Transformations for Introducing Patterns
A Secure Systems Case-study

Jan Jirjens*

Computing Laboratory, University of Oxford, GB

Abstract. We use transformations between UML models to introduce patterns by
refinement. The source of the transformations can be parameterised over values for
increased flexibility, and the target of the transformation can be a set of models to
account for the fact that many patterns can be implemented in several ways. The
intended use of our approach is in the context of a formal semantics for UML. We
illustrate our approach with examples from secure systems development.

1 Introduction

The usefulness of transformations in computer science has long been recognised. Here
we use transformations in the context of the Unified Modeling Language (UML)
[RIB99]. More specifically, we use them as refinements for the introduction of patterns
within the design process.

We use what we call generalised transformations between UML models:

— Firstly, the source of the transformation need not be a single UML model, but it
can be parameterised over values for increased flexibility.

— Secondly, the target of the transformation (for each parameter) can be a set of
models to account for the fact that many patterns can be implemented in several
ways [KKHO00].

The long term aim is to enable mechanical support for introduction of patterns
when constructing UML models, and to allow one to check that the patterns are
introduced in a way that has previously shown to be useful and correct. Since the
envisioned setting is that of a formal semantics for UML (cf. e.g. [EFLR99]), having a
sound way of introducing patterns using transformations can ease formal verification
(where desired), since the verification can be performed on the more abstract and
simpler level. For code generation, one may apply the same principle of introducing
patterns using transformations, except that UML models are transformed into code
rather than more fine-grained models.

We illustrate our approach with examples from secure systems development, fol-
lowing the approach in [JiirOla]. Having a well-founded way of applying established
engineering knowledge is highly desirable in the area of security, since:

— on the one hand, the need to consider security aspects when developing systems
is not always met by adequate knowledge on the side of the developer,

— on the other hand, in practice security is compromised most often not by break-
ing the dedicated mechanisms (such as encryption or security protocols), but by
exploiting weaknesses in the way they are being used [And94].

* http://www.jurjens.de/jan — jan@comlab.ox.ac.uk - Supported by the Studienstiftung des
deutschen Volkes and the Computing Laboratory.

This is version
3/3/01 of a paper
at WTUML’01.
Please refer to

www.jurjens.de/jan
for the current version
and more information.

Thus security mechanisms cannot be “blindly” inserted into a security-critical system,
but the overall system development must take security aspects into account.
Therefore the aim of our work is two-fold:

— exemplarily explain our approach of introducing patterns using generalised trans-
formations (a more complete account has to be given elsewhere) and

— demonstrate the usefulness of introducing patterns in a sound way in the setting
of secure systems development.

2 Patterns and UML for Secure Systems Development

Patterns [GHJV95] encapsulate design knowledge of software engineers in the form of
recurring design problems. They generally have four core elements: the pattern name,
the problem description, the solution, and the consequences.

In our approach, a pattern is represented by a multi-valued function (equivalently,
a relation) from UML models (giving the problem description) to sets of UML models
(the possible solutions). The consequences are given by a set of properties shared
by the possible solutions (the resulting set of UML models), which are typically not
fulfilled in the UML models giving the problem description. We allow this function to
be parameterised by values occuring in the model to allow flexible use of the pattern
in similar but different situations.

UMLsec We use an extension of UML [Jiir0la] making use of UML’s extension mech-
anisms to specify standard security requirements on security-critical systems. Here we
only use statechart diagrams and deployment diagrams. To specify security levels we
use the tag {high} to mark model elements such as dependency arrows, links, and data
items (attributes, arguments of operations or signals or return values of operations) of
the corresponding security level (absence of this tag is interpreted as the level low).!
Here we only give ideas, the details can be found in [Jiir0la).

Statechart diagrams Intuitively, an object preserves security if in its statechart dia-
gram S, no low output value depends on {high} input values.

rb()\return(balance) rb()\return(balance)
Account \ t whb(x)[x>=10000] \return(fal
rx()\return(true) \balancei=x rx(\r /umN(se)

balance: Integer { high}

ExtraService NoExtraService

rb(): Data{ high}

wb(x: Data{high}) whb(x)[x>=10000) wh(x)[x<10000] wh(x)[x<10000]
rx(): Boolean \balance:=x \balance:=x \balance:=x

Fig. 1. Multi-level database

\balance:=0

Ezxample: Entry in multi-level database The object in Figure 1 does not preserve se-
curity (the operation rx() leaks information on the account balance).

! More precisely, UML provides tag-value pairs. Here we use the convention that where the values
are supposed to be boolean values, they need not be written (then presence of the label denotes
the value true, and absence denotes false).

The Wrapper pattern Wrappers [FBF99] are a generic way to augment the security
functionality of Commercial Off-The-Shelf (COTS) applications. Here we use wrappers
to ensure that objects (that may not be under control of the developer) preserve
security as defined above.

Thus the pattern takes any UML object model such as the one in Figure 1 and
transforms it into a model by adding a wrapper object that controls its interaction
with other objects. One such wrapper is given in Figure 2; it ensures that there can be
no low read after a high write [CFMS94]. The way it works is that instead of calling the
original object directly, other objects call the wrapper object. This wrapper objects
passes the calls on to the object to be wrapped (and gives back the return values to
the clients), unless a non-high read method is called after a high write method has
been called. The consequence of the pattern is that the composition of the original
object and the wrapper object preserve security.

Our approach can handle other possible solutions since the pattern function is
multi-valued. Here the pattern function is parameterised by the number of the methods
supplied by the object to be wrapped, and their names.

rx’()[critical=false]\return(rx())

N
critical: Bool whb' (x) \wh(x) q 4

b’ (): Data{ high} \critical:=true \critical
wb' (x: Data{ high}) NI =false
rx'(): Boolean rb’ O\return(rb())

Fig. 2. Wrapper Object

Wrapper

Deployment diagrams A deployment diagram provides communication security if for
each dependency D that is tagged {high}, the corresponding link Lp is also tagged

{high}.

Ezample

client get_password {high} webserver

-
<<rmi>>
access_control

This model does not provide communication security, because the communication link
between web-server and client does not provide the needed security level.

~
-

The Secure Channel pattern A well-known solution to this problem is to encrypt
the traffic over the untrusted link. Here the parameters of the pattern function may
include the exact sensitivity level of the data (like “sensitive” or “very sensitive”) which
translates to different keylengths in the result of the transformation. Also, since the
pattern function is multi-valued, we can account for different encryption algorithms
(we have to leave out both these aspects). The consequence of this pattern is that the

resulting model provides communication security as defined above since the sensitive
data is encrypted before transmission.

client webserver
browser get_p: asswd access_contr
A \
g ! N <<Ca| | >>
/ {high}

\ {high}

//<<ca| 1>>
encrypt_pw decrypt_pw|
O = o)
get_enc_pw <<rmi>> get_dec_pwd

3 Related Work

An overview of work on transformations in UML is contained in [Whi00]. [LBEO0O,
KKHO00] give results on proving pattern introductions as refinements.

Transformations to enhance, rationalise, refine or abstract UML models are con-
sidered in [LB98]. [WS00] gives an algorithm for automatically generating state-
charts from sequence diagrams. [KER99] considers refinement of UML diagrams.
[GR99, EFG99, ATHO00] give transformation rules for class diagrams. Further examples
for transformations are given in [WATAOO].

There has been much work on security using formal methods (for an overview cf.
[RSGT01, AJO1]). Less work has been done using software engineering techniques, in
particular we are not aware of any published work that uses UML, besides [Jiir0la).
There is considerable work towards providing a formal semantics for UML (for an
overview cf. [EFLR99, RACH00, BD00]).

4 Conclusion and Future Work

We used generalised transformations to introduce patterns in UML in the context of
a formal semantics. For flexibility, the source of the transformations can be parame-
terised over values, and the target of the transformation can be a set of models since
many patterns can be implemented in several ways. We could only illustrate our ap-
proach with examples (from secure systems development), a more complete account
will be found elsewhere.

We will consider to what extend transformations preserve desirable properties of a
system (in particular security properties, cf. e.g. [JiirO1b]). We will develope algorithms
for transformations to automatically introduce patterns. We aim to incorporate these
into a UML design-tool (such as ArgoUML?). For this, we need to extend our approach
to incorporate a library of secure systems design patterns.

Acknowledgements This idea for using UML for secure systems development arose
when doing security consulting for a project during a research visit with M. Abadi at
Bell Labs (Lucent Tech.), Palo Alto, whose hospitality is gratefully acknowledged.

% Cf. http://argouml.tigris.org .

References

[AJO1] M. Abadi and Jan Jiirjens. Formal eavesdropping and its computational interpretation. In
Theoretical Aspects of Computer Software (TACS ’01), LNCS. Springer-Verlag, 2001.

[And94] R. Anderson. Why cryptosystems fail. Communications of the ACM, 37(11):32-40, Novem-
ber 1994.

[ATHO0] J. Aleman, A. Toval, and J. Hoyos. Rigorously transforming UML class diagrams. In Work-
shop MENHIR (Models, Environments, and Tools for Requirements Engineering), 2000.

[BD00] C. Bolton and J. Davies. Activity graphs and processes. In Integrated Formal Methods,
LNCS. Springer-Verlag, 2000.

[CFMS94] S. Castano, M. Fugini, G. Martella, and P. Samarati. Database Security. Addison Wesley,
1994.

[EFG99] A. Evans, R. France, and E. Grant. Towards formal reasoning with UML models. In
OOPSLA’99 Workshop on Behavioral Semantics, 1999.

[EFLR99] A. Evans, R. France, K. Lano, and B. Rumpe. The UML as a formal modeling notation. In
J. Bezivin and P.-A. Muller, editors, The Unified Modeling Language - Workshop UML’98:
Beyond the Notation, LNCS. Springer-Verlag, 1999.

[FBF99] T. Fraser, L. Badger, and M. Feldman. Hardening COTS software with generic software
wrappers. In IEEE Symposium on Security and Privacy, 1999.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns — Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[GR99] M. Gogolla and M. Richters. Transformation rules for UML class diagrams. In Ist Int.
Workshop Unified Modeling Language (UML’98), volume 1618 of LNCS, 1999.

[JirOla] J. Jirjens. Towards development of secure systems using UMLsec. In H. Hulmann, editor,
Fundamental Approaches to Software Engineering (FASE/ETAPS, International Confer-
ence), volume 2029 of LNCS, pages 187-200. Springer-Verlag, 2001.

[Jir01b] Jan Jirjens. Secrecy-preserving refinement. In Formal Methods Europe (International Sym-
posium), volume 2021 of LNCS, pages 135-152. Springer-Verlag, 2001.

[KER99] S. Kent, A. Evans, and B. Rumpe. UML Semantics FAQ. In A. Moreira and S. Demeyer,
editors, Object-Oriented Technology, ECOOP’99 Workshop Reader. LNCS 1743, Springer
Verlag, 1999.

[KKHO0] I. Khriss, R. Keller, and I. Hamid. Pattern-based refinement schemas for design knowledge
transfer. Knowledge-Based Systems, 13(6):403-415, 2000.

[LB98] K. Lano and J. Bicarregui. Semantics and transformations for UML models. In UML’98
International Workshop: Beyond the Notation, 1998.

[LBE0O] K. Lano, J. Bicarregui, and A. Evans. Structured axiomatic semantics for UML. In 8rd
Workshop on Rigorous Object Oriented Methods, 2000.

[RACHO00] G. Reggio, E. Astesiano, C. Choppy, and H. Huimann. Analysing UML active classes and
associated state machines — A lightweight formal approach. In FASE2000, volume 1783 of
LNCS. Springer-Verlag, 2000.

[RIJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Manual.
Addison-Wesley, 1999.

[RSG*01] P.Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. The Modelling and Analysis
of Security Protocols: the CSP Approach. Addison-Wesley, 2001.

[WATAO00] J. Whittle, J. Araijo, A. Toval, and J. Alemdn. Rigorously automating transformations
of UML behavior models. In UML 2000 WORKSHOP Dynamic Behaviour in UML Models:
Semantic Questions, 2000.

[Whi00] J. Whittle. Formal approaches to systems analysis using UML: An overview. Journal of
Database Management, 11(4):4-13, 2000.

[WS00] J. Whittle and J. Schumann. Generating statechart designs from scenarios. In Proceedings
of the 22nd international conference on on Software engineering, 2000.

