project consists of several documents stored in the repository�
In order to reuse documents� a document may be referenced by more than one
project� The complete version history of every project and document is stored in
the repository� In this approach� versions of a project are collections of speci�c
document versions� The user may choose whether a changed document should
be stored by default� incrementing the version number� or if it should be saved
under an explicitly given version number�

The multiuser environment also requires the coordination of read�write ac�
cess� The repository provides the usual strategy of one write and multiple read
accesses to a document�

��� Graphical Editors

Currently� AutoFocus provides three di	erent editors for the graphical de�
scription techniques mentioned above� All of these editors use an identical user
interface concept with mouse�based user interactions to facilitate fast editing of
SSDs� EETs and automata� Copy�and�paste functions simplify the process of
drawing the diagrams� Future releases will allow to choose the appearance of the
graphic items�

Hierarchical diagrams� which are a core concept of the AutoFocus system
model� are fully supported by the editors� For example� a state of an automaton
may contain another automaton describing the behaviour of the state� An au�
tomaton could also represent the behaviour of a component in a SSD document�
By selecting such an element� an appropriate editor window is opened�

Finally� the editors provide PostScript output of the diagrams as exchange
format for documentation purposes�

��� Implementation

A �rst version of AutoFocus with support for all the basic graphical notations
described above is being implemented in a term project in software engineering



by students at TU M�unchen during the ���� summer semester� The object�
oriented Java environment is used as implementation platform� The repository
is implemented as a multi�threaded Java application� using the UNIX revision
control system RCS for version management and access control� A further re�
placement of RCS by a real database system is intended and would be simpli�ed
by the object�oriented design of AutoFocus� The clients are implemented in
Java and are thus executable on any platform supporting the Java runtime en�
vironment� Communication between the clients and the repository is based on
the TCP�IP networking protocol and the Java socket library�

This �rst version will be available by August ����� It represents a starting
point for the further development of AutoFocus�

� Conclusion and Further Activities

The current version is planned as the core of a complete toolset for the develop�
ment of distributed systems� In the next step� project�wide consistency checks
between documents will be implemented 
e�g� de�nedness of data types in SSDs
and STDs� compatibility of hierarchical documents�� Further steps will include
code generation from executable graphical speci�cations or code frames for more
general ones� Finally� special emphasis will be put on the methodological support
for the developer� for instance schematic consistent re�nement rules for some de�
scription formalisms will be supplied� Alternatively� proof obligations for general
re�nement relations might be generated to be used with the Isabelle �Pau���
theorem prover�

References

�BDD���� Manfred Broy� Frank Dederichs� Claus Dendorfer� Max Fuchs� Thomas
Gritzner� and Rainer Weber
 The design of distributed systems � an in�
troduction to FOCUS
 TUM�I ������� Technische Universit�at M�unchen�
����


�BFG���� Manfred Broy� Max Fuchs� Thomas Gritzner� Bernhard Sch�atz� Katha�
rina Spies� and Ketil St�len
 Summary of case studies in FOCUS � a de�
sign method for distributed systems
 TUM�I ����� Technische Universit�at
M�unchen� ����


�GKRB� R
 Grosu� C
 Klein� B
 Rumpe� and M
 Broy
 State Transition Diagrams

Syslab project� internal report� to be published


�Int��� International Telecommunication Union� Geneva
 Message Sequence Charts�
����
 ITU�T Recommendation Z
���


�Jon��� M
 P
 Jones
 An Introduction to Gofer� August ����

�Pau��� Lawrence C
 Paulson
 Isabelle� A Generic Theorem Prover� volume ��� of

LNCS
 Springer�Verlag� ����


This article was processed using the LATEX macro package with LLNCS style


