AuTtoFocus - A Tool for Distributed Systems
Specification*

Franz Huber, Bernhard Schétz, Alexander Schmidt, Katharina Spies
Institut fiir Informatik, Technische Universitdt Miinchen
D-80333 Miinchen, Germany
e-mail: (huberf|schaetz|schmiale|spiesk)@informatik.tu-muenchen.de

Abstract. We describe the concept of AuToF0CUS, a tool for the speci-
fication of distributed systems. AuUTOFOCUS is based on the formal devel-
opment method Focus and uses graphical description formalisms embed-
ded into its semantical framework, thus offering well-accepted notations
while retaining the ability for exact consistency checks of a system under
development. The tool uses a client/server architecture, with a central
repository and distributed client applications in a computer network. The
paper at hand focuses on the architectural and implementation-related
issues of AuTOFOCUS.

1 Introduction

In this paper, we describe AUTOF0CUS, a tool intended to be used for specifying
distributed systems on a formal basis. This basis is provided by the semantical
framework of the Focus method [BDD'93], [BFG194]. With Focus being a
mathematically founded method for specifying distributed systems, AuUTOFO-
cUs adds graphical description formalisms to this framework that are well-known
and well-accepted in industrial systems development, thus offering advantages
of both approaches.

The following section 2 briefly outlines the basis of AUTOFO0CUS, the graphi-
cal description formalisms, whereas section 3, the main part of this paper, focuses
on the implementation-related aspects of the tool.

2 Description Techniques

2.1 System Structure Diagrams — SSDs

System structure diagrams describe the static aspects of a distributed system
by a network of interconnected components, exchanging data over channels.
Each component has a unique identifier and a set of input and output channels

* This work was carried out within the Subproject A6 of the “Sonderforschungsbereich
342” and the Project SysLab, sponsored by the German Research Community (DFG)
under the Leibniz program and by Siemens-Nixdorf

attached to it. Each channel is characterized by a channel identifier and a data
type describing the set of messages that may be sent on it. Thus system structure
diagrams provide both the topological view of a distributed system and the
signature (syntactic interface) of each individual component.

Graphically, system structure diagrams are represented as graphs, where rect-
angular vertices symbolize components and arrow-shaped edges stand for chan-
nels.

2.2 Datatype Definitions

The types of the data processed by a distributed system are defined in a textual
notation. We use the basic types and data type constructors from the functional
programming language Gofer [Jon93] for this purpose. Data defined in this way
may be referenced e.g. in SSDs and STDs.

2.3 State Transition Diagrams — STDs

State transition diagrams, which are extended finite automata similar to the
concepts introduced in [GKRB], are used to describe the dynamic aspects, i.e.
the behaviour, of a distributed system and of its components. Each system com-
ponent can be associated with an automaton. Each transition has a set of anno-
tations: a pre- and a postcondition, encoded as predicates over the data state of
the system, which are satisfied before and after the transition, and a set of input
and output patterns describing the messages that are read from or written to
the input and output channels of the corresponding component.

Graphically, automata are represented as graphs with labeled ovals as states
and arrows as transitions.

2.4 Extended Event Traces — EETSs

Extended event traces are used to describe exemplary system runs from a com-
ponent-based view. We use a notation similar to ITU-standardized message se-
quence charts (MSCs) with core concepts taken from MSC’96 [Int96].

2.5 The Concept of Hierarchy

A common property shared by all of AuToFocuUs’ graphical description for-
malisms is the concept of hierarchy. Both structure diagrams and state transi-
tion diagrams — which are essentially graphs — as well as extended event traces
allow hierarchical refinement: In a structure diagram, a system component may
be viewed as a conceptual unit comprising a network of sub-components. In the
same way, a state in a state transition diagram can be refined by another STD
which details this state. In EETs, we allow so-called “boxes” as an abbreviating
notation for parts of system runs specified in other EETs.

3 The AuTtoFocus Tool

3.1 Architectural Overview

The development of large systems requires a developer team to work on a project
simultaneously. Therefore, the AUTOFOCUS tool is designed as a distributed en-
vironment with a common repository containing all project-related documents
and multiple clients connected over a network. The core of an AuToFocus
client is the project browser, displaying all projects, their documents, and ver-
sions available in the repository. By selection of a document, the project browser
requests the document from the repository and opens a window using the ap-
propriate editor.

3.2 Project and Version Management

In AuTOoFocCUs, a project consists of several documents stored in the repository.
In order to reuse documents, a document may be referenced by more than one
project. The complete version history of every project and document is stored in
the repository. In this approach, versions of a project are collections of specific
document versions. The user may choose whether a changed document should
be stored by default, incrementing the version number, or if it should be saved
under an explicitly given version number.

The multiuser environment also requires the coordination of read/write ac-
cess. The repository provides the usual strategy of one write and multiple read
accesses to a document.

3.3 Graphical Editors

Currently, AuTOFocUS provides three different editors for the graphical de-
scription techniques mentioned above. All of these editors use an identical user
interface concept with mouse-based user interactions to facilitate fast editing of
SSDs, EETs and automata. Copy-and-paste functions simplify the process of
drawing the diagrams. Future releases will allow to choose the appearance of the
graphic items.

Hierarchical diagrams, which are a core concept of the AUTOFOCUS system
model, are fully supported by the editors. For example, a state of an automaton
may contain another automaton describing the behaviour of the state. An au-
tomaton could also represent the behaviour of a component in a SSD document.
By selecting such an element, an appropriate editor window is opened.

Finally, the editors provide PostScript output of the diagrams as exchange
format for documentation purposes.

3.4 Implementation

A first version of AUTOF0OCUS with support for all the basic graphical notations
described above is being implemented in a term project in software engineering

by students at TU Miinchen during the 1996 summer semester. The object-
oriented Java environment is used as implementation platform. The repository
is implemented as a multi-threaded Java application, using the UNIX revision
control system RCS for version management and access control. A further re-
placement of RCS by a real database system is intended and would be simplified
by the object-oriented design of AuTOFOCUS. The clients are implemented in
Java and are thus executable on any platform supporting the Java runtime en-
vironment. Communication between the clients and the repository is based on
the TCP/IP networking protocol and the Java socket library.

This first version will be available by August 1996. It represents a starting
point for the further development of AuTOFOCUS.

4 Conclusion and Further Activities

The current version is planned as the core of a complete toolset for the develop-
ment of distributed systems. In the next step, project-wide consistency checks
between documents will be implemented (e.g. definedness of data types in SSDs
and STDs, compatibility of hierarchical documents). Further steps will include
code generation from executable graphical specifications or code frames for more
general ones. Finally, special emphasis will be put on the methodological support
for the developer; for instance schematic consistent refinement rules for some de-
scription formalisms will be supplied. Alternatively, proof obligations for general
refinement relations might be generated to be used with the Isabelle [Pau94]
theorem prover.

References

[BDD*93] Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Thomas
Gritzner, and Rainer Weber. The design of distributed systems - an in-
troduction to FOCUS. TUM-I 9202-2, Technische Universitdt Miinchen,
1993.

[BFG194] Manfred Broy, Max Fuchs, Thomas Gritzner, Bernhard Schitz, Katha-
rina Spies, and Ketil Stglen. Summary of case studies in FOCUS - a de-
sign method for distributed systems. TUM-I 9423, Technische Universitét
Miinchen, 1994.

[GKRB] R. Grosu, C. Klein, B. Rumpe, and M. Broy. State Transition Diagrams.
Syslab project, internal report, to be published.

[Int96] International Telecommunication Union, Geneva. Message Sequence Charts,
1996. ITU-T Recommendation Z.120.

[Jon93] M. P. Jones. An Introduction to Gofer, August 1993.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
LNCS. Springer-Verlag, 1994.

This article was processed using the ITEX macro package with LLNCS style

