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Abstract  Developing secure software systems is difficult and error-prone. Numer-
ous implementations have been found vulnerable in the past; a recent
example is the unauthorised access to millions of online account details
at an American bank.

We aim to address this general problem in the context of development
in Java. While the JDK 1.2 security architecture offers features (such
as guarded objects) that provide a high degree of flexibility and the
possibility to perform fine-grained access control, these features are not
S0 easy to use correctly.

We show how to use a formal core of the Unified Modeling Language
(UML), the de-facto industry-standard in object-oriented modelling, to
correctly employ Java security concepts as such as signing, sealing, and
guarding objects. We prove results for verification of specifications wrt.
security requirements. We illustrate our approach with a (simplified)
account of the development of a web-based financial application from
formal specifications.

Keywords: Distributed systems security, access control, mobile code, Java security,
secure software engineering, Unified Modeling Language.

1. Introduction

The need to consider security aspects in the development of many
systems today is not always met by adequate knowledge on the side of
the developer. This is problematic since in practice, security is com-
promised most often not by breaking the dedicated mechanisms (such
as encryption or access control), but by exploiting weaknesses in the
way they are being used [And01]. Thus security mechanisms cannot be
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“blindly” inserted into a security-critical system, but the overall system
development must take security aspects into account.

Especially dynamic access control mechanisms such as provided by
Java since the JDK 1.2 security architecture [Gon99; Kar0Ob] in the form
of GuardedObjects can be difficult to administer since it is easy to forget
an access check [Gon98; BV99]. If the appropriate access controls are
not performed, the security of the entire system may be compromised.
Additionally, access control may be granted indirectly and unintention-
ally by granting access to an object containing the signature key that
enables access to another object. In this work, we aim to address these
problems by providing means of reasoning about the correct deployment
of security mechanisms such as signed, sealed and guarded objects using
a formal core of the widely used object-oriented design language Unified
Modeling Language (UML), extending previous work [Jir01f; JirOla).

The more general aim of this work is to use UML to encapsulate
knowledge on prudent security engineering and thereby make it available
to developers not specialised in security [JiirOlb]. Thus the approach
to use UML for security covers not just access control, but also other
security functions and requirements.

Overview. After presenting some background on access control in
Java in the following section, we summarise our use of UML in section 3.
In Section 4 we outline the part of a design process relevant to enforcing
access control in Java and give some results on verifying access control
requirements. In Section 5 we illustrate our approach with the example
of the development of a web-based financial application from formal
specifications. We end with an account of related work, a conclusion
and indication of future work. Proofs have to be omitted due to space
reasons and will appear in an extended version.

2. Access control in Java

Authorisation or access control [SS94] is one of the corner-stones of
computer security. The objective is to determine whether the source of
a request is authorised to be granted the request. Distributed systems
offer additional challenges: The trusted computing bases (TCBs) may be
in various locations and under different controls. Communication is in
presence of possible adversaries. Mobile code is employed that is possibly
malicious. Further complications arise from the need for delegation (i. e.
entities acting on behalf of other entities) and the fact that many security
requirements are location-dependent (e.g., a user may have more rights
at the office terminal than when logging in from home).



Object-oriented systems offer a very suitable framework for consid-
ering security due to their encapsulation and modularisation principles
[FDR94; Var95; ND97; Gol99; SamO00].

In the JDK 1.0 security architecture, the challenges posed by mo-
bile code were addressed by letting code from remote locations execute
within a sandbox offering strong limitations on its execution. However,
this model turned out to be too simplistic and restrictive. From JDK
1.2, a more fine-grained security architecture is employed which offers a
user-definable access control, and the sophisticated concepts of signing,
sealing, and guarding objects [Gon99; Kar(O0b].

A protection domain [SS75] is a set of entities accessible by a principal.
In the JDK 1.2, permissions are granted to protection domains (which
consist of classes and objects). Each object or class belongs to exactly
one domain.

The system security policy set by the user (or a system adminis-
trator) is represented by a policy object instantiated from the class
java.security.Policy. The security policy maps sets of running code (pro-
tection domains) to sets of access permissions given to the code. It is
specified depending on the origin of the code (as given by a URL) and
on the set of public keys corresponding to the private keys with which
the code is signed.

There is a hierarchy of typed and parameterised access permissions, of
which the root class is java.security.Permission and other permissions are
subclassed either from the root class or one of its subclasses. Permissions
consist of a target and an action. For file access permissions in the class
FilePermission, the targets can be directories or files, and the actions
include read, write, execute, and delete.

An access permission is granted if all callers in the current thread
history belong to domains that have been granted the said permission.
The history of a thread includes all classes on the current stack and
also transitively inherits all classes in its parent thread when the current
thread is created. This mechanism can be temporarily overridden using
the static method doPrivileged().

Also, access modifiers protect sensitive fields of the JVM: For example,
system classes cannot be replaced by subtyping since they are declared
with access modifier final.

The sophisticated JDK 1.2 access control mechanisms are not so easy
to use. The granting of permissions depends on the execution context
(which however is overridden by doPrivileged(), which creates other sub-
tleties). Sometimes, access control decisions rely on multiple threads. A
thread may involve several protection domains. Thus it is not always
easy to see if a given class will be granted a certain permission.
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This complexity is increased by the new and rather powerful concepts
of signed, sealed and guarded objects [Gon99]. A SignedObject contains
the (to-be-)signed object and its signature.! It can be used internally as
an authorisation token or to sign and serialise data or objects for storage
outside the Java runtime. Nested SignedObjects can be used to construct
sequences of signatures (similar to certificate chains).

Similarly, a SealedObject is an encrypted object ensuring confidential-
ity.

If the supplier of a resource is not in the same thread as the con-
sumer, and the consumer thread cannot provide the access control con-
text information, one can use a GuardedObject to protect access to the
resource. The supplier of the resource creates an object representing
the resource and a GuardedObject containing the resource object, and
then hands the GuardedObject to the consumer. A specified Guard ob-
ject incorporates checks that need to be met so that the resource object
can be obtained. For this, the Guard interface contains the method
checkGuard, taking an Object argument and performing the checks. To
grant access the Guard objects simply returns, to deny access is throws
a SecurityException. GuardedObjects are a quite powerful access control
mechanism. However, their use can be difficult to administer [Gon98].
For example, guard objects may check the signature on a class file.

3. Developing Secure Systems with UML

To address these issues, we extend previous work [Jir01f; JirOla)] to
employ a formal core of the Unified Modeling Language (UML) [UMLO1],
the de-facto industry standard in object-oriented modelling (an excellent
introduction is given in [SP00]). We would like to ensure that the protec-
tion mechanisms that are in place do offer the required level of security.
Specifically, we check the specified dynamic behaviour against expressed
security policies. We do this on the level of specification (rather than
the implementation level) because design mistakes can so be corrected
as early as possible, and because formal reasoning is more feasible at a
more abstract level.

UML consists of several kinds of diagrams describing the different
views on a system. We use only a simplified fragment of UML (together
with a formal semantics) to enable formal reasoning and keep the pre-
sentation concise. We use its standard extension mechanisms to express
security aspects. As a formal semantics for UML is subject of ongoing
research, we use a (simplified) semantics tailored to our needs for the

INote that signing object is different from the signing of JAR files.
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Figure 1. Class diagram

time being, just to illustrate our ideas. Note, however, that our approach
does not rely on use of a formal semantics; in fact we aim for a tool to
automatically check the considered security notions, and then these may
also be explained informally (which is more accessible, but may be more
prone to misunderstanding).

We use the following kinds of diagrams: class diagrams, statechart
diagrams, and deployment diagrams.

We define the diagrams using their abstract syntax for conciseness
and to enable formal reasoning. We also give the concrete syntax (in a
way that the translation between the two should be apparent).

3.1. Class Diagrams

Using class diagrams we can model which objects are signed or sealed
with which keys, and which are guarded by which Guard objects.

An attribute specification A = (att_name, att_type, init_value) is given
by a name att_name, a type att_type and an initial value init_value.

An operation specification O = (op_name, Arguments, op_type) is given
by a name op_name, a set of Arguments and the type op_type of the return
value. The set of arguments may be empty and the return type may be
the empty type () denoting absence of a return value. An argument
A = (arg_name,arg_type) is given by its name arg_name and its type
arg_type.

A class model C = (class_name, (tag, value), AttSpecs, OpSpecs, State)
is given by a name class_name, an optional (tag,value) pair (written
in curly brackets), a set of attribute specifications AttSpecs, a set of
operation specifications OpSpecs and a statechart diagram State giving
the object behaviour. The tag may be either of signed, sealed or guarded
(indicating a signed, sealed or guarded object), and the value is either
the public key corresponding to the private key with which the object
was signed or sealed, or it is the name of the corresponding Guard object.

A class diagram D = (Cls, Dependencies) is given by a set Cls of class
models and a set of Dependencies. A dependency is a tuple (client, supplier,
stereotype) consisting of class names client and supplier and a label (called
stereotype) indicating the kind of dependency (e.g. «cally).
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Figure 2.  Statechart Diagrams

3.2. Statechart diagrams

We use statechart diagrams to specify the behaviour of objects, in
particular of the Guards.

We fix a set Var of (typed) variables z,z,y,.... We define the no-
tion of a statechart diagram for a given class model C: A statechart
diagram S = (States, init_state, Transitions) is given by a set of States
(that includes the initial state init_state) and a set of Transitions. (In the
concrete syntax, the initial state is signified with a start marker.)

A statechart transition t = (source, event, condition, Actions, target) has
a source state, an event, a condition, a list of Actions and a target state.
An event is the name of an operation with a list of distinct variables as
arguments (e.g. op(z,y, z)). Let the set Assignments consist of all partial
functions that assign to each variable and each attribute of the class C
a value of its type. A condition® is a function g : Assigments — Bool
evaluating each assignment to a boolean value. We write it as a sequence
of Boolean propositions with variables and attribute names that is inter-
preted as their conjunction; conditions are written in square brackets.
An action can be either to assign a value v to an attribute a (writ-

ten a := v), to call an operation op with values vy,...,v, (written
op(v1,...,vy), to return values vy, ..., v, as a response to an earlier call
of the operation op (written returngp(vi,...,vy)), or to throw an excep-

tion. In each case, the values can be constants, variables or attributes.
In the concrete syntax, actions are preceded by a backslash.

3.3. Deployment diagrams

Deployment diagrams describing the physical layer of a system are
security-relevant in so far as they give the locations of the different com-
ponents of the system (used in the access permissions) and they give
information on kinds of the communication links between different com-
ponents, inducing threat scenarios wrt. the physical security.

A system node N = (location, Components) is given by its location
(e.g. a URL or “local system”) and a set of contained Components.

2We do not use the UML term guard here to avoid confusion with guard objects.
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Figure 3. Deployment diagram

A deployment diagram D = (Nodes, Links, Dependencies) is given by
a set of Nodes, a set of communication Links between nodes and a set
of logical Dependencies between components. A link [ = (nds, stereo)
consists of a two-element set nds of nodes being linked and a label (called
stereotype) indicating the kind of the link (e.g. «Internet»). Here a
dependency is a tuple (client, supplier, tag) consisting of components client
and supplier and a label (called tag) indicating the kind of dependency

(e.g. {rmi}).

4. Design process

We sketch the part of a design process for secure systems using UML
that is concerned with access control enforcement using guarded objects.

1) Formulate the permission sets for access control for sensitive ob-
p
jects.

(2) Use statecharts to specify Guard objects that enforce appropriate
access control checks.

(3) Verify that the Guard objects protect the sensitive objects suf-
ficiently by showing that they only grant access implied by the
security requirements.

(4) Ensure that the access control mechanisms are consistent with the
functionality required by the system by showing that the other
objects may perform their intended behaviour.

(5) Verify that mobile objects are sufficiently protected by considering
the threat scenario arising from the physical layer given in the
deployment diagram.

Here the access control requirements in step (1) can be of the following
form:3

3In future work we intend to formalise these requirements using an abstract security pol-
icy specification language, enabling automatic generation of the corresponding guard object
specifications.
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» origin of requesting object (based on URL)
® signatures of requesting object
= external variables (such as time of day etc. ).

In Section 5 we sketch a formal verification of a specification following
these steps. They enforce the following two requirements.

Security requirement: Check that the access control requirements
are strong enough to prevent unauthorised influence, given the
threat scenario arising from the physical layer.

Functionality requirement: Check that the access control require-
ments formulated are not overly restrictive, denying legitimate ac-
cess from other components of the specification.

The functionality requirement is important since it is not always easy
to see if stated security requirements are at all implementable. If their
inconsistency is only noticed during implementation then, firstly, re-
sources are wasted since work has to be redone. Secondly, most likely
security will be degraded in order to reduce this extra work.

4.1. Verification

In this subsection, we sketch results to be applied in the above ap-
proach. The idea is to verify security properties by linking the different
views on a system given by the various kinds of diagrams. We convey
our ideas using a simplified semantics for UML statechart diagrams.

Any statechart diagram S defines a function [S] from sequences of
input events to sets of sequences of output actions, each possibly with
arguments, often involving use of cryptographic operations (as detailed
in [Jur01f]). We say that S may eventually output a value v if there exists
a sequence € of input events and a sequence @ € [S](€) of corresponding
output actions such that v is output by one of the actions in @ (in
cleartext) [JurOle].

The following definition uses the notion of an adversary from [JirOle],
which is a function from sequences of output actions of the statechart
S to sequences of input events of S that captures the capabilities of an
adversary intercepting the «Internet)» communication links between S
and the other objects (the exact definition of “adversary”, “without prior
knowledge” and of the composition ® of the statechart interpretation [S]
with the adversary A can be found in [JirOle]).

Definition 1 A statechart diagram S preserves the secrecy of a value
K if there is no adversary A (eavesdropping on the «Internet) links)
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without prior knowledge of K such that [S] ® A may eventually output
K.

This definition is extended to system components by composing the func-
tions arising from the statechart diagrams specifying the objects of a
given component.

Intuitively, then, a system component C preserves the secrecy of K if
no adversary can find out K in interaction with the system modeled by
C, following the approach of Dolev and Yao (1983), cf. [Aba00; JiirOle].

The following result is applied within the approach of subsection 4 to
the UML specification of a security-critical system (for a proof of this as
well as the following results cf. [Jir01d]).

Theorem 1 Suppose that the access to a certain resource is according
to the Guard object specifications granted only to objects signed with a
key K. Suppose all components preserve the secrecy of K. Then only
objects signed with K according to the specification will be granted access
to the resource.

5. Example Financial Application

We illustrate our approach with the example of a web-based financial
application. The example was chosen to be tractable enough given the
space restrictions but still realistic in that it points out some typical is-
sues when considering access control for web-based e-commerce applica-
tions (namely to have several entities — service-providers and customers
— interacting with each other while granting the other parties a limited
amount of trust and by enforcing this using credentials).

We first describe the physical layer of the application in a UML di-
agram and state its security requirements. We show in UML diagrams
how to employ GuardedObjects to enforce these security requirements.
We prove that the specification given by the UML diagrams is secure
by showing that it does not grant any access not implied by the secu-
rity requirements. We end the section by giving supplementary results
regarding consistency of the security requirements.

Two (fictional) institutions offer services over the Internet to local
users: an Internet bank, Bankeasy, and a financial advisor, Finance.
The physical layer is thus given in Figure 4.

To make use of these services, a local client needs to grant the applets
from the respective sites certain privileges.

(1) Applets that originate at and are signed by the bank can read
and write the financial data stored in the local database, but only
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Figure 4. Deployment diagram

between 1 pm and 2 pm (when the user usually manages her bank
account).

(2) Applets from (and signed by) the financial advisor may read an
excerpt of the local financial data created for this purpose. Since
this information should only be used locally, they additionally have
to be signed* by a certification company, CertiFlow, certifying that
they do not leak out information via covert channels.

(3) Applets originating at and signed by the financial advisor may use
the micropayment signature key of the local user (to purchase stock
rate information on behalf of the user), but this access should only
be granted five times a week.

Financial data sent over the Internet is signed and sealed to ensure
integrity and confidentiality. Access to the local financial data is realised
using GuardedObjects. Thus the relevant part of the class diagram is
given in Figure 5.

As specified in the class diagram, the access controls are realised by
the Guard objects FinGd, ExpGd and MicGd, whose behaviour is specified
in Figures 6, 7 and 8 (we assume that the condition timeslot is fulfilled
if and only if the time is between 1pm and 2pm, that the condition
weeklimit is fulfilled if and only if the access to the micropayment key
has been granted less than five times in the current calendar week, and
that the method incThisWeek increments the relevant counter).

Now according to step (3) in Section 4, we prove that the specification
given by UML diagrams is secure in the following sense.

4Here we assume that SignedObject is subclassed to allow multiple signatures on the same
object [Gon99].
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Figure 5.  Class diagram

[origin=signed=bankeasy,timeslot] \return

checkGuard()

[otherwise] \throw new Security Exception()

[origin=fi nancFefgqéﬁee(fQ{ fi nasr;ccfgc, gecr}ﬁ?lrotwl;ﬂr%t%m

[otherwise] \throw new SecurityException()

Figure 7.  Statechart ExcGd

Theorem 2 The specification given by UML diagrams for the guard ob-
jects does not grant any permissions not implied by the access permission
requirements given in (1)-(3).

Regarding step (4) in Section 4, we exemplarily prove that InfoAp can
purchase the article on behalf of the user, as intended.

Theorem 3 Suppose all applets in the current execution context origi-
nate from and are signed by Finance, and that use of the micropayment
key is requested, which has happened less than five times before in the
current week. Then the current applet is permitted to purchase articles
on behalf of the user.

Finally, following (5) in Section 4, the mobile objects are sufficiently
protected since all objects sent over the Internet were required to be
signed and sealed (a more detailed discussion has to be omitted).
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[origin=signed=finance,weeklimit] \incThisWeek \return

checkGuard()

[otherwise] \throw new SecurityException()

Figure 8. Statechart MicGd

6. Related Work

In [Jir01f; JirOla] we considered how to model various aspects of
general systems security (including multi-level security, secure informa-
tion flow and security protocols) with UML. [JiirOlc] applies UML to
reason about audit-security in a smart-card based payment scheme and
[Jir01b] shows how to use UML to enforce general principles of secure
systems design from [SS75]. There seems to be little other systematic
work yet in applying UML to security.

Java 2 security and in particular the advanced topics of signed, sealed
and guarded objects is explained in [Gon99]. There has also been some
work giving formal reference models for Java 2 access control mech-
anisms, thus clarifying possible ambiguities in the informal accounts
and enabling proof of compiler conformance to the specification [KG98;
WEF98; Kar00b] (but without considering signed, sealed or guarded ob-
jects). To our knowledge, the use of signed, sealed or guarded objects in
JDK 1.2 has not previously been considered in a formal model.

[HKKO00] introduces higher-level abstractions for Java security policy
rules, simplifies security management and gives additional functionality.
General Java security is considered e.g. in [GAS99].

There has been extensive work regarding formal models for security,
mostly about security protocols (for an overview cf. [GSG99; RSGT01]).
A logic for access control was introduced in [ABLP93].

7. Conclusion and Future Work

To summarise, we used a core of UML, the industry standard in
object-oriented modelling, to specify and reason about access control
in distributed Java-based systems. We have concentrated on advanced
JDK 1.2 access control mechanisms such as signing, sealing and guard-
ing objects. We show how to specify security requirements and to prove
that modelled access control mechanisms such as guarded objects meet
their goals and that these mechanisms are consistent with the overall
functionality required from the system.
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In conclusion, it seems that our approach is both worthwhile and
feasible:

s Using the JDK 1.2 access control mechanisms can be rather com-
plicated in practice (especially when indirect access permissions
using authorisation tokens are employed), thus providing support
for correct specification of the relevant mechanisms in the context
of a widely used specification as UML seems quite useful.

m In this paper, we could only illustrate our approach using a rather
simple example. However, UML allows a high degree of abstraction
in modelling systems. So we expect the approach to scale up rather
well. This is currently validated in practice in a Master’s thesis
developing an Internet-based auction system [Mea0l].

A further benefit is that by using a widely accepted notation, our ap-
proach to secure Java development can be integrated with other work on
secure systems using UML (e.g. on electronic purse systems [Jir0Olc]).

As to the limitations of this first step in this direction of research, our
account remains relatively abstract for space restrictions and conciseness
of presentation. As a next step, one should consider more details of
Java security, such as the use of access modifiers (private, final,...), the
doPrivileged() method and the implies() method. Also, an extension to
JAAS [LGK™99; Kar00b] is planned.

Work in progress aims to provide tool support to validate UML speci-
fications of access control guards against security requirements, building
on work in [CCRO1].

Regarding future work, it would be very useful to have a way to gener-
ate the correct behaviour specification of guard objects in statechart di-
agrams automatically from the (formalised) security requirements. Also,
it would be interesting to try to extend our approach to the extension
of the Java security architecture proposed in [HKK00]. We intend to
address CORBA security (cf. e.g. [VH96; Kar00a]) in a similar way.
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