Encapsulating Rules of
Prudent Security Engineering
(Position Paper)

Jan Jurjens*

Computing Laboratory, University of Oxford, GB

Abstract. In practice, security of computer systems is compromised
most often not by breaking dedicated mechanisms (such as security pro-
tocols), but by exploiting vulnerabilities in the way they are employed.
Towards a solution of this problem we aim to encapsulate rules of prudent
security engineering in such a way that a system specification formulated
in (a formal core of) the Unified Modeling Language (UML, the industry-
standard in object-oriented modelling) can be evaluated wrt. these rules,
violations be indicated and suggestions for modifications be derived.

1 Introduction

In the context of computer security, “an expansive view of the problem
is most appropriate to help ensure that no gaps appear in the strategy”
[SST5].

However, it has remained true over the last 25 years that “no complete
method applicable to the construction of large general-purpose systems
exists yet” [SS75] that would ensure security, inspite of very active re-
search and many useful results addressing particular subgoals [Sch99].

Thus problems often arise from design limitations and implementa-
tion errors rather than defects in security mechanisms [And94, And01].
Therefore research in avoiding design and implementation errors is one of
the main challenges in computer security research [Sch99].

For instance, in the case of GSM security [Wal00], some examples for
security weaknesses arising in this way are

— the failure to acknowledge limitations of the underlying physical se-
curity (misplaced trust in terminal identity; false base stations),

— an inadequate degree of flexibility to upgrade security functions over
time and

* jan@comlab.ox.ac.uk — http://www.jurjens.de/jan - Supported by the
Studienstiftung des deutschen Volkes and the Computing Laboratory.

Vers. 6.VI.O1 of a paper
at IWSecP01. Current ver-
sion and other material:
www.jurjens.de/jan .

— lack in the user interface wrt. communicating security-critical infor-
mation (no indication to the user that encryption is on).

We aim to draw attention to such design limitations during the design
phase, before a system is actually implemented.

We use a formal core of the Unified Modeling Language (UML [RJB99],
the industry-standard in object-oriented modelling) to encapsulate know-
ledge on prudent security engineering and thereby make it available to
developers of security-critical systems [JirOld, JirO1lb, JirOle, JiirOlal.
More precisely, we use a fragment of UML together with a formal se-
mantics (which helps us formulate our concepts). So far, there exists no
universally agreed-upon formal semantics for all of UML, but even if there
will never be one, one can use our approach (by incorporating the security
checks into a tool and explaining them informally, just as programming
languages are usually used without a formal semantics, however unsatis-
factory this may be).

Currently a large part of effort both in verifying and in implementing
specifications is wasted since these are often formulated imprecisely and
unintelligibly [Pau98]. Being able to express security-relevant information
in a widely used design notation helps alleviate this problem (especially if
this allows designers to reuse concepts and results formulated in this no-
tation). Additionally, this may reduce misunderstandings that may arise
between different parties involved in designing and evaluating security-
critical systems (cf. e.g. [Gol00]).

Since we are using a simplified formal fragment of UML, we may
reason formally, showing e.g. that a given system is as secure as certain
components of it. Furthermore one may go beyond formal verification and
make use of techniques more feasible in practice, such as specification-
based testing (e.g. following ideas in [JWO01b]).

In this position paper, we explain our approach by showing how it
relates to the principles of security engineering set out in [SS75], using
examples from earlier work (for which the details have to be omitted and
can be found in the respective references given). We also mention briefly
how one might apply our approach to investigate security protocols in the
system context.

2 Design Principles for Secure Systems

We demonstrate by examples how our approach relates to the rules stated
in [SS75].

Economy of mechanism Our approach addresses this “meta-property” by
providing developers (possibly without background knowledge in security)
with guidance on the employment of security mechanisms who might
otherwise be tempted to employ more complicated mechanisms since these
may seem more secure.

Fail-safe defaults One may verify that a system is fail-safe by showing that
certain security-relevant invariants are ensured throughout the execution
of the system, i. e. in particular if the execution is interrupted at some
point (possibly due to malicious intent of one of the parties involved). An
example is secure log-keeping for audit control.

As an example for modelling audit control with our approach we give a
part of the specification of the unlinked load transaction of the smart-card
based Common Electronic Purse Specifications (CEPS) [CEPO01] given in
[Jir01b]. The simplified behaviour of the card is given in Figure 1 (since
it just serves as an illustration for our approach we omit the explanation
which can be found in [Jiir01b]). We use a UML statechart diagram, which

[Sleac(KCI ,(bal,ex,m,nt))]

Init(m)
Init Respl| state
\Respl(bal,ex,nt,s1)

transition event Credit(s2) [Ver(Ks.s2)=(bal,nt,sl)

action \RespC(s3 s3=Mac(K . ,(bal,m,nt))]
\CLog(m,nt,bal,s2 Cl

guard
initial state Final

Fig. 1. Statechart for card

is a notation for state machines where, intuitively, a label \Msg(args)
on a transition means to output the message Msg with arguments args,
Msg(args) means to trigger the transition on input of Msg whose argu-
ments are assigned to the variable args and [condition] means to trigger
the transition only if condition is fulfilled.

In the context of this load transaction, one aspect of audit security
is that the cardholder should only be lead to believe (e.g. when checking
the card with a portable card reader after the transaction) that a certain

amount has been correctly loaded if she is later able to prove this using
the card — otherwise the load acquirer could first credit the card with the
correct amount, but later in the settlement process claim that the card-
holder tries to fake the transaction. Thus we have to check the following
audit security condition on the attributes of the audit log object CardLog
(again this is just for illustration; details can be found in [JiirO1b]).

Correct amount: s2 and sl verify correctly (say Ver(K¢y, CardLog.s2) =
(bal',nt', s1") and Verify(K¢y,sl') = (bal”,ex”,m" ,nt")), and addi-
tionally we have CardLog.m = m” (i. e. the correct amount is logged).

This way one can e.g. uncover unstated assumptions on the trust
relations between the protocol participants on which its security relies
(e.g. that audit security relies on the fact that the load acquirer trusts
the card issuer; details cf. [Jur01b]).

Complete mediation This principle can be enforced e.g. in Java by using
guarded objects [Gon99]. Their use however is not entirely straightforward
[Gon98]. We demonstrate how one can ensure proper use of guards to
enforce this principle can be enforced with an example from [Jir0Olc].

Suppose that a certain micropayment signature key may only be used
by applets originating at and signed by the site Finance (e.g. to purchase
stock rate information on behalf of the user), but this access should only
be granted five times a week.

The guard object can be specified as in Figure 2 (where ThisWeek
counts the number of accesses in a given week and weeklimit is true if the
limit has not been reached yet). One can then prove (informally or using
a formal logic such as [ABLP93]) that certain access control requirements
are enforced by the guards.

[origin=signed=finance,weeklimit]\incThisWeek \return

[otherwise] \throw new SecurityException()

Fig. 2. Statechart MicGd

In this situation, a specification satisfies complete mediation if the
access to every object is guarded by a guard object. More feasibly, one
can specify a set of sensitive objects and say that a specification satisfies
mediation wrt. these objects if they are guarded. One may then give a
general policy that defines which access restrictions the guard objects
should enforce.

Open design Our approach aims to contribute to the development of a
system whose security does not rely on the secrecy of its design.

Separation of privilege As an example for an instance of this principle,
one may easily modify the guard in Figure 2 to require signatures from
two different principals on the applet requesting access to the guarded
object.

In this context, a specification satisfies separation of privilege wrt. a
certain privilege p if there are two or more principals whose signature is
required to be granted p, at every point of the execution.

More generally, one can formulate such requirements on a more ab-
stract level using UML activity diagrams and verify behavioural specifi-
cations (such as the ones given above) wrt. these requirements.

Least privilege Given functionality requirements on a system, a system
specification satisfies the principle of least privilege if it satisfies these
requirements and if every proper diminishing of privileges of the entities in
the system leads to a system that does not satisfy the requirements. This
can be formalised within our specification framework and the condition
can be checked.

An example application for this rule are the access control rules en-
forced by firewalls, e.g. considered in [JWO01b].

Least common mechanism Since we follow an object-oriented approach,
this principle is automatically enforced in so far as data is encapsulated
in objects and the sharing of data between different parts of a system is
thus well-defined and can be kept at the minimum of what is necessary.
Note that on the programming language level there may be further sub-
tleties (e.g. one should not design public fields or variables that can be
accessed directly [Gon99]). It is intended to address these in our specifi-
cation framework in future work.

Psychological acceptability Wrt. the development process, this principle
is addressed by our approach in so far as it aims for ease of use in the

development of security-critical systems, and thus for the psychological
acceptability of security issues on the side of the developers.

To consider psychological acceptability of security mechanisms on the
side of the users of the system one may make use of work using UML
for performance engineering (e.g. [PK99]) to evaluate acceptability of the
performance impact of security mechanisms. One may also modify this
approach to measure the user interaction required by such mechanisms
(e.g. for authentication).

3 Protocol contexts

It has been suggested (e.g. in [Aba00]) to investigate the way security
mechanisms (such as protocols) are employed in the system context, which
in practice offers more vulnerabilities than the mechanisms themselves
[AndO1].

As an example, the security of CEPS transactions depends on the fact
that in the immediately envisaged scenario (use of the card for purchases
in shops) it is not feasible for the attacker to act as a relay between an
attacked card (in a modified terminal) and an attacked terminal. However,
this is not explicitely stated, and it is furthermore planned to use CEPS
over the Internet [CEPO1, Bus.Req.], where an attacker could easily act
as such a relay (this is investigated in [JWO01a]).

Sometimes such assumptions are actually made explicit, if rather in-
formally (such as “R; should never leave the LSAM in the clear.” [CEPO01,
Tech. Sp. p.187]).

Being able to formulate precisely the assumptions on the protocol
context, to reason about protocol security wrt. them, and to be able to
communicate them to developers and clients would thus be useful.

In our UML-based approach, security protocols can be specified using
message sequence charts. An example from [JW01a] is given in Figure 3.
Assumptions on the underlying physical layer (such as physical security
of communication links) can be expressed in implementation diagrams
(cf. [Jir01d]), and the behaviour of the system context surrounding the
protocol can be stated using statecharts and reasoned about as indicated
above.

4 Conclusion

In this position paper, we used the computer security design principles put
forward in [SS75] to illustrate our approach towards encapsulating rules

C:card M:PSAM

Init(sK _) .g} %

y=Hmsa b Resp({Sé)

OK msgresp :{S} %%

Fig. 3. MSC for CEPS purchase transaction

of prudent security engineering using a formal core of the object-oriented
design notation UML (the current industry standard in object-oriented
modelling). Using this approach one may evaluate system specifications
wrt. these rules, and obtain suggestions for modifications in case of vio-
lations. We also mentioned briefly how to use our approach to consider
the security of protocols in the system context.

With this work, we aim to provide an “expansive view” of computer
security and provide a method for development of large security-critical
general-purpose systems, as requested in [SS75].

The research on using UML to develop security-critical systems is
still in a very early stage; current work addresses the formal foundations
of the approach as well as tool-support and application in case-studies
(e.g. in the development of an Internet auction system in an MSc project
currently in preparation).

Acknowledgements The idea for this line of work arose when doing se-
curity consulting for a project during a research visit with M. Abadi at
Bell Labs (Lucent Tech.), Palo Alto, whose hospitality is gratefully ac-
knowledged. It has also benefitted from discussions with D. Gollmann, A.
Pfitzmann, B. Pfitzmann and others.

References

[Aba00] M. Abadi. Security protocols and their properties. In F. Bauer and R. Stein-
brueggen, editors, Foundations of Secure Computation. IOS Press, 2000.

[ABLP93] M. Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A cal-
culus for access control in distributed systems. ACM Transactions on Pro-
gramming Languages and Systems, 15(4):706-734, 1993.

[And94]
[And01]

[CEPO1]

[Gol00]

[Gon9g|

[Gon99]

[HuBO1]

[Jiir01a]
[Jiir01b]
[Jiir01c]
[Jiir01d]

[JW01a]

[TWO1b]

[Pau9s]

[PK99]
[RIB99)

[Sch99]
[SS75]

[Wal00]

R. Anderson. Why cryptosystems fail. Communications of the ACM,
37(11):32—40, November 1994.

R. Anderson. Security Engineering: A Guide to Building Dependable Dis-
tributed Systems. Wiley, 2001.

CEPSCO. Common Electronic Purse Specifications, 2001. Business Require-
ments vers. 7.0, Functional Requirements vers. 6.3, Technical Specification
vers. 2.3, available from http://www.cepsco.com.

Dieter Gollmann. On the verification of cryptographic protocols - a tale of two
committees. In Workshop on Security Architectures and Information Flow,
volume 32 of Electronical Notes in Theoretical Computer Science, 2000.

Li Gong. JavaT™ Security Architecture (JDK1.2).
http://java.sun.com/products/jdk/1.2/docs/guide/security /spec/security-
spec.doc.html, October 2 1998.

Li Gong. Inside Java 2 Platform Security — Architecture, API Design, and
Implementation. Addison-Wesley, 1999.

H. Huflmann, editor. Fundamental Approaches to Software Engineering
(FASE/ETAPS, International Conference), volume 2029 of LNCS. Springer,
2001.

Jan Jirjens. Developing secure systems with UMLsec — from business pro-
cesses to implementation. In VIS 2001. Vieweg-Verlag, 2001. To appear.
Jan Jiirjens. Modelling audit security for smart-card payment schemes with
UMLsec. In P. Paradinas, editor, IFIP/SEC 2001 - 16th International Con-
ference on Information Security. Kluwer, 2001.

Jan Jiirjens. Secure Java development with UMLsec. 2001. Submitted.

Jan Jirjens. Towards development of secure systems using UMLsec. In
[Huf01], 2001.

Jan Jiirjens and Guido Wimmel. Security modelling for electronic commerce:
The Common Electronic Purse Specifications. In First IFIP conference on
e-commerce, e-business, and e-government (ISE). Kluwer, 2001.

Jan Jiirjens and Guido Wimmel. Specification-based testing of firewalls. In
Andrei Ershov Jth International Conference ”Perspectives of System Infor-
matics” (PSI’01), LNCS. Springer, 2001. To be published.

L. Paulson. Inductive analysis of the Internet protocol TLS (transcript of
discussion). In B. Christianson, B. Crispo, W.S. Harbison, and M. Roe,
editors, Security Protocols — 6th International Workshop, number 1550 in
LNCS, page 13 ff., Cambridge, UK, April 1998.

R. Pooley and P. King. The unified modeling language and performance
engineering. IEE Proceedings - Software, 146(1):2-10, 1999.

J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, 1999.

F. Schneider, editor. Trust in Cyberspace. National Academy Press, 1999.
J. Saltzer and M. Schroeder. The protection of information in computer
systems. Proceedings of the IEEFE, 63(9):1278-1308, September 1975.

M. Walker. On the security of 3GPP networks. In Advances in Cryptology —
EUROCRYPT, volume 1807 of LNCS. Springer, 2000.

