Secrecy-preserving Refinement

Jan Jurjens*

University of Oxford, GB

Abstract. A useful paradigm of system development is that of step-
wise refinement. In contrast to other system properties, many security
properties proposed in the literature are not preserved under refinement
(refinement paradoz).

We present work towards a framework for stepwise development of se-
cure systems by showing a notion of secrecy (that follows a standard ap-
proach) to be preserved by standard refinement operators in the specifica-
tion framework Focus (extended with cryptographic primitives). We also
give a rely/guarantee version of the secrecy property and show preserva-
tion by refinement. We use the secrecy property to uncover a previously
unpublished flaw in a proposed variant of TLS, propose a correction and
prove it secure. We give an abstract specification of a secure channel
satisfying secrecy and refine it to a more concrete specification that by
the preservation result thus also satisfies secrecy.

1 Introduction

A useful paradigm of system development is that of stepwise refinement:
One starts with an abstract specification and refines it in several steps to a
concrete specification which is implemented. Advantage of this approach
is that mistakes may be detected rather early in the development cycle,
which leads to considerable savings (late correction of requirements errors
costs up to 200 times as much as early correction [Boe81]).

Clearly, the concrete specification must have all relevant properties
of the initial specification. This is indeed the case for system properties
that can be expressed as properties on traces (taking refinement to be re-
verse inclusion on trace sets). A classical example is the Alpern-Schneider
framework of safety and liveness properties.

However, many security properties proposed in the literature are prop-
erties on trace sets rather than traces and give rise to the refinement para-
doz which means that these properties are not preserved under refinement
(for noninterference this is pointed out in [McL94, McL96]; the same ob-
servation applies to equivalence-based notions of secrecy explained e. g.
in [Aba00]).

* Internet: http://www. jurjens.de/jan — e-mail: jan@comlab.ox.ac.uk — This work
was supported by the Studienstiftung des deutschen Volkes and Lucent Technologies.

This is
version

the web-
9/3/01 of
a paper at Formal
Methods Europe
2001, LNCS, Springer
Verlag

For such properties, developing secure systems in a stepwise manner
requires to redo security proofs at each refinement step. More worryingly,
since an implementation is necessarily a refinement of its specification,
an implementation of a secure specification may not be secure. Thus the
results of verifying such properties on the level of specifications needs to
be applied with care, as pointed out in [RS98].

In this work, we seek to address this problem. In the specification
framework Focus [Bro99, BS00] (extended by cryptographic operations
including symmetric and asymmetric encryption and signing) we consider
a secrecy property following the approach of [DY83] and show that it
is preserved by the various refinements of the framework. We also give
a rely /guarantee version of the secrecy property and show preservation
by refinement. We demonstrate adequacy of the proposed secrecy notion
by using it to uncover a previously unpublished flaw in a variant of the
handshake protocol of TLS! proposed in [APS99], to propose a correction
and to prove it secure. As an example for the stepwise development of a
secure system we then give an abstract specification of a secure channel
and refine it to a more concrete specification. The abstract specification
satisfies secrecy, and by our preservation result the concrete one does as
well.

In the next subsection we put our work into context and refer to
related work on the subject of this paper. In Section 2, we introduce
the specification framework Focus with the cryptographic extension. In
Section 3 we give the secrecy properties considered in this work. In Section
4 we define the notions of refinement provided in Focus and show that
they preserve the secrecy properties. In Section 5 we specify the variant
of the TLS handshake protocol in our language, demonstrate the flaw,
give a corrected version and prove it secure. In Section 6 we develop a
specification of a secure channel in a stepwise manner. After that, we
conclude.

Some of the proofs have to be omitted for lack of space; they are to
be found in the long version of this paper to be published.

1.1 Security and Refinement

In the specification of systems one may employ nondeterminism in differ-
ent ways, including the following:

under-specification: to simplify design or verification of systems. Cer-
tain details may be left open in the early phases of system development

1 TLS is the successor of the Internet security protocol SSL.

or when verifying system properties, to simplify matters or because
they may not be known (for example the particular scheduler used to
resolve concurrency).

unpredictability: to provide security. For example, keys or nonces are
chosen in a way that should make them unguessable.

While the first kind of nondeterminism is merely a tool during develop-
ment or verification, the second is a vital part of the functionality of a
system. When one identifies the two kinds of nondeterminism one faces
the refinement paradox mentioned above.

We separate the two kinds of nondeterminism in the following way:
The nondeterminism of functional importance for the system is only mod-
elled by specific primitives (such as key generation), possibly making use
of syntax. Thus the security of a system does not rely on nondeterminis-
tic choice in the formal model. Providing unpredictability through under-
specification may be compared to providing security by obscurity. It has
been argued that this is inferior to open design [SS75].

It is quite common in the formal modelling of security to provide spe-
cial primitives for operations such as key generation, encryption etc.. How-
ever, security properties for nondeterministic specifications often also use
the nondeterministic choice operators to provide unpredictability (since
they generally do not seek to provide a security-preserving refinement).
Our security property rules this out. This should not be seen as a re-
striction: Nondeterministic choice playing a functional role can always be
modelled by explicitely generating coins and branching on them.

Many secrecy properties follow one of the following two approaches
(discussed in [RS99, Aba00]; an example for a different approach can
be found in [Sch96]). One is based on equivalences: Suppose a process
specification P is parameterised over a variable z representing a piece
of data whose secrecy should be preserved. The idea is that P preserves
the secrecy of this data if for any two data values dy, d; substituted for
z, the resulting processes P(dy) and P(d;) are equivalent, i. e. indistin-
guishable to any adversary, (this appears e. g. in [AG99]). This kind of
secrecy property ensures a rather high degree of security. However, if it
should be preserved by the usual refinement, it seems to require a rather
fine-grained model: The equivalence may only relate those traces in the
trace sets of P(dy) and P(d;) that originate from the same nondeter-
ministic component of P, because otherwise dropping nondeterministic
components during refinement may not preserve the equivalence. Such a
model can be constructed (e. g. using ideas from [Jir00al), but it seems
to be necessarily relatively complicated.

The secrecy property considered in this paper relies on the idea that
a process specification preserves the secrecy of a piece of data d if the
process never sends out any information from which d could be derived,
even in interaction with an adversary (this is attributed to [DY83] and
used e. g. in [CGGO0]; a similar notion is used in [SV00]). In general, it
is slightly coarser than the first kind in that it may not prevent implicit
information flow, but both kinds of security properties seem to be roughly
equivalent in practice [Aba00]. But even a secrecy property that uncovers
only most flaws but is preserved under standard refinements is useful
enough, especially since more fine-grained security properties may be hard
to ensure in practice, as pointed out in [RS99].

With a secrecy-preserving refinement, one can also address situations
where implementations of formally verified security protocols turn out
to be insecure, because the cryptographic primitive chosen in the imple-
mentation introduces new equalities between terms (as pointed out in
[RS98]) by proving the nondeterministic sum of the protocol behaviour
each with the different primitives, and thus deriving the security wrt. to
each primitive separately.

Related Work For results on the use of formal methods in the development
of secure systems cf. [FBGL94]. The survey article [Mea96] identifies the
idea of security by design as a major area for future research.

In [Lot00], threat scenarios are used to formally develop secure sys-
tems using Focus. The considered security properties do not seem to be
preserved under refinement and issues of refinement are left for further
work.

[Sch96] gives a confidentiality property preserved under refinement.
However, cryptographic primitives are not considered and it is pointed
out that their treatment may be less straightforward.

For a discussion on refinement of secure information flow properties
cf. [GCS91, Mea92, McL94, McL96]. [RWW94] avoids the “refinement
paradox” by giving a security property that requires systems to appear
deterministic to the untrusted environment. Special refinement operators
that preserve information flow security are considered e. g. in [Man00].

A related problem is that formal specifications involving cryptographic
operations usually assume unconditional security while implementations
generally provide security only against adversaries with bounded resources.
This problem is addressed in [AR00, AJ0O] (the second article considers
our model here).

2 Specification Language

In this work, we view specifications as nondeterministic programs in the
specification framework Focus [BS00]. Note that in addition to these
executable specifications, Focus also allows the use of non-executable
specifications ((non-)executability of security specifications is discussed
in [LFBGY5]). Executable specifications allow a rather straightforward
modelling of cryptographic aspects such as encryption.

Specifically, we consider concurrently executing processes interacting
by transmitting sequences of data values over unidirectional FIFO com-
munication channels. Communication is asynchronous in the sense that
transmission of a value cannot be prevented by the receiver (note that
one may model synchronous communication using handshake [BS00]).

Focus provides mechanical assistance in form of the CASE tool
Autofocus [HMR98].

Processes are collections of programs that communicate synchronously
(in rounds) through channels, with the constraint that for each of its out-
put channels ¢ the process contains exactly one program p. that outputs
on c. This program p, may take input from any of P’s input channels. In-
tuitively, the program is a description of a value to be output on the chan-
nel ¢ in round n + 1, computed from values found on channels in round n.
Local state can be maintained through the use of feedback channels, and
used for iteration (for instance, for coding while loops).

To be able to reason inductively on syntax, we use a simple specifica-
tion language from [AJ00, Jiir01]. We assume disjoint sets D of data val-
ues, Secret of unguessable values, Keys of keys, Channels of channels
and Var of variables. Write Enc % Keys U Channels U Var for the set
of encryptors that may be used for encryption or decryption. The values
communicated over channels are formal ezpressions built from variables,
values on input channels, and data values using concatenation. Precisely,
the set Exp of expressions contains the empty expression € and the non-
empty expressions generated by the grammar

E expression
data value (d € D)
unguessable value (N € Secret)
key (K € Keys)
input on channel ¢ (¢ € Channels)
variable (z € Var)

) concatenation

{E}e encryption (e € Enc)

5&6@2&”

Dec.(E) decryption (e € Enc)

An occurrence of a channel name c refers to the value found on c at the
previous instant. The empty expression ¢ denotes absence of output on
a channel at a given point in time. We write CExp for the set of closed
expressions (those containing no subterms in Var U Channels). We write
the decryption key corresponding to an encryption key K as K~'. In the
case of asymmetric encryption, the encryption key K is public, and K !
secret. For symmetric encryption, K and K ! may coincide. We assume
Decg-1({E}k) = E for all E € Exp,K,K~! € Keys (and we assume
that no other equations except those following from these hold, unless
stated otherwise).
(Non-deterministic) programs are defined by the grammar:

p = programs
E output expression (E € Exp)
either p or p’ nondeterministic branching

if E = FE' then p else p' conditional (E, E' € Exp)
case E of key do p else p' determine if F is a key (F € Exp)
case E of x::y do p else p' break up list into head::tail (F € Exp)

Variables are introduced in case constructs, which determine their values.
The first case construct tests whether F is a key; if so, p is executed,
otherwise p’. The second case construct tests whether E is a list with
head z and tail y; if so, p is evaluated, using the actual values of z,y;
if not, p’ is evaluated. In the second case construct, z and y are bound
variables. A program is closed if it contains no unbound variables. while
loops can be coded using feedback channels.

From each assignment of expressions to channel names ¢ € Channels
appearing in a program p (called its input channels), p computes an out-
put expression.

For simplification we assume that in the following all programs are
well-formed in the sense that each encryption { E'}, and decryption Dec, (E)
appears as part of p in a case E' of key do p else p' construct (unless
e € Keys), to ensure that only keys are used to encrypt or decrypt. It is
straightforward to enforce this using a type system.

Ezample The program case ¢ of key do {d}. else € outputs the value re-
ceived at channel d encrypted under the value received on channel c if
that value is a key, otherwise it outputs €.

A process is of the form P = (1,0, L, (p.)ccour) where

e [C Channels is called the set of its input channels l l
and P j
L
e O C Channels the set of its output channels, l o l
~ def

and where for each ¢ € O = O U L, p, is a closed program with input

channels in 7 ¥ TU L (where L C Channels is called the set of local
channels). From inputs on the channels in I at a given point in time, p.
computes the output on the channel c.

We write Ip, Op and Lp for the sets of input, output and local chan-
nels of P, Kp C Keys for the set of private keys and Sp C Secret for
the set of unguessable values (such as nonces) occurring in P. We assume
that different processes have disjoint sets of local channels, keys and se-
crets. Local channels are used to store local state between the execution
rounds.

2.1 Stream-processing functions

In this subsection we recall the definitions of streams and stream-processing
functions from [Bro99, BS00].

We write Stream¢ % (CExp®)¢ (where C C Channels) for the set
of C-indexed tuples of (finite or infinite) sequences of closed expressions.
The elements of this set are called streams, specifically input streams
(resp. output streams) if C' denotes the set of non-local input (resp. out-
put) channels of a process P. Each stream s € Streamg consists of
components s(c) (for each ¢ € C) that denote the sequence of expres-
sions appearing at the channel c. The n'® element in this sequence is the
expression appearing at time ¢ = n.

A function f : Stream; — P(Streamgp) from streams to sets of
streams is called a stream-processing function.

The composition of two stream-processing functions f; : Streamy, —
P(Streamy,) (i = 1,2) with O; N Oy = 0 is defined as

f1® fo : Stream; — P(Streamg) -
(With I = (Il UIQ) \ (01 UOQ), 0= (01 UOQ) \ (Il UIZ)).

where f1 ® fa(s) € {t lo: t li= s |1 Atlo,€ fi(s 15,)(i = 1,2)} (where
t ranges over Stream;). For t € Stream¢ and C' C C, the restric-
tion ¢t |r€ Streamc is defined by ¢ | (¢) = t(c) for each ¢ € C'.

[E](M) = {E(M)} where E € Exp
[either p or p'|(M) = [p](M) U [p'](M)

[if E=E' then p else p)(M) = [p|(M) if [B)(M) = [E')(M)
[if E = E' then p else /(M) = [5)(M) if [E)(M) # [E')(M)
[case E of key do p else p'|(M) = [p](M) if [E](M) € Keys
[case E of key do p else p'|(M) = [p'](M) if [E](M) ¢ Keys
[case E of x ::y do p else p'|(M) = [p[h/z,t/y]](M) if [El(M)=h:t

where h # € and h is not of the form h; :: hy for hi,hs # ¢
[case E of x ::y do p else p'|(M) = [p'|(M) if [E|(M) =¢

Fig. 1. Definition of [p](M).

Since the operator ® is associative and commutative [BS00], we can de-
fine a generalised composition operator &), fi for a set {f; : i € I} of
stream-processing functions.

Ezample 1f f : Stream, — P(Streamy,), f(s) et {0.s,1.8}, is
the stream-processing function with input channel a and output chan-
nel b that outputs the input stream prefixed with either 0 or 1, and g :

Stream,, — P(Streamy.), g(s) def {0.s,1.s}, the function with input
(resp. output) channel b (resp. ¢) that does the same, then the composition
f®g : Streamy,, — P(Streamy,), f®g(s) = {0.0.s,0.1.5,1.0.s,1.1.5},
outputs the input stream prefixed with either of the 2-element streams
0.0, 0.1, 1.0 or 1.1.

2.2 Associating a stream-processing function to a process

A process P = (1,0, L, (p¢)cco) is modelled by a stream-processing func-
tion [P] : Stream; — P(Streamy) from input streams to sets of output
streams.

For honest processes P, [P] is by construction causal, which means
that the n + 15! expression in any output sequence depends only on the
first n input expressions. As pointed out in [Pfi98], adversaries can not
be assumed to behave causally, therefore for an adversary A we need
a slightly different interpretation [A], (called sometimes rushing adver-
saries in [P£i98]).

For any closed program p with input channels in I and any I-indexed
tuple of closed expressions M € CExp’ we define a set of expressions
[p](M) € P(CExp) in Figure 1, so that [p](M) is the expression that
results from running p once, when the channels have the initial values
given in M.

We write E(M) for the result of substituting each occurrence of ¢ € I
in E by M (c) and p[E/z] for the outcome of replacing each free occur-
rence of z in process P with the term FE, renaming variables to avoid
capture.

Then any program p. (for ¢ € Channels) defines a causal stream-
processing function [p.] : Stream; — P(Stream(.) as follows. Given
s € Streamy, let [p.](s) consist of those ¢ € Stream. such that

— & € [pc](ga--- ,5)
— tpy1 € [pe)(sn) for each n € N.

Finally, a process P = (1,0, L, (pc)) is interpreted as the compo-
sition [P] ¥ ®,.5lpl-

Similarly, any p. (with ¢ € Channels) defines a non-causal stream-
processing function [p.], : Stream; — P(Streamy.) as follows. Given
s € Streamyj, let [p]-(s) consist of those ¢ € Streamy., such that ¢, €
[pclr(8y,) for each n € N.

An adversary A = (I,0, L, (pc)) is interpreted as the composition

[A], def R.colpdr® ®leé\0 [p7]. Thus the programs with outputs on the

non-local channels are defined to be rushing (note that using the local
channels an adversary can still show causal behaviour).

Ezxamples

— [if Deck'({0}k) =0 then 0 else 1](s) = (0,0,0,...) if K = K’

— For the process P with Ip = {i}, Op = {0} and Lp = {l} and with
D def 7 .. § and Do 4ef 1 .. i we have [P](s) = {(e, s0,80 :: 81,80 :: 81 ::
8g,...)} and [P],(s) = {(s0, 80 :: 1,80 :: 81 :: 82,...) }.

3 Secrecy

We say that a stream-processing function f : Streamy — P(Streamy)
may eventually output an expression £ € CExp if there exists a stream
t € f(*) (where x denotes the sole element in Streamy), a channel ¢ € O
and an index j € N such that (¢(c)); = E.

Definition 1. We say that a process P leaks a secret m € SecretUKeys
if there is a process A with I4 C Op, Ip C O4 and m ¢ S4UK 4 such that
[P]®[A], may eventually output m. Otherwise we say that P preserves
the secrecy of m.

The idea of this definition is that P preserves the secrecy of m if
no adversary can find out m in interaction with P. In our formulation
m is either an unguessable value or a key; this is seen to be sufficient
in practice, since the secrecy of a compound expression can usually be
derived from that of a key or unguessable value [Aba00].

For a comparison with other secrecy properties cf. Section 1.

Exzamples

- D def {m}k :: K does not preserve the secrecy of m or K, but p def

{m} Kk does.

- L case ¢ of key do {m}. else ¢ (where ¢ € Channels) does not

preserve the secrecy of m, but P e ({c},{e}, {l}, (pi,pe)) (where

De o {l}k) does.

We also define a rely-guarantee condition for secrecy.

Given a relation C C Streamgp x Stream; and a process A with
O C 14 and I C Oy we say that A fulfils C if for every s € Stream;,
and every t € [A](s), we have (s|p,t]s) € C.

Definition 2. Given a relation C' C Streamgp, xStream;, from output
streams of a process P to input streams of P, we say that P leaks m
assuming C' (for m € Secret U Keys) if there exists a process A with
m ¢ Sa UK that fulfils C and such that [P] @ [A], may eventually
output m.

Otherwise P preserves the secrecy of m assuming C.

This definition is useful if P is a component of a larger system S that is
assumed to fulfil the rely-condition, or if the adversary is assumed to be
unable to violate it.

Ezample p def if ¢ = password then secret else £ preserves the secrecy
of secret assuming C = {(¢, s) : Vn.s, # password}.

4 Refinement

We define various notions of refinement given in [BS00] and exhibit con-
ditions under which they preserve our proposed secrecy properties.

4.1 Property refinement

Definition 3. For processes P and P' with Ip = Ip: and Op = Op: we
define P ~ P' if for each s € Streamy,, [P](s) 2 [P'](s).

Ezample (either p or q) ~ p and (either p or q) ~ ¢ for any programs
p.q.

Theorem 1.

— If P preserves the secrecy of m and P ~» P' then P' preserves the
secrecy of m.

— If P preserves the secrecy of m assuming C (for any C C Streamgp, x
Streamy;,) and P ~ P' then P' preserves the secrecy of m assuming

C.

4.2 Interface refinement

Definition 4. Let Py, P,,D and U be processes with
IPlzID, OD:IP2,OP2:IU a'rLdOUZOpl. 3
We define P, 23 Py to hold if P~ D@ Py @ U.

Ezample Suppose we have

— Py = ({c},{d}, pa o if c=1 then 2 else 3),
- P, = ({c}, {d'}, par ©if ¢ =4 then 5 else 6),
— D = ({c},{c'},pe o if ¢=1 then 4 else ¢) and

U= ({d'},{d},pq o if d' =25 then 2 else 3.

Then we have P; (D«’»U) P.

For the preservation result we need the following concepts.

Given a stream s € Streamy and a bijection ¢ : Y — X we write
s, for the stream in Streamy obtained from s by renaming the channel
names using ¢: 8,(y) = s(¢(y))-

Given processes D, D' with Op = Ipr and OpNIp = 0

and a bijection ¢ : Opr — Ip such that [D]Q[D'](s) =
{s,} for each s € Stream;j,, we say that D is a left =
inverse of D' and D' is a right inverse of D.

Ezample py 45 .. ¢ is a left inverse of Pe def ase ¢ of h::t dot else e.

We write S o R & {(z,2) : Jy.(z,y) € RA (y,2z) € S} for the usual
composition of relations R, S and generalize this to functions f : X —
P(Y) by viewing them as relations f C X x Y.

Theorem 1 Let P, P>, D and U be processes with Ip, = Ip, Op = Ip,,
Op, = Iy and Oy = Op, and such that D has a left inverse D' and U a
right inverse U'. Let m € (Secret UKeys) \ Ugeip 7} (Sq U Kq)-

DU

— If P, preserves the secrecy of m and Py (M) P, then P, preserves the
secrecy of m.

— If Py preserves the secrecy of m assuming C' C Streamgp, xStream;,

D,U .
and P 2. P, then P, preserves the secrecy of m assuming [U'] o

Co[D'].

4.3 Conditional refinement

Definition 5. Let P; and P> be processes with Ip, = Ip, and Op, = Op,.
We define Py ~¢ Py for a total relation C C StreamoP1 X StreamIP1
to hold if for each s € Streamy, and each t € [R], (t,s) € C implies
te [[Pl]]

Ezample p ~¢ (if ¢ = emergency then q else p) for C = {(¢,s) :
Vn.s, # emergency}.

Theorem 2

Given total relations C,D C Streamg, x Stream;, with C C D, if P
preserves the secrecy of m assuming C and P ~»p P' then P' preserves
the secrecy of m assuming C.

5 A wvariant of TLS

To demonstrate usability of our specification framework we specify a vari-
ant of the handshake protocol of TLS as proposed in [APS99] and demon-
strate a previously unpublished weakness.

5.1 The Handshake Protocol

The goal is to let a client C send a master secret m € Secret to a server
S in a way that provides confidentiality and server authentication.

The protocol uses both RSA encryption and signing. Thus in this and
the following section we assume also the equation {Decg-1(E)}x = E to
hold (for each F € Exp and K € Keys). We also assume that the set of
data values D includes process names such as C,S,Y,... and a message
abort.

The protocol assumes that there is a secure (wrt. integrity) way for C
to obtain the public key K¢ 4 of the certification authority, and for S to
obtain a certificate Dec KoL (S :: Kg) signed by the certification authority

that contains its name and public key. The adversary may also have access

to Kca, ’DecKai1 (S :: Kg) and DecKai (Z :: Kz) for an arbitrary process
Z.
The channels between the participants are thus as follows.

c c
Co a5
sl

S
aA
ac as

CA

The following is the message flow diagram for the protocol that we
present to aid understanding. Note that this kind of notation is merely
short-hand for the more explicit specification given below and needs to
be interpreted with care [Aba00].

NC“KC“DBCKEI (C::K¢)

C S
. NS::{Dechl(KCS::Nc)}KC::’DecKalA(S::KS) S
c e S

Now we specify the protocol in our specification framework (here and
in the following we denote a program with output channel ¢ simply as ¢
for readability).

¢ if | =€ then N¢ :: K¢ = DGCKal(C i Ke)

else case s’ of s :: 891 83
do case {s3}aqy, of Sz
do if {DecK51(52)}x =1y :: N¢ then {m},
else abort
else abort

else ¢

1 <0

def /
s = case ¢ of c1 1 ¢o ey
do case {c3}c,0f T ::co do Ng :: {Dechl(KC’S nC1)}e, ttag
else abort

else ¢

ac ® Kca
a def Koy = DecKO_/}{(S = Kg) = ,Dechi(Z = Kz)

def
as = DGCK&I;(S it Kg)

For readability we leave out a time-stamp, a session id, the choice
of cipher suite and compression method and the use of a temporary key
by S since these are not relevant for the weakness. We use syntactic
sugar by extending the case list construct to lists of finite length and by
using pattern matching, and we also leave out some case of key do else
constructs to avoid cluttering. Here the local channel [of C only ensures
that C initiates the handshake protocol only once. The exchanged key is
symmetric, i. e. we have Kaé = K¢g. The values sent on a4 signify that
we allow A to eavesdrop on a¢ and ag and to obtain the certificate issued
by CA of some third party.

5.2 The flaw

Theorem 3 P C® S® CA does not preserve the secrecy of m.
We specify an attacker A and show that it is successful.

/ def

¢ = case c of ¢, ¢ ey

doci i Ky ’DecK_1(C = Ka)
A

else €

,def

s = case s of 81 :: 89 :: 83
do s :: {DGCKZI(SQ)}KC it 83
else €

def .

la = if la =€ then case s of s1 :: 89 :: s3
do case {DGCKZI(SQ)}KS of 1 :: xo do x1 else l4
else 14

o e case Iy of key do if Decy,(c) =L then € else Decy,(c) else €

Proposition 1 [P] ® [A], eventually outputs m.

The message flow diagram corresponding to this man-in-the-middle
attack follows.

NC::KC::DecK_l(C::KC) Nc::KA::'DecKzl(C::KA)
C c A
NS::{Dechl(KC’S”NC)}KC::DECK(—:’L(S”KS) NS33{D90K51(KCS33NC)}KA::DecKalA(S::KS)
C A
{m} {m}
C Kes A Kes
5.3 The fix

Let S’ be the process derived from S by substituting K¢g :: ¢; in the
second line of the definition of s by K¢cgs :: ¢; i co. Change C to C' by
substituting y :: N¢ in the fourth line of the definition of ¢ by y :: N¢ =
K.
NC::KC::DecK_l(C::Kc)
C

C S
Ns:{Dec, —1(Kos:Ncu:Ke)tkgDec, -1 (S:Kg)

C S CA S

c mhres S

Theorem 4 P' & ¢ ® S' ® CA preserves the secrecy of m.

Proof. For lack of space we only give an informal (but mathematically
precise) sketch of the proof.

Given an adversary A with n ¢ S4 U K4, we need to show that
[P'] ® [A], does not eventually output m. We proceed by execution
rounds, making use of the fact that the adversary may let its output
depend on the output from the honest participants at the same time.

In every round, 0 is output on [, Kc4 on a¢ and a4, and DecKEfll(S :
Kg) on ag. After the first round, the local storage of C remains unchanged
whatever happens, and S and C A do not have a local storage. Thus we
only need to consider those actions of A that immediately increase its
knowledge (i. e. we need not consider outputs of A that prompt C or S
to output € or abort in the following round.

In the first round, N¢ :: K¢ : DecKal(C’ :: K¢) is output on ¢ and ¢

on s. Since A is not in possession of any message containing S’s name and

S

S

signed by C'A at this point, any output on s’ will prompt C to output ¢
or abort in the next round, so the output on s’ is irrelevant. Similarly, the
only relevant output on ¢’ is of the form ¢; :: Kx :: DGCK)—(I(Y = Kx),

where Kx is a public key with corresponding private key K;(l and Y a
name of a process.

In the second round, the output on c is € or abort, and that on s is € or
abort or Ng :: {DecKs_l(ch it c1 it Kx)}k, it as. The only possibility
to cause C in the following round to produce a relevant output would
be for A now to output a message of the form Ny :: {DGCKEI(KC'S i
a1 Kx)}ky = DGCKE‘IA(S i Kz). Firstly, the only certificate from
CA containing S in possession of A is DecKajla (S :: Kg). Secondly, the
only message containing a message signed using Kg in possession of A
is {DeCKgl(KCS e i Kx) iy In case Kx # K¢ the message signed
by S is of the form DecKs_l(Kcs w1 Kx) for Kx # Kc, so that
C outputs abort on receipt of this message anyhow. In case Kx = K¢,
A cannot decrypt or alter the message {DecKS_1(KCS ta ot Kotk

by assumptions on cryptography and since A does not possess Kal. A
may forward the message on s'. In this case, C' outputs {m} ks in the
following round, which A cannot decrypt.

Since the internal state of C, S and C' A does not change after the first
round, further interaction does not bring any change whatsoever (since
it makes no difference if A successively tries different keys Kx or names
Y).
Thus P’ preserves the secrecy of z.

Note that the nonce Ng is in fact superfluous.

6 Implementing Secure Channels

As an example for a stepwise development of a secure system from an
abstract specification to a concrete one, we consider the implementation
of a secure channel W from a client C' to a server S using the handshake
protocol considered in Section 5.

The initial requirement is that a client C should be able to send a
message n on W with intended destination a server S so that n is not
leaked to A. Before a security risk analysis the situation may simply be
pictured as follows:

Since there are no unconnected output channels, the composition C' ®
W ® S obviously does not leak m.

Suppose that the risk analysis indicates that the transport layer over
which W is to be implemented is vulnerable against active attacks. This
leads to the following model.

Co S
N4

We would like to implement the secure channel using the (corrected)
variant of the TLS handshake protocol considered in Section 5. Thus P,
resp. P; are implemented by making use of the client resp. server side of
the handshake protocol. Here we only consider the client side:

We would like to provide an implementation P, such that for each C' with
n € S¢, CQ® P, preserves the secrecy of n (where n represents the message
that should be sent to S). Of course, P, should also provide functionality:
perform the initial handshake and then encrypt data from C under the
negotiated key K € Keys and sent it out onto the network. As a first
step, we may formulate the possible outputs of P, as nondeterministic
choices (in order to constrain the overall behaviour of P,). We also allow
the possibility for P, to signal to C the readiness to receive data to be
sent over the network, by sending ok on ¢;.

De def ither if co=¢ then € else {co}K
or ci

def .
¢; = either € or ok

Here ck denotes the following adaption of the (corrected) program c de-
fined in Section 5 (for readability, we allow to use syntactic “macros”
here, the resulting program is obtained by “pasting” the following pro-
gram text in the place of ¢(K) in the definition of p.). For simplicity, we

assume that P, has already received the public key K¢ 4 of the certifica-
tion authority. We leave out the definition of ¢; since at the moment we
only consider the case where C' wants to sent data to S.

CK def ither N¢g :: Ko DecK51(C = Ko)
or case a. of s1 :: 89 :: 83
do case Deck ,.(s3) of Sz
do if {Deck,(s2)}z =y N¢ :: K¢ then {K},
else abort
else abort

else abort

One can show that for any C, the composition C® P, preserves the secrecy
of n.

As a next step, we may split P, into two components: the client side
H of the handshake protocol (as part of the security layer) and program
P (in the application layer) that receives data from C, encrypts it using
the key received from H and sends it out on the network:

Co h;

[cP]

he = if hj = € then N¢g :: K¢ = DecK51(C i Ko)

else case ap of s1:: 89 :: s3

do case Deck . (s3) of S

do if {Deck,(s2)}s =y :: Nc :: Ko then {m},
else abort

else abort

else abort

ho & if by = ¢ then e
else case ap of s1:: 89 it S3

do case Deck ,,(s3) of Sz

do if {Deck,(s2)}z =y : N¢ :: K¢ then finished

else ¢

else €
else €
hi €0
def .
pe = if ¢o =€ then € else {c,} K

c def if ho, = finished then ok else

We have the conditional interface refinement P, (B;I;P P ® H where
— T C Streamgp, x Streamyp, consists of those (s,t) such that for
any n, if (s(&)) |i# finished for all i < n then (s(é,)) |i= ¢ for all
1<n+1
— and D and U have channel sets Ip = {¢o,ac}, Op = {co,ac,an},
Iy = {ci,pe; ha} and Oy = {&;,p.} and are specified by

def - def - def -
Co = Co, ac = G, ap = Qc,

_ def _ def
C; = Ci, Pe = hq
(after renaming the channels of P, to ¢, G, Pe, Gc)-

Therefore, for any C with [C] C T, we have an interface refinement

DU) ..
CQP, ('\») C®P®H. Since for any C, the composition C'® P, preserves

the secrecy of n, as noted above, this implies that for any C with [C] C T,
the composition C® P® H preserves the secrecy of n by Theorem 1 (since
D and U clearly have inverses).

7 Conclusion and Further Work

We presented work towards a framework for stepwise development of
secure systems by showing a notion of secrecy (that follows a standard
approach) to be preserved by standard refinement operators in the specifi-
cation framework Focus. We gave a rely/guarantee version of the secrecy
property and showed preservation by refinement. We used the secrecy
property to uncover a previously unpublished flaw in a proposed variant
of TLS, proposed a correction and proved it secure. We gave an abstract
specification of a secure channel satisfying secrecy and refined it to a
concrete specification, thus satisfying secrecy by the preservation result.

In further work [JiirOOb] we exhibit conditions for the compositionality
of secrecy using ideas from [Jiir0Oc].

Future work will give internal characterisations for the notion of se-
crecy (that do not directly refer to adversaries and therefore are easier
to check) and address other security properties such as integrity and au-
thenticity and the integration into current work towards using the Unified
Modeling Language to develop secure systems [Jiir01].

8 Acknowledgements

Many thanks go to Martin Abadi for interesting discussions and to Zhenyu
Qian for providing the opportunity to give a talk on this work at Kestrel
Institute (Palo Alto) and to the members of the institute for useful feed-
back. Many thanks also to G. Wimmel and the anonymous referees for

comments on the draft.

This work was performed during a visit at Bell Labs Research at Sil-
icon Valley / Lucent Technologies (Palo Alto) whose hospitality is grate-
fully acknowledged.

References

[Aba00] M. Abadi. Security protocols and their properties. In F.L. Bauer and R. Stein-
brueggen, editors, Foundations of Secure Computation, pages 39-60. I0S
Press, 2000. 20th Int. Summer School, Marktoberdorf, Germany.

[AG99] M. Abadi and Andrew D. Gordon. A calculus for cryptographic protocols:
The spi calculus. Information and Computation, 148(1):1-70, January 1999.

[AJ00] M. Abadi and Jan Jirjens. Formal eavesdropping and its computational
interpretation, 2000. submitted.

[APS99] V. Apostolopoulos, V. Peris, and D. Saha. Transport layer security: How
much does it really cost ? In Conference on Computer Communications
(IEEE Infocom), New York, March 1999.

[AR00] M. Abadi and P. Rogaway. Reconciling two views of cryptography (invited
lecture). In T'CS 2000 (IFIP conference), Japan, August 2000.

[Boe81l] B.W. Boehm. Software Engineering Economics. Prentice-Hall, 1981.

[Bro99] M. Broy. A logical basis for component-based systems engineering. In M. Broy
and R. Steinbriiggen, editors, Calculational System Design. 10S Press, 1999.

[BS00] M. Broy and K. Stglen. Specification and Development of Interactive Systems.
Springer, 2000. (to be published).

[CGGO00] L. Cardelli, G. Ghelli, and A. Gordon. Secrecy and group creation. In
CONCUR 2000, pages 365-379, 2000.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE Trans-
actions on Information Theory, 29(2):198-208, 1983.

[FBGLY4] S. Fitzgerald, T. M. Brookes, M. A. Green, and P. G. Larsen. Formal
and informal specifications of a secure system component: first results in a
comparative study. In M. Naftalin, B. T. Denvir, and M. Bertran, editors,
FME’94: Industrial Benefit of Formal Methods, pages 35—44. Springer, 1994.

[GCS91] J. Graham-Cumming and J. Sanders. On the refinement of noninterference.
In IEEE Computer Security Foundations Workshop, 1991.

[HMR198] F. Huber, S. Molterer, A. Rausch, B. Schiitz, M. Sihling, and O. Slotosch.

[Jiir00a]
[Jiir00b]
[Jir00c]

[Jir01]

Tool supported Specification and Simulation of Distributed Systems. In In-
ternational Symposium on Software Engineering for Parallel and Distributed
Systems, pages 155-164, 1998.

Jan Jiirjens. Abstracting from failure probabilities, 2000. submitted.

Jan Jiirjens. Composability of secrecy, 2000. submitted.

Jan Jirjens. Secure information flow for concurrent processes. In
C. Palamidessi, editor, CONCUR 2000 (11th International Conference on
Concurrency Theory), volume 1877 of LNCS, pages 395-409, Pennsylvania,
2000. Springer.

Jan Jirjens. Towards development of secure systems using UML. In H. Huf}-
mann, editor, Fundamental Approaches to Software Engineering, LNCS.
Springer, 2001. to be published.

[LFBG95] P. G. Larsen, S. Fitzgerald, T. M. Brookes, and M. A. Green. Formal

[Lot00]

[Man00]
[McL94]
[McL96]

[Mea92]

[Mea96]
[P£i98]
[RS98]

[RS99]

modelling and simulation in the development of a security-critical message
processing system. In Formal Methods, Modelling and Simulation for Systems
Engineering, 1995.

V. Lotz. Formally defining security properties with relations on streams.
FElectronical Notes in Theoretical Computer Science, 32, 2000.

H. Mantel. Possibilistic definitions of security - an assembly kit. In IEFE
Computer Security Foundations Workshop, 2000.

J. McLean. Security models. In John Marciniak, editor, Encyclopedia of
Software Engineering. Wiley & Sons, Inc., 1994.

J. McLean. A general theory of composition for a class of ”possibilistic”
properties. IEEE Transactions on Software Engineering, 22(1):53-67, 1996.

C. Meadows. Using traces based on procedure calls to reason about com-
posability. In IEEE Symposium on Security and Privacy, pages 177 — 188,
1992.

C. Meadows. Formal verification of cryptographic protocols: A survey. In
Asiacrypt 96, 1996.

B. Pfitzmann. Higher cryptographic protocols, 1998. Lecture Notes, Univer-
sitdt des Saarlandes.

P. Ryan and S. Schneider. An attack on a recursive authentication protocol.
Inform. Proc. Letters, 65:7-10, 1998.

P. Ryan and S. Schneider. Process algebra and non-interference. In IEEE
Computer Security Foundations Workshop, 1999.

[RWW94] A. Roscoe, J. Woodcock, and L. Wulf. Non-interference through determin-

[Sch96]
[SS75]

[SV00]

ism. In ESORICS 94, volume 875 of LNCS. Springer, 1994.

S. Schneider. Security properties and CSP. In IEEE Symposium on Security
and Privacy, pages 174-187, 1996.

J. Saltzer and M. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278-1308, September 1975.

P. Sewell and J. Vitek. Secure composition of untrusted code: Wrappers and
causality types. In CSFW, 2000.

