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About the Document

In this document, we present a comprehensive modeling theory for the seamless development of
software for embedded systems. We start the document by describing the need for a compre-
hensive theory to provide a formal and thorough foundation for the software development in
different process phases. What exactly a theory should contain, strongly depends on the sys-
tems that need to be described. Therefore we characterize the types of systems to be modeled
and starting from this we derive a set of requirements that need to be fulfilled by the modeling
theory. Based on these requirements, we shortly introduce the core elements of Focus', that
is a comprehensive modeling theory for specification of embedded systems. Next, we present
how do basic modeling concepts like state machines relate to the core theory.

Outline. In Section 1 we motivate the need of a comprehensive modeling theory to allow
the thorough and seamless formalization of development artifacts. In Section 2 we define the
scope of our work by investigating the classes of systems that need to be described within
our modeling theory. Starting from these system classes we derive a set of requirements
to the modeling theory in Section 3. In Section 4 we present the comprehensive modeling
theory by firstly presenting intuitively its main features and then by introducing the minimal
mathematical model that makes up the theory. In Section 5 we extend our mathematical
model by presenting state machines as basic techniques for the specification of the operational
semantics.

' A thorough formal foundation of the Focus modeling theory can be found in [BS01] and [BKMO07)
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1 Motivation

Model-based development aims at the use of models as main development artifacts in all phases
of the development process. It promises to increase the productivity and quality of the software
by raising the level of abstraction at which the development is done as well as the degree of
automation with the help of models that are tailored and adequate for specific development
tasks. Even if adopted in practical development of embedded systems today, model-based
development approaches often fall short due to the lack of powerful enough modeling theories
and missing integration of theories, methods and tools. The models applied in the development
process are based on separate and unrelated modeling theories (if foundations are given at all),
which makes the transition from one model to another unclear and error-prone.

Below we enumerate two main deficiencies of the status quo of model-based development
approaches with respect to the semantic infrastructure on which they are based (illustrated in
Figure 1):

1. Fragmentation and isolation of semantic foundations — lack of horizontal integration. In
practice, there is a plethora of different modeling techniques which can be applied for
the specification of the same artifacts of a system. For example, functional requirements
(i.e., interaction patterns between the system and its environment) can be specified with
use cases diagrams, sequence charts, state machines, etc. Even if there are formalizations
that rigorously describe the meaning of individual diagrams, once a system is described
by different diagrams, it is not specified how they are combined and integrated. Today,
the fragmentation and isolation of the semantic foundations lead to the impossibility to
deeply integrate different models and to verify their consistency or to generate parts of
one from another.

2. Lack of seamless transition between different abstractions — lack of vertical integration.
The main aim of a seamless model-based development approach is the usage of models
at different stages in the process and at different abstraction levels. The pervasive use of
models allows engineers to raise the level of abstraction at which systems are developed, to
abstract from implementation details, and to add more and more implementation details
step by step. Today an integrated framework of abstraction layers is missing which leads
to the isolation of the models at different stages in the process and to unclear transitions
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Figure 1: Horizontal vs. vertical integration problems.



between models. This subsequently leads to gaps between abstraction layers and thereby
to a lack of automation and to difficulties with the management of intent and consistency
between different layers.

All in all, both deficiencies lead to crucial consistency problems. Horizontal consistency prob-
lems prevent the integration of models created in the same development phase (e. g., two views
showing a perspective of the design). Vertical consistency problems, prevent us to make sure
that models from different phases of the development process are consistent to each other (e. g.,
requirements and design).

To address these problems we need a comprehensive modeling theory that provides a mathe-
matical model of a system as a basis to ensure a thorough and seamless formalization of the
software development process. This theory must be comprehensive and expressive enough to
model all relevant views (aspects) of a system at different levels of abstraction, to allow the
hierarchical decomposition of the system, and their modular development.

2 Characteristics of the Addressed Systems

How powerful should the modeling theory be? The choice of a modeling theory directly affects
the limits of what can be explicitly described in the models. To answer this question, we
have to answer the question which types of systems we want to address. Depending on the
characteristics of the systems that are described, and thereby on what we need to express
within our models, the modeling theory has to be more or less expressive within a certain
respect. We enumerate a set of characteristics of the embedded systems that can be modeled
with our modeling theory in Section 2.1 and a set of yet unaddressed aspects in Section 2.2.

2.1 Addressed Aspects

Multi-Functional and Complex Systems. Today, many software-intensive systems provide a
wide range of functionalities, i. e., they offer a variety of different user-observable functions that
interact with each other. We call such systems multi-functional. With functionality we mean
the characteristic, observable behavior of a system, or more precisely its reaction (outputs) to
stimuli (inputs). We also speak of functionally complex systems where complex refers to the
complex interplay of functionalities and not (necessarily) to complex algorithms.

Interactive and Reactive Systems. Systems can be divided into two categories according
to the way they transform input into output: transformational in contrast to interactive and
reactive systems. Transformational systems, which transform input completely available at
the beginning of the execution into output without any interaction with the user, are not in
the focus of our approach. FEmbedded systems are generally interactive or reactive systems.
Consequently we concentrate on these system types which are characterized by a constant
interaction and synchronization between the system and its environment. While for interactive
systems the interaction is determined by the system, the interaction of reactive systems is
determined by the environment.



Distributed Systems. Today’s embedded systems are generally no longer realized within a
single ECU, but distributed over a network of distributed logical or physical components which
heavily interact with each other in order to realize the desired functionality. These components
execute their computations simultaneously on multiple cores in the same chip, different threads
on the same processor, or on physically distributed systems.

Discrete Controllers and Continuous Physical Processes. Embedded systems are frequently
used to control processes and devices that consist of physical (e.g., mechanical, electrical)
components and exhibit time-continuous behavior. The controller, however, implemented in
software, is generally some form of (finite-)state machine on a digital processor and is, therefore,
asynchronous and time-discrete.

Real time constraints. Often the systems to be built must meet real-time requirements,
namely there are operational deadlines from the occurrence of specific events (inputs) until the
system produces a response (output). In this case, the construction of systems should allow
for the verification of real-time constraints.

2.2 Not (yet) Addressed Aspects

Besides the characteristics listed above, there are also aspects which are not addressed in the
initial version of the modeling theory.

Continuous / Hybrid modeling. In order to model continuous processes, we need a model of
continuous time. A time-discrete model with a discretization function whose fine granularity is
enough can be used to approximate most continuous processes. Therefore, in the first proposal
of our modeling theory, we do not consider continuous time. However, we are aware of the
relevance of modeling continuous and hybrid aspects in the domain of embedded systems.
Thus, we are planning to elaborate appropriate concepts and to extend the modeling theory
accordingly in a second step.

Probabilistic Systems. Various non-functional aspects like efficiency (time/space complexity)
as well as various forms of failure are naturally expressed and reasoned about probabilistically.
Even if some attempts exist, to the best of our knowledge none of them is satisfying for modeling
the probabilistic aspects of systems with a well-formed and trunctable theory. Therefore, we
agreed to refrain from probabilistic aspects for now.

Dynamic Reconfiguration. In various application domains, the dynamic reconfiguration of
systems might be of interest. However, in the first version of our modeling theory we also back
away from dynamic systems.



3 Requirements on the Modeling Theory

As already mentioned in the beginning, the modeling theory must be powerful enough to
express all relevant properties of a system. In order to enable the modeling of systems with
the characteristics mentioned in the previous section, the modeling theory needs to fulfill the
following requirements:

Modularity and Compositionality. Compositionality is the property of a theory that allows
to deduce the interface behavior of a system from the interface behavior of its sub-systems. It
is the basis for the incremental and modular development of (sub-)systems.

Modular development of sub-systems reduces the complexity through “divide and con-
quer” — instead of building monolithic systems in one step, compositionality enables to
incrementally build systems out of modularly specified parts.

In order to obtain the overall system, individually developed subsystems must be inte-
grated. Thereby, we need to make the new without having to change the old — we need to
assure that the properties of the subsystems, which are composed, are preserved. We aim
at replacing the traditional a posteriori validation of systems by building systems that
are correct by construction. In other words, the compositionality needs to be property
preserving.

Besides, compositionality is essential for the reuse of existing components. In the case
of non-compositional theories, the validation costs grow exponentially with the number
of components integrated in a system (by adding a new component all others need be
checked for interferences). Compositionality, instead, allows to easily integrate existent
components.

Abstraction and Refinement. Abstraction and refinement are two important concepts of
a modeling theory. Refinement enables the transformation between a more abstract model
into a more concrete one without loosing the properties of the abstract model. The concept
of refinement allows us to start with high-granular descriptions and to incrementally refine
them into more detailed ones. Refinement is especially useful in relating models from different
abstraction levels: when the more concrete model is a refinement of a more abstract model,
we are sure that the refining model guarantees all the properties of the abstract model. Thus,
refinement is a basic property of modeling theories needed to establish a uniform formal basis
for a seamless model-based development along different abstraction layers.”

(Interface) abstraction enables modeling and specifying properties of a system that are needed
for its usage without paying attention to how the system is implemented (i.e., black-box
specification). In particular the modeling theory must enable to specify the interface behavior
—i.e., all properties that are relevant for the use of the system in any context.

*In [FHH "ar] we describe the need and use of ’abstraction layers’ for developing complex embedded systems.



Explicit Modeling of Time. A modeling theory adequate for describing real-time systems
must directly include timing aspects. Thus, the modeling theory should implement a timing
model that allows us to reason about timing properties of the modeled systems.

Supporting Different Views. A modeling theory should support diverse, integrated views on
the system under development — e. g., the structure, behavior, data. By this, different aspects
of the system can be specified and analyzed separately.

4 Comprehensive Modeling Theory

The essential goal of the presented modeling theory is a mathematical foundation for the struc-
tured modeling of system functions at different abstraction layers (see [FHH ar] for details).
Thereby, our approach aims at modeling two fundamental, complementary views onto multi-
functional systems. These views are address the two most significant dimensions of structured
modeling of systems in the analysis and design phases of development:

User Functionality Hierarchy: A structured view onto the overall functionality offered by
a multi-functional system by decomposing the system functionality into a hierarchy of
interrelated user functions. We speak of the functional specification.

Logical Component Architecture: Decomposition of the system into a network of compo-
nents that mutually cooperate to generate the behavior specified by the user functionality
hierarchy. We speak of the design.

Section 4.1 intuitively introduces the fundamental notions: service hierarchies (used to model
the user functionality), and hierarchical component networks (used to model the logical com-
ponent architecture). Section 4.2 introduces the underlying model of computation. The basic
building blocks — of service hierarchies as well as component networks — are stream processing
functions, which are introduced in Section 4.3. We define two operators to combine modu-
larly specified functions in Section 4.4 and methodologically important refinement relations in
Section 4.5.

Running Example The formal definitions introduced in the remainder of the paper will be
illustrated by a simple example, namely a boolean evaluator. Based on the user’s selection
(received via the channel switch), the system outputs the disjunction or the conjunction of
two boolean input values (received via the input channels i; and i;). The evaluator and its
in- and output channels are depicted in Figure 2. All further details will be described at the
appropriate places.

switch

— b AND/OR result

Figure 2: Running Example: Boolean Evaluator



4.1 Service Hierarchies and Component Networks

In this section we introduce two fundamental notions: service hierarchies and hierarchical
component networks.

The service hierarchy aims at capturing all software-based functionality (services) offered by a
system to its users. This hierarchy specifies the system behavior from a black-box perspective
by capturing the family of services offered by the system. It aims at understanding how the
services are structured and how they depend on and interfere with each other [BKPS07].

In a component network, the system functionality is specified as a distributed system of in-
teracting components. Via their interaction, the components realize the observable behavior
described in the service hierarchy.

Service Hierarchy. A service hierarchy consists of a set of services and relationships between
them. Each service specifies a piece of functionality that is offered by the system and observable
at the outer boundaries of the system. More formally, a service captures the interaction of the
system with its environment by defining a (partial) relation between a set of inputs and outputs
of the system. Usually, services describe system reactions only for a subset of the inputs.
Thus, services are formally described by partial stream processing functions as introduced in
Definition 5 below.

In general, multi-functional systems offer a bunch of services to their users. These services can
be specified modularly and subsequently combined into an overall service hierarchy by means
of the combination operator introduced in Definition 11 below (see Figure 3 for an informal
representation).

Figure 3: Service Hierarchy [Bro07]



#£5 Example 1 (Service Hierarchy of the Evaluator)

The introduced boolean evaluator comprises two sub-services. The sub-service AN D calculates
the conjunction of the input values if the corresponding input is received via the channel
switch. The sub-service OR outputs the disjunction of the input values if the user wishes so.
Figure 4 illustrates the simple service hierarchy of the boolean evaluator.

(]
switch
[ result
— AND/OR
i2
—_—
switch switch
iy result iy result
— AND — — OR —
_ _

Figure 4: Service Hierarchy of the Evaluator

Component Network. The component network defines the architectural view of the system
and decomposes the functionality into a network of communicating components. While the
service hierarchy provides a structure of services observable at the outer boundaries of the
system, the component network focuses on the internal component based structure of the
system (cf. Figure 5).

Communication

Sender —>| Medium |—> Receiver
4—| Medium |<— <

A

v

A 4

Network

A

v

Figure 5: Component Network [Bro07]

A component network consists of a set different components, which are connected via channels.
Each component can be further decomposed into a component network, itself. A component
is total in its nature and therefore specified by a total function as will be introduced in Defi-
nition 4. In a component network, several components have to collaborate to realize functions



observable at the system boundary. Therefore, the components are connected by channels, via
which they can exchange messages. Formally, we use the composition operator introduced in
Definition 7 below to incrementally compose components to more complex ones, until we get
the overall system.

45 Example 2 (Component Network of the Evaluator)

The overall evaluator can be decomposed into three interacting components. The component
AND calculates the conjunction of the input values, the component OR the disjunction of
the input values, and the component SWITCH decides which of the results is shown on the
output channel. Figure 6 depicts the component network of the evaluator.

O
switch AND / OR
r
AND AND
h | result
iy
—’_
OR Tor

Figure 6: Component Network of the Evaluator

4.2 Underlying Model of Computation

In this section we put our modeling theory in a larger context according to its underlying timing
model and its communication/synchronization mechanisms between different components.

Communication Paradigm. Regarding communication — i.e., the way information can be
exchanged between components — one can distinguish between implicit communication (e.g.,
via shared variables), explicit event based synchronous communication and explicit message
based asynchronous communication.

Our modeling theory is based on explicit message based asynchronous communication. In this
class there is an explicit communication mechanism with clear distinction between sender and
receiver. The communicating partners are decoupled, i.e., while the receiver has to wait until
a message is available to be read, the sender can write a message without delay. We base our
assumption on the fact that distributed systems are usually connected by a bus which never
blocks the sender. In contrast to synchronous systems, when embedding a system into its
environment, no (output) blocking has to be considered. In this sense, asynchronous message
exchange allows unrestricted compositionality of the components without considering technical
details as deadlocks or interference.

10



Timing Model. Considering possibilities at what point in time “relevant” activities are al-
lowed to happen during the system run, the following classification can be done: In time
continuous systems, relevant activities can evolve continuously. In time discrete systems, the
time line is divided into not necessarily but possibly equal intervals and the relevant activities
only occur at points of time of the time grid. In event discrete systems, events can occur at
any point of a real time line. The different timing models are vividly illustrated in Figure 7.
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Figure 7: lllustration of Different Timing Models [Kru]

FEmbedded systems can contain a large amount of control algorithms which require a continuous
model of time. However, such systems play only a minor role and can be abstracted by discrete
algorithms most of the time. Furthermore, the resulting control system which is to be developed
will run on a digital computer and therefore will be time-discrete.

Our modeling theory assumes a simple model of discrete time, where time advances in ticks.
Therefore, events within a single tick can not be differentiated. In our experience, most frequent
situations can be modeled and analyzed in this time model, as long as the length of a single
time interval (tick) is chosen sufficiently small. The limitation to this discrete time model
simplifies both the understandability and analyzability of as well as the creation of models and
supporting tools. However, extending the theory to more complex models of real or continuous
time can be easily achieved following [Bro97].

Synchronicity of Time. Different theories differentiate whether there is a global clock which
defines a global time for all parts of the system, or if the different components have their local
clock. In the second case further synchronization mechanisms are necessary. Our modeling
theory assumes a global clock.

4.3 Stream Processing Function

In the Focus approach [BS01], a system is described by a stream processing function, which
defines its syntactic interface as well as its behavior. Furthermore, the Focus approach of-
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fers composition operators which allow derive a larger system (the composed system) out of
modularly defined functions.

4.3.1 Streams

Basically, the Focus theory is based on the idea of timed data streams which are used to
model the asynchronous interaction between a function and its environment. Streams represent
histories of communication of data messages in a given time frame. Intuitively, a timed (data)
stream can be thought of as a chronologically ordered sequence of data messages.

Definition 1 (Timed Stream) Given a set M of data messages, we denote a timed stream
of elements from M by a mapping
s:N—= M.

For each time t € N, s(t) = s.t denotes the message communicated at time t in a stream s and
s | t the prefix of the first t messages in the timed stream s, i. e., the messages communicated
until (and including) time t.”

We have chosen so-called timed data streams that allow us to flexibly include the timing issues
of functions whenever required. We base our approach on a simple notion of discrete time:
we assume a model of time consisting of an infinite sequence of time intervals of equal length.
Thus, time can be simply represented by the natural numbers Ny. In each time interval a
message m € M can be transmitted.

#£5 Example 3 (Timed Stream)

A exemplary timed stream s over the data set B = {0,1} is defined by the function V¢ €
N : s(t) = 1. This means that in each time interval the stream contains the value 1, i.e.,
s=(111..).

O

4.3.2 Input/Output Channels and Channel Histories

Every stream processing function is connected to its environment by channels. The channels
of a stream processing function are divided into disjoint sets of input channels I = {iy,...4,}
and output channels O = {o1,...0,}. Channels are used as identifiers for streams.

With every channel ¢, we associate a data type Type(c) indicating the set of messages sent
along this channel. To that end, we define the channel type by the following function:

Type : C' — Type,

3The theory is originally defined for stream processing functions s : Ny — M*, which assign a sequence of
messages to each time interval. In order to keep the paper at hand as understandable as possible, we decided
for the simplification that only one message can be communicated within each time interval. A proper
description of the original theory can be found in [BS01, BKMO07]

12
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Figure 8: Graphical representation of a FOCUS function and its typed 1/0O channels

which maps each channel ¢ € C' to a data type t € Type from the set of all possible data types
Type.

#£5 Example 4 (Channel Types)

In our running example, the channel types are defined as follows. Type(result) = Type(iy) =
Type(iz) =B = {0,1} and Type(switch) = {A,V}.

O

To describe the function’s communication with its environment, each channel is associated
with a stream which represents the messages communicated over this channel (cf. Figure 8).
A mapping that associates a stream to any channel from a set of channel C'is called (channel)
history of C.

Definition 2 (Channel History) Let C' be a set of typed channels. A channel history h is
a mapping
h:C— (N— M),

such that h(c) is a stream of the type Type(c) for each c € C.
The set of all histories over the set of channels C' is denoted by H(C).

In the following, we also use h.c instead of h(c) to refer to the stream associated to a channel
¢ € C by a history h.

#£5 Example 5 (Channel Histories)

One of the possible input histories of the evaluator from our running example (i.e., a history
over its input channels) is given by the mapping h:

switch VANEVAN
h: i — 0 1
ig 1 1

— o <

\
1
1

_ o >

h(switch) = (A A V V A ...)results in the corresponding stream of the switch button, and
h(switch).3 = V denotes that the switch button is turned to V in the third time interval.

O
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4.3.3 Specification of Stream Processing Functions
The black-box specification of a stream processing function consists of a syntactic interface
and its semantics.

A stream processing function is connected to its environment exclusively by its syntactic in-
terface consisting of input/output channels. This interface indicates which types of messages
can be exchanged.

Definition 3 (Syntactic Interface) The syntactic interface of a function is denoted by
(I » 0),

where I and O denote the sets of typed input and output channels, respectively.
#£5 Example 6 (Syntactic Interface)

The syntactic interface of the evaluator (I » O) comprises three input channels I = {switch, iy, 1o}
and one output channel O = {result}.

O

For a function with syntactic interface (I » O), the set of all syntactically correct history pairs
is denoted by
H(I) x H(O).

However, the syntactic interface tells nothing about the interface behavior of the function.

The behavior (semantics) of the stream processing function is given by the mapping of histories
of the input channels to histories of the output channels. Thereby, we distinguish between total
and partial functions. While the behavior of a total function is defined for all syntactically
correct inputs, the behavior of a partial functions is defined for a subset of the inputs. As
mentioned in Section 4.1, partial stream processing functions are the basic building blocks of
service hierarchies while total stream processing functions are used to specify the components
of component networks.

Definition 4 (Semantics) The semantics of a total stream processing function with syntactic
interface (I » O) is given by a relation

F: H(I) — P(H(O))

that fulfills the following timing property for all its input histories.
Let be x1,x9 € H(I),y1,y2 € H(O), and t € Ny. The timing property is specified as follows:

milt=as = {yn L (t+1) im0 € Fla)} = {yo | (t+1) : g2 € Flaz))}.

14



By mapping into the powerset of H(O), Definition 4 (as well as Definition 5) allows to spec-
ify mondeterministic behavior. For an input history, there is a set of output histories that
represent all possible reactions of the function to the input history. If a function defines ex-
actly one output history for every input history, the function is called deterministic; if the
set of output histories has several members for some input history, then the function is called
nondeterministic.

The timing property expresses that the set of possible output histories for F' for the first ¢ 4+ 1
intervals only depends on the inputs of the first ¢ time intervals. In other words, the processing
of messages within a function takes at least one time interval. Functions that fulfill this timing
property are called time-guarded or strictly causal. Strict causality is a crucial prerequisite for
the composability of functions.

If we replace the expression (¢ + 1) by t in Definition 4 above (i.e., the outputs in the first ¢
intervals depend on the inputs in the first ¢ intervals), messages are processed by the function
without time delay. Such functions are called weakly causal. We also allow for the specification
of weakly causal functions. For the composition, however, it must be assured that each feedback
loop contains at least one strictly causal function. An important consequence of the causality
assumption is, that a causal function leads either to a defined output for all its input histories
(i.e., F(x) # 0 for all € H(I)) or an empty output for all input histories (i.e., F(z) = ()
for all x € H(I)). In the first case, we call the function total, in the second case we call it
paradozxical. Partial functions which are only defined for a subset of the input histories are not
covered by Definition 4.

#£5 Example 7 (Semantics of Total Stream Processing Function)
The semantics of our evaluator Fg is given by the following equation:

i1).t Ax(ig).t, if itch).t = A
y € Fla) & Vi € N, : y(rosult).(t 4 1) = {x(n) z(iz).t, if z(switc )t_ \/7

x(i1).t V x(iz).t, if z(switch)
The behavior is as expected. If the switch is turned to A, the conjunction of the input values

received at the channels i; and i, is displayed at the output channel result in the next time
interval. Otherwise, the disjunction is displayed.

A possible valid input/output pair is given by

switch ANV VA

hin : i — 01 0 1 0 and
ip 1111 1 ..

hout: (result )— (1 0 1 1 1 0 ..).

The evaluator function F is strictly causal. The output in time interval ¢ + 1 only depends
on the inputs received in time interval ¢. The calculated result is visible at the output channel
exactly in the next time interval. Furthermore, the evaluator function is non-deterministic.
The output in the first time interval is not further specified. Exemplary, for the input history
hin there exists a second valid output history k!, which differs from hey only in the first time
interval.

h/

out *

(result)r—>(0 01 1 10 )

15
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Especially during the early phases of the development process, it is helpful to allow for partial
specification. This allows the developer to specify all information that is already known about
the system while not bothering about the situations which are not important for the moment.

Definition 5 (Semantics of Partial Stream Processing Function) The semantics of a
partial stream processing function with syntactic interface (I » O) is given by a relation

F: H(I) — P(H(0))

that fulfills the timing property only for the input histories with nonempty output set.
Let be x1,x9 € H(I),y1,y2 € H(O), and t € Ny. The timing property is specified as follows:

F(a:l) #@#F(.%'Q)/\wl it:xglté {y1 J, (t+1) Y1 € F(l‘l)} = {yg J, (t—i—l) Y2 € F(xg)}
The set
dom(F)={xz € H(I) : F(x) # 0}

is called the function domain. It characterizes those input streams for which F' is defined. The
set

ran(F) ={y € F(z) : x € dom(F)}

s called the function range and comprises the possible outputs for all valid inputs.

The definition of partial stream processing functions is analogous to the definition of total
functions. A partial stream processing function defines a non-empty set of output streams
only for a subset dom(F) C H(I) of all possible inputs and the timing property (implying
strong or weak causality) must only hold for these input streams.

#£5 Example 8 (Semantics of Partial Stream Processing Function)

Let’s assume that the type of the channel switch is defined as Type(switch) = {A,V, -}, i.e.,
it is extended by the message — compared to the original definition. Then, the function Fp,
that is given in Example 7, is only partially defined. If an input history A contains the message
- there is no defined reaction to this input:

(3t € N4 : h(switch).t = —) = (Fg(h) =0).

The input history h is outside the domain of Fr. The domain is given as dom(Fg) = {h €
H(I) : Vt € Ny : h(switch).t # —}
([

16



4.4 Function Structuring

To cope with the complexity of today’s systems, a modeling theory must comprise concepts to
decompose the overall system into smaller building blocks which can be developed individually
and easily integrated afterwards. Hereby, a central question in software engineering is how to
adequately structure the functionalities of the system at different levels of abstraction. We
introduce two operators, a composition and a combination operator, which allow two different
kinds of decomposition of the functionality (cf. Section 4.1): Via the composition operator, we
can derive the behavior of component networks containing interacting components. Via the
combination operator, we can combine several services into a service hierarchy.

4.4.1 Composition

To deal with the complexity, functions are composed by parallel composition with feedback
following the approach of Broy [BS01]. The composition operator combines a set of functions
that mutually use each other into a network.

For the following definitions we firstly introduce the notion of history projection. A sub-history
is the projection of a history with respect to a subset of its channel set and their restricted
types. Given a set Cjof typed channels, to obtain the sub-history x|C;, we keep only those
channels and types of messages in the history x that belong to the typed channels in Cj.

Definition 6 (History Projection) Let C1 and Cs be sets of typed channels with C; C Cs.
For history x € H(Cy), we define its restriction x|Cy; € H(C1) to the channels in the set Cy
and to the messages of the types of the channels in Cy (denoted by the function Typec,(.)).
For channels ¢ € C1, we specify the restriction by the equation:

(z|Cy).c = Typec, (c)Q(x.c)

where M@Qs deletes all messages m ¢ M from the stream s.
#£5 Example 9 (History Projection)

Given the history h;y, from Example 7. It is defined over the channel set I = {switch,iny,ina}.
Its projection to the channels in the set I’ = {switch} is given by

hinlI': ( switch ) — (A AV V A ).

Now we can define the composition operator for stream processing functions.

The idea of the function composition is shown in Figure 9. In a composed function F; ® Fb,
the channels in the channel sets Cy and Cs are used for internal communication. They are
called feedback channels.
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Figure 9: Function Composition with Feedback

Formally, the composition of two stream processing functions F; and F5 is defined as the
behavior observable at the black-box boundaries of the system, i.e., the behavior observable
at the channels that are not used for internal communication (I = (I3 U Iz) \ (C1 U Cy),
O =(01U09)\ (C1UCy)). To check whether an output y € H(O) is a correct response to an
input stream = € H(/), we must find a valuation of the feedback channels ¢ € H(C; U Cy) such
that the projections of the overall history to the interfaces of the subfunctions F; and F5 must
represent valid behaviors according to the specification of the composed subcomponents. For
the formal definition, the histories z, y, and ¢ are combined into a history z € H(JUOUC;UC?)
with z|I =z, 2|0 =y, and z|(C1 UCs) = c.

Definition 7 (Composition of Functions) Given two functions Fy with syntactic interface
(I1 » O1) and Fy with syntactic interface (I » O3) and O1 N Oy = 0, we define a composition
by the expression

F1 ® F.

The function Fy ® Fy has the syntactic interface (I » O) with I = (I; \ C2) U (I \ C1) and
O = (01 \ C1)U(02\ C2) and internal feedback channels Cy = Ia N O and Cy = I; N Os.

The semantics is defined as follows: Let x € H(I), z € H(I UO U C; U Cy), then

(Fl & FQ)..T = {Z‘O X = Z’I/\ Z‘Ol € F1(Z’Il) A Z|02 € FQ(Z‘IQ)}.

As mentioned before, strict causality assures that the composition of two components is well-
defined. The composition is associative and commutative. With the composition operator the
necessary prerequisites for describing architectures and modeling complex component networks
as introduced in Section 4.1 are given.

£ Example 10 (Composition of Functions)

As depicted in Figure 6 on Page 10, the function evaluator is decomposed into three sub-
functions. Functions AND and OR calculate the conjunction/disjunction, respectively. Function
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Switch decides which result is sent on the output channel result. The syntactic interfaces of
the functions are defined as follows:

Ianp = {i1,i2}, Oanp = {rana}s
Ior = {i1,i2}, Oor = {70or},
Iswircn = {switch, " ond, 7or}, OswiTcn = {result},

with internal channels r,,q and r,,.

To assure the same timing behavior as the composed function, we decided the functions AND
and OR to be only weakly causal, i.e., the calculation of the intermediate result takes no time.
The function SWITCH, however, is strictly causal. Then, the composition AND ® OR ® Switch
yields the expected result. Otherwise, the processing of the input data would have taken two
time intervals (one for calculating the disjunction/conjunction) and one for deciding which of
them is displayed on the output channel.

O

4.4.2 Combination

The combination relation allows to derive the combined complex behavior of a system based
on simpler sub-specifications. In contrast to the composition, the combination allows us to
horizontally combine different functions which define different aspects of a system but do not
represent a structural decomposition. Thereby the functions are not internally connected but
“overlayed”. These functions formalize different (black-box) requirements or different aspects
of the same system. They might be defined over the same I/O channels, i. e., they might define
different aspects of the interaction with the environment on the same channels.

The idea of function combination is illustrated in Figure 10. Both functions F; and F5 can
be defined over overlapping interfaces, i.e., the functions can have common ports. On these
ports, the specification of both functions must be fulfilled.

1 1M O, 01002;
1

1N 5 0,n0,

2 1M 2 O, 0,n0O,

Figure 10: Function Combination
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To define the combination of functions, we have to introduce some auxiliary notions beforehand.
A fundamental notion is the sub-function relationship between functions. To formalize this
relationship we introduce the projection of functions.

Our goal is to derive the complex overall behavior of a system based on less complex sub-
behaviors or — the other way round — to split up the overall functionality into easier under-
standable and manageable pieces. Therefore, we introduce a technique to eliminate a set of
input and output messages, i. e., the projection of a function F' to a sub-interface. By eliminat-
ing a part of the inputs and/or outputs, the behavior projection allows us to concentrate only
on a certain aspect of the behavior of a system, i.e., the influence of a defined set of inputs to
a defined set of outputs.

Definition 8 (Behavior Projection) Given syntactic interfaces (Iy » O1) and (I » O)
with Iy C I and O1 C O, we define for a function F with interface (I » O) its behavior
projection F'{(I; » Oq) to the syntactic interface (I3 » O1) by the following equation (that has
to hold for all input histories x € H(I;)):

Fi(Iy » O1)(x) = {y|O1 € H(Oy) : Iz’ e H(I) : x = 2| [} Ny € F(2')}.

According to Definition 8, the behavior projection is only defined for the sub-interface (I; »
0O1). Furthermore, an I/O-pair (x1,y;) € H(I1) x H(O;) is valid for F'} if and only if it is the
projection of a valid I/O-pair ((z,y) € H(I) x H(O) of the original function F.

#£5 Example 11 (Behavior Projection)

Let I' = {iy,i2} C I, O’ = O, and h},, € H(I') be the input history

W iy . 01010 ..
U\ ig 000O0O0 ..)°
Here, the histories on the port switch are omitted. Then, Fr{(I’ » O')(h},) results in the set
of all output histories that arbitrarily contain either the conjunction or the disjuction of the
values on i; and i; at any time interval. Exemplary, the output history
h/

ou

;i(result )— (0 0 0 0 0 0 ..)

is correct, since there is a input history h;, € H(I) such that h;,(switch) = (A A A A A ).
Besides, there are several other valid output histories, e. g.,,

" '(result)b—>(0 01 0 0O )

out *

A corresponding valuation of switchis (V V. A A A ). However, the output history

mei(result ) — (1 1 1 1 1 1 ...)

out *

is not correct because there is no valuation of switch such that b/,

for the original function Fg.

. would be a correct output

O
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To master the complexity of a specification, we introduce another essential notion for functions,
namely the sub-function relation. Note that the sub-function relation is the fundamental rela-
tionship between services and sub-services in service hierarchies (as presented in Section 4.1).
Intuitively, the super-function “contains” the sub-function, i.e., the super-function imposes at
least all those requirements that are already specified by the sub-function. However, since the
super-function combines several sub-functions, it usually is more restricted than each of its
sub-functions.

Definition 9 (Sub-Function) A function F' with syntactic interface (I' » O') is a sub-
function of a function F with syntactic interface (I » O), denoted by F' Ty F if

I'cr,oco,
dom(F") C dom(F{(I' » 0)), and
Ve e H(I') : F1(I' » O')(z) C F'(z).

The second condition of Definition 9 states that the super-function F' must be at least defined
for all inputs which the sub-function is defined for. Since F' combines several sub-functions, it
might be defined for more inputs. The third condition formalizes that the super-function F' is
a refinement of the sub-function F’. This means that F preserves all requirements specified by
F’, but might be more restricted due to the fact that it combines several sub-functions. Note
that the sub-function relation introduces a partial order on the set of functions. The relation
is reflexive, transitive and antisymmetric.

45 Example 12 (Sub-Functions of the Evaluator)

As illustrated in Figure 4 on Page 9, the evaluator of our running example consists of two
sub-functions, the function AND and the function OR. The syntactic interfaces of both sub-
functions equal the syntactic interface of the combined function: I = {ij,ip,switch} and
O = {result}. The behavior of the function AND is given as follows. For all x € H(I):

y € Fanp(x) &Vt € Ny @ x(switch).t = A = y(result).(t + 1) = z(i1).t A x(iz).t.

Whenever the message A is received on the input channel switch, the values on i; and i; have
to be conjuncted. Otherwise, an arbitrary value can be outputed. The behavior of the function
OR is specified analogously. The behavior is only constrained if the message V is received on the
input channel switch. Obviously, both functions are defined only partially. The combination
of both functions eliminates the non-determinism of both sub-functions and yields exactly the
required behavior.

O

The introduced sub-function relation is rather straightforward. It allows to combine indepen-
dent sub-functions: Given three functions F', F; and F5, we call F; and F5 independent in F if
the following relation holds: F} Ty FF A Fy Ty F. This means, there are no dependencies
(or relationships) between Fj and F» since both are real subfunctions of F. When combined
to implement F', they do not influence each other.
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Often, however, functions depend on each other and are thus not truly sub-functions according
to Definition 9. More precisely, the choice of the concrete output of a sub-function may depend
on messages outside of its domain. Therefore we introduce a more sophisticated relationship
between functions, namely the restricted sub-function relation.

Definition 10 (Restricted Sub-Function) F’ is a restricted sub-function of F' if there ex-
ists R C dom(F) such that:
F' Csub F|R

For a function F : H(I) — P(H(O)) its restriction is defined as F|R : H(I)\ R — P(H(O)).

In other words, F’ is not a true sub-function of F'. There may be input streams such that F’
is not a sub-function of F. But if we regard only a defined subset R of the inputs of F, F”' is
a sub-function of F.

£ Example 13 (Restricted Sub-Functions of the Evaluator)

We introduced two sub-functions in the forgoing example. However, a more natural way might
be to abstract the input channel switch away and to look at the following function AND’ with
syntactic interface (I’ » O') = ({i1,12} » {result}). This function continuously calculates
the conjunction of the values received on the channels i; and i,. However, this function is no
real sub-function of the overall evaluator functionality. It comprises I/O history pairs that are
not conform to the overall specification. It is a correct sub-function if we regard only those
input histories of Fg where switch is permanently turned to A. According to Definition 10,
the function AND’ is a restricted sub-function of the function Fr with the set R C dom(Fg)
defined as R = {x € dom(Fg) : Vt : x(switch).t = A}.

O

Based on the relations introduced so far, we now explain how the combination of sub-functions
is defined.

Definition 11 (Combination of Functions) Given a function Fy with interface (I; » Oq)
and a function Fy with interface (Io » O3), the combination F' = Fy @ Fy is given as a function
F with

FiCop F'oand F> Egyp F.

The syntactic interface of F' is given as the union of the syntactic interfaces of F; and Fb:

(I» 0) = ((11U12) » (01 UO9)).

The combination of the sub-functions yields the least function F' such that F; and F5 are still
sub-functions of F.

Regarding the combination of two functions with a relationship in between, we define the
following combination operator.
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Definition 12 (Combination of Depending Functions) Given a function Fy with (I; »
01) and a function Fy with (I2 » O2), the combination F = F1 @ Fy with a dependency between
Fy and Fy is given as a function F with

dR1, Rs € dom(F) F Caw F|R1 and Fy T F‘RQ.

The definitions given above can easily be extended to the combination of more than two sub-
functions.

45 Example 14 (Function Hierarchy of the Evaluator)

The combination of the (independent) sub-functions AND and OR introduced in Example 12
yields exactly the behavior of the overall evaluator function Fg:

AND ©® OR = Fg.

In Figure 4 on Page 9 the function hierarchy of the evaluator is depicted.

4.5 (Interface) Abstraction and Refinement

From a practical point of view, it is impossible to transfer an abstract model of a large system
to a concrete one in just one step. Instead, we need a stepwise development process whereby

the requirements specification is refined into its implementation via a number of intermediate
models (cf. [FHH "ar]).

According to [BS01], Focus offers two basic refinement relations, namely property and inter-
action refinement. Property refinement allows us to add further behavior details to a speci-
fication. Interaction refinement allows us to change the representation of the communication
histories, in particular, the granularity of the interaction as well as the number and types of the
channels of a component. By this, interaction refinement supports relating different levels of
abstraction (as presented in [FHHar]). In fact, these notions of refinement describe the steps
needed in an idealistic view of a strictly hierarchical top-down system development. They are
formally defined and explained in detail in the following.

Property Refinement. Property refinement allows the horizontal refinement of models, i.e.,
the stepwise enrichment of models on the same abstraction layer. By property refinement,
we are able to relate functions with the same syntactical interface (i.e., the same channesl).
It allows us to replace an interface behavior by another one having additional properties or
in other words, to impose additional requirements. Formally, the property refinement of a
stream-processing function is given as follows:

Definition 13 (Property Refinement) Let F' and F' be stream-processing functions with
syntactic interface (I » O). F' is a property refinement of F if

Vo e H(I) : F'(z) C F(x).
The property refinement of F' by F' is denoted by F ~ F’.
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Property refinement guarantees that any I1/O history of the refined function F’ (more concrete
behavior) is also an I/O history of the given function F' (more abstract behavior). However,
non-determinism of F' can be reduced in F’. This way an interface behavior is replaced by a
more restricted one.

#£5 Example 15 (Property Refinement)

In Example 12 we introduced the function AND. The overall evaluator function Fr has the same
syntactic interface as AND. However, Fp determines the behavior more precisely than the AND.
While the function AND allows totally non-deterministic behavior if the message V is received
on the channel switch, F defines the output also in these cases (disjunction of the inputs).
Thus, FFg is a property refinement of AND: AND ~» Fg.

O

Obviously, property refinement is a partial order and therefore reflexive, antisymmetric, and
transitive. If we look at hierarchically decomposed systems (cp. Section 4.4), compositionality
of property refinement guarantees that separate refinements of sub-services/sub-components
of a system lead to a refinement of the composed system, i.e.,

(Flell)/\(Fngé) — F1®F2M->F1/@F2/

In our case, the proof of the compositionality of property refinement is straightforward.

Interaction Refinement. Changing the granularity of interaction and thus the level of ab-
straction is a classical technique in software system development. Interaction refinement is a
generalization of property refinement and allows us to change

the number and names of the input and output channels of a function as well as

the types of the messages on this channels determining the granularity of the communi-
cation.

In the following, interaction refinement is described formally. Interaction refinement between
an abstract function F' and a concrete function F’ with syntactic interfaces (I » O) and
(I’ » O'), respectively, is described by a pair of functions A and R with

A:H(I'UO") — P(H(IUO))

R:H(IUO) — PHI'UO))
that relate the interaction on an abstract level with corresponding interaction on the more
concrete level as illustrated by Figure 11. A is called the abstraction and R is called the
representation. R and A are called a refinement pair. Calculating a representation for a given

history and then its abstraction yields the old history again. Using sequential composition,
this is expressed by the requirement:

Ao R ={Id},
where Id denotes the identity relation and o the sequential composition defined as follows:

(RoA)(x)={ye€ A(z) : z € R(x)}.
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Figure 11: Interface Refinement of a Stream Processing Function

Definition 14 (Interaction Refinement) A stream-processing function F' with syntactic
interface (I' » O') is an interface refinement of a function F with interface (I » O) if there
exists a refinement pair
Ap H(I') — P(H(I))
Ro : H(O) — P(H(O"))

such that F' is a property refinement of Ro o F o Ay, i.e.,

F'(z') € (Ro o Fo Ap)(2)).

This formula essentially expresses that, for every “concrete” input history 2/ € H(I'), every
concrete output 3y’ € F’(z') can be also obtained by translating ' onto an abstract input history
x € Aj(2’) such that we can choose an abstract output history y € F(x) with ¢’ € Ro(y).

45 Example 16 (Interaction Refinement)

Let’s assume that the channel result is replaced by two channels result, and result,. The
types of both channels are defined as T'ype(result,) = Type(resulty) = BU {e} = {0, 1, ¢}.
The type of the channel switch is extended by the message e: T'ype(switch) = {0,1,¢}. The
types of the other channels are not modified. The resulting syntactic interface of Fy, is depicted
in Figure 12.

F}, outputs the conjunction of both values through the channel result, and an e through
resulty if it receives the message A through the channel switch. F, outputs the disjunction
of both values through the channel result, and an e through result, if it receives the message
V through the channel switch. FJ, outputs a e through both ports if if receives a e through
switch.
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To show, that F, is an interaction refinement of Ff, we define an abstraction A and represen-
tation R. The abstraction Ay : H(I") — P(H(I)) is defined by the following equation:

reAa)) &Vt e Ny :
(2 (switch).t € {A,V} = z(switch).t = ' (switch).t) A
(2'(switch).t = € = z(switch).t € {A,V}) A
(z(iny).t = 2'(in1).t) A (z(ing).t = 2'(ing).t).
This means, the messages A and V on the channel switch as well as all messages on both

channels i1 and 45 in F}, are mapped to the same message on the same channels in F. The
message € on switch in FJ, is mapped to A or V in Fg non-deterministically.

The refinement Rp : H(O) — P(H(O')) is given as:
vy € Ro(y) &Vt € N, :

Y (resultp).t € {y(result).t,e}) A
Y (resulty).t € {y(result).t,e}).

The output message on the channel result in Fg is non-deterministically mapped to the same
message or an € on both output ports result, and resulty in Fj. With the so-defined
abstractions and representation, the condition for an interaction refinement is fulfilled:

Fp(2') € (Rp o Fgo Ap)(a').

O
switch

- result,

4 | F'e >

: g result,

|

2 v

Figure 12: Interaction Refinement of the Evaluator

5 Basic Modeling Concepts: State Machines

One common way to model behavior, i.e., the behavior given by the stream processing func-
tions, is to describe it by a state machine. This leads to a state view of systems.

A state machine consists of a state space and its state transitions, which represent one step of
a system execution leading from a given state to another state of the system.
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Definition 15 (State Machine) Given a state space ¥ and a set of messages M, a state
machine (A, A) with inputs and outputs according to the syntactic interface (I » O) is given
by a set A C X of initial states as well as a state transition function

A:(Ex(I—-M))—PEx(O—M)

For each state o € ¥ and each valuation u : I — M of the input channels in I (the input
messages received in a time interval t) we obtain a pair (¢/,s) € A(A,u) that contains the
successor state ¢’ and a valuation s : O — M of the output channels consisting of the messages
produced by the state transition. If the output depends only on the state we speak of a Moore
machine, otherwise of Mealy machine. As we will see in the next subsection, each Moore
machine induces a strictly causal stream processing function. Mealy machines, in contrast,
allow to describe weakly causal functions.

5.1 From State Machines to Stream Processing Functions and Back Again

In this section we relate the afore introduced state machines to the basic concepts of the
modeling theory, i.e., the stream processing functions. We first show how we may derive an
interface abstraction for a state machine and then show how to construct a canonical state
machine for an interface behavior.

From State Machines to Stream Processing Functions FEach state machine describes a
stream processing function. Given a state machine, the corresponding stream processing func-
tion (its interface abstraction) can be derived as follows.

Each state transition function
A:(Ex(I—M))—PEx(O—M))

induces a function

Ba : P(2) — (H(I) — P(H(0O))).

Ba provides the interface abstraction for the state transition function A, i. e., the corresponding
stream processing function. For each state set A € ¥ and each input channel valuation x €
H(I), let BA(A)(x) be the set A by set of all output histories generated by computations of A
for the input history x starting with a state in A. Based on these definitions we relate state
machines to their interface abstractions.

Definition 16 (Interface abstraction) Ba(A) provides the interface abstraction of the be-
havior of the state machine (A, A).
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From Stream Processing Functions to State Machines. Reversely, each stream process-
ing function can be transformed into an abstract state machine. Given a stream processing
function

F :H(I) — P(H(O))

we define the state space by
Y =F{I» 0O),

where F(I » O) denotes all possible stream processing functions for a given syntactic interface
(I » O). Based on that, we get a state transition function

Ap i (5% (I = M)) = P(S x (0 — M)
by the following definition
Ap(G,a) ={(H,b) e FI» O)x (O — M) :Vx e H(I): G(<a>")={<b>Y:y e H(x)}},

where G e F(I» O) and a € (I — M).

Note that for < b >Y€ G(< a >7%) the value b does not depend on z according to the strong
causality assumption. The function H in the formula above is called a resumption. It represents
the new state of the machine after the transition represented by an I/O-function. The set of
initial states of the state machine is {F'}.

5.2 Composition of State Machines

The composition of State Machines is simple defined as their parallel composition. An impor-
tant property of the composition is that the interface abstraction of a composed state machine
equals the composition of the interface abstractions of the sub state machines.

5.3 Refinement of State Machines

Property refinement can easily be extended to state machines by referring to their interface
abstractions: A state machine S is the refinement of another state machine Sy if the interface
abstraction of 5] is an refinement of the interface abstraction of Sy according to Section 4.5.
The same applies to interaction refinement of state machines.
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