Towards Development of Secure Systems
using UMLsec

Jan Jurjens*

Computing Laboratory, University of Oxford, GB

Abstract. We show how UML (the industry standard in object-oriented
modelling) can be used to express security requirements during system
development. Using the extension mechanisms provided by UML, we in-
corporate standard concepts from formal methods regarding multi-level
secure systems and security protocols. These definitions evaluate dia-
grams of various kinds and indicate possible vulnerabilities.

On the theoretical side, this work exemplifies use of the extension mecha-
nisms of UML and of a (simplified) formal semantics for it. A more prac-
tical aim is to enable developers (that may not be security specialists) to
make use of established knowledge on security engineering through the
means of a widely used notation.

1 Introduction

There is presently an increased need to consider security aspects when
developing systems (that may e.g. communicate over untrusted networks).
This is not always met by adequate knowledge on the side of the developer.
This is problematic since in practice, security is compromised most often
not by breaking the dedicated mechanisms (such as encryption or security
protocols), but by exploiting weaknesses in the way they are being used
[And94]. Thus security mechanisms cannot be “blindly” inserted into a
security-critical system, but the overall system development must take
security aspects into account.

Object-oriented systems offer a very suitable framework for consider-
ing security due to their encapsulation and modularisation principles.

The Unified Modeling Language (UML) [RJB99] is an industry stan-
dard for specifying object-oriented software systems. Compared to other
modelling languages, UML is very precisely defined.

The aim of this work is to use UML to encapsulate knowledge on
prudent security engineering and thereby make it available to developers
not specialised in security.

* http://www.jurjens.de/jan — jan@comlab.ox.ac.uk - Supported by the
Studienstiftung des deutschen Volkes and the Computing Laboratory.

This is version
3/5/01 of a paper at
FASE’01. Please refer
to www.jurjens.de/jan
for the current version
and more information.

This work profits from work towards a formal semantics for UML e.g.
in [EFLR99, RACHO00]. Its aim is to make formalism have an impact in
the actual software development process [Hufl99, AR00].

For space limitations, we present our results in the framework of a sim-
plified fragment of UML (in its current version 1.3 [For99]), the extension
to the whole of the actual UML is under development [JiirO1b].

After presenting some background and related work in the following
subsection, we summarise our use of UML in the next section. In the later
sections we show how to use four central kinds of diagrams of UML to
develop security-critical systems. We end with a conclusion and indicate
future work.

1.1 Background and Related Work

A traditional way of ensuring security in computer systems is to de-
sign multi-level secure systems (LaPadula, Bell 1973). There are levels
of sensitivity of data (usually high and low). To ensure confidentiality of
data, one enforces the policy that information always flows up: low data
may influence high data, but not vc. vs. (the opposite of this condition
provides data integrity; thus also integrity is implicitly covered by our
approach). To avoid covert channels one can use the notion of noninter-
ference (Goguen, Meseguer 1982; cf. e.g. [Jiir00]). Secure communication
over untrusted networks requires specific mechanisms such as encryption
and cryptographic protocols.

There has been much work on security using formal methods (e.g.
[BAN89, RWW94, Low96, AJ00, JiirOlc]), mostly about security proto-
cols or secure information flow.

[And94] suggests to use software engineering techniques to ensure se-
curity. [DS00] proposes to “extend the syntax and semantics of standards
such as UML to address security concerns”. We are not aware of any
published work towards this goal.

Our work depends on concepts from the considerable work towards
providing a formal semantics for UML (e.g. [BGH'98, EFLR99, GPP98,
RCA00, RACH00, BD00, Ove00]). In particular the security notions con-
cerning behaviour cannot be formulated at the level of abstract syntax,
requiring a formal semantics to express and reason about the security
requirements. As a formal semantics for UML is subject of ongoing re-
search, we use a (simplified) semantics tailored to our needs for the time
being. It would be preferable to employ a universally defined formal se-
mantics, therefore our work may contribute to exemplify the need for a
formal semantics for UML.

2 Developing Secure Systems with UML

UML consists of diagram types describing views on a system (an excellent
introduction is [SP00]). We use an extension of UML (called UMLsec) to
specify standard security requirements on security-critical systems. Our
results may be used with any process; security-critical systems usually
require an iterative approach (e.g. the “Spiral”) [And94].

We concentrate on the most important kinds of diagrams for describ-
ing object-oriented software systems (following [RACHO0]):

Class diagrams define the static structure of the system: classes with
attributes and operations/signals and relationships between classes.
We use them to ensure that exchange of data obeys security levels.

Statechart diagrams give the dynamic behaviour of an individual ob-
ject: events may cause state in change or actions. We use them to
prevent indirect information flow from high to low values within an
object.

Interaction diagrams describe interaction between objects via mes-
sage exchange. We use sequence diagrams to ensure correctness of
security-critical interaction between objects (especially in distributed
object systems).

Since security of a software system depends on the security of the underly-
ing physical layer, we additionally use deployment diagrams to ensure
that security requirements on communication are met by the physical
layer.

To specify security levels we use the UML extension construct of a tag
to indicate model elements with high security level.

We formulate our concepts at this point on the level of abstract syn-
tax as far as possible (i. e. those concerning static aspects), given in set-
theoretical terms for brevity. Behavioural aspects (modeled using state-
chart and sequence diagrams) can not be treated this way. In absence of
a general formal semantics we use a specifically defined one which covers
just the aspects needed and to the needed degree of detail, to follow space
restrictions (a more complete account is to be found in [JiirO1b]).

We stress that the aspects that are left out (such as association and
generalisation in the case of class diagrams) can and should be used in
the context of our usage of UML; they do not appear in our presentation
simply because they are not needed to specify the considered properties
(and for lack of space).

It should also be stressed that the formal semantics is used here only
to convey our ideas on how to model security aspects of systems using

UML and not to provide a semantics for general use. We will translate
our definitions to a generally defined formal semantics when available.

3 Classes and State

We give the abstract syntax for class models. Besides the usual informa-
tion on attributes and operations/signals we also have interfaces. Addi-
tionally, the tag {high} is used to mark data items (attributes, arguments
of operations or signals or return values of operations) of the correspond-
ing security level (absence of this tag is interpreted as the level low).! In
the concrete syntax, these tags are written behind the data types. Fol-
lowing [RACHO0] we assume that the attributes are fully encapsulated
by the operations, i. e. an attribute of a class can be read and updated
only by the class operations.

For brevity, our abstract syntax only gives the aspects we use to spec-
ify our security condition. [EFLR99] has a more complete account.

An attribute specification A = (att_name, att_type, init_value, att_tags)
is given by a name att_name, a type att_type, an initial value init_value?
and a set of tags att_tags (here we only care if it contains the tag {high}
or not, determining the security level of the attribute).

An operation specification O = (op_name, Arguments, op_type, re_tags)
is given by a name op_name, a set of Arguments, the type op_type of the
return value and a set re_tags of tags denoting the security level of the
return value. The set of arguments may be empty and the return type
may be the empty type () denoting absence of a return value. An argument
A = (arg_name, arg_type, arg_tags) is given by its name arg_name, its type
arg_type and a set arg_tags denoting the security level of the argument.

A signal specification is like an operation specification, except that
there is no return type and no corresponding set of tags.

An interface I = (int_name, Operations, Signals) is given by a name
int_-name and sets of operation names Operations and signal names Signals
giving the operations and signals that can be called or sent through it.

A class model C' = (class_name, AttSpecs, OpSpecs, SigSpecs, Interfaces,
State) is given by a name class_-name, a set of attribute specifications
AttSpecs, a set of operation specifications OpSpecs, a set of signal spec-
ifications SigSpecs, a set of class interfaces Interfaces and a statechart

! More precisely, UML provides tag-value pairs. Here we use the convention that
where the values are supposed to be boolean values, they need not be written (then
presence of the label denotes the value true, and absence denotes false).

2 We assume that these are specified in the class rather than by the creating object.

diagram State giving the object behaviour. We require that in the set of
attribute specifications, the attribute names are mutually distinct, so that
an attribute is uniquely specified by its name and the name of its class
(and similarly for operation and signal specifications and class interfaces).

3.1 Statechart diagrams

We fix a set Var of (typed) variables z,z,y,... used in statechart dia-
grams. At this point, we only consider simple states with one thread of
execution, because the formal semantics of more complex features raises
some questions [RACHO0].

We define the notion of a statechart diagram for a given class model C":
A statechart diagram S = (States, init_state, Transitions) is given by a set
of States (that includes the initial state init_state) and a set of Transitions.
(On the level of concrete syntax, the initial state is the state with an
in-going transition from the start marker.)

A statechart transition t = (source, event, guard, Actions, target) has a
source state, an event, a guard, a list of Actions and a target state. Here an
event is the name of an operation or signal with a list of distinct variables
as arguments that is assumed to be well-typed (e.g. op(z, y, z)). Let the set
Assignments consist of all partial functions that assign to each variable
and each attribute of the class C' a value of its type (partiality arises
from the fact that variables may be undefined). A guard is a function
g : Assigments — Bool evaluating each assignment to a boolean value.
(On the level of UML’s concrete syntax, it is left open how to write such
guards; often it is done in OCL.) An action can be either to assign a
value v to an attribute a (written a := v), to call an operation op resp.

to send a signal sig with values vy,...,v, (written op(vy,...,v,) resp.
sig(v1,...,vy)), or to return values vy,...,v, as a response to an earlier
call of the operation op (written returngs(vi,...,v,)). In each case, the

values can be constants, variables or attributes (and need to be well-
typed). In the case of output actions (calling an operation or sending a
signal) we include the types of the arguments (and possibly of the return
value) together with any security tags. (This is not necessary in the usual
UML syntax; we need this extra information later.)

Interpreting statechart diagrams To define our security condition on state-
chart diagrams we need to interpret them as state machines. Due to space
constraints we can only sketch this interpretation, a detailed account is
in [Jir01b).

Suppose we are given a class model C with a statechart diagram S.
We define the associated state machine Mg (S,4,T) to consist of

f .
— aset of states S % States x Assignments,

— an initial state i & (init_state, init_as) (where the initial assignment
init_as maps each attribute to its initial value and is undefined on the
set of variables) and

— a set T of state machine transitions ¢t = (s, e, A, s") (for states s,s’, a
trigger e and a list of actions A) defined as follows. A trigger is the
name of an operation or signal with a list of (suitably typed) values
as arguments.

Firstly, for any assignment function ¢, a list of variable or attribute names

x = (z1,...,o,) and a list of values v = (vy,...,v,) of the corresponding
def

types, we define ¢[x — v] by ¢[x — v](z) = ¢(z) for an attribute or
variable z not in & and ¢[x — v](z;) def vifori=1,...,n.

Suppose we are given a transition ¢ = (source, event, guard, Actions,
target) € Transitions in the statechart diagram (where the event has
the list of variables @ = (z1,...,%,)), a corresponding list of values
v = (v1,...,v,) and an assignment ¢ such that guard(¢[x — v]) = true.
Denote the list of attributes that are assigned new values in the list of
Actions by a and the corresponding list of values by w. We define the state

machine transition t, 4 def ((source, ¢), event(v), Actions’, (target, o[z —
v][a — w])) where event(v) is the trigger obtained from event by substi-
tuting the values v for the variables and Actions’ is the list of actions
obtained from Actions by removing the attribute assignments and by in-
stantiating any variables or attributes appearing as parameters using the

assignment (¢[x — v])[a — w]. Then we define T o {ty,¢ : guard(gp[z —
v]) = true}.

Assume for the moment that the state machine under consideration
is deterministic in the sense that at any state, any given trigger can
fire at most one transition. Any state s of the state machine defines a
function [s] from sequences of triggers to sequences of actions as fol-
lows. For a given sequence of triggers e = (e1,...,e,) we obtain the
actions performed by an object in reaction to these triggers as follows: If
there exists a transition s V2" ¢ for some list of actions a1, ..., am
(which is the only transition triggered by e; by determinism), then define

[s](e) f (a1,...,am).[s]((e2,-..,en)) (where . denotes concatenation of

tuples), otherwise define [s](e) aof [s]((eg,...,e,)) (here we follow the

UML convention that events with unspecified reaction are ignored).

Thus any deterministic state machine S gives a function [S] from

sequences of triggers to sequences of actions per [S] (e) et [init_stateg](e).

We generalise this to nondeterministic state machines S by defining [[S]]
to be the set of functions [[T]] for all (deterministic) state machines T
constructed by choosing one transition for each trigger in each state in S
(where such a transition exists).

Note that we follow [RACHO0] in considering sequences of events
rather than multisets (queues in UML terminology) to ensure preser-
vation of event orderings within a state machine, but we can easily derive
the case for multisets by considering all possible sequences that give rise
to a given multiset. — Note that in the interaction between state machines,
preservation of message ordering can not be assumed.

We define the low view L(e) of a sequence e of triggers (resp. actions)
to be the sequence obtained from e by substituting all arguments of types
marked {high} by the symbol O.

For example, the low view of the action sequence (op1(2,5,7),0p2(4,3)),
with operation specifications

(op1, ((a1,int, 0), (a2, int, high), (a3, int, D)), int, {high)} and
(op2, ((as, int, {high}), (a4, int, {high})),int, 0)

is (op1(2,0,7),0p2(0,0)).

Definition 1 An object preserves security if in its statechart diagram
S, no low output value depend on {high} input values, i. e. if for all
functions h € [Mg] (where Mg is the associated state machine) and all
trigger sequences e, f, L(e) = L(f) implies L(h(e)) = L(h(f)).

This is a simple generalisation of the notion of noninterference [GM82]
to the nondeterministic case. It is possible to refine this notion to allow
encrypted low data to depend on high data (e.g. to encrypt high data and
then send it out on an untrusted network); we cannot give the details here
for lack of space.

Ezample: Entry in multi-level database The object in Figure 1 does not
preserve security (the operation rx() leaks information on the account
balance).

3.2 Class diagrams

A class diagram D = (Cls, Dependencies) is given by a set Cls of class
models and a set of Dependencies. A dependency is a tuple (client, supplier,

rb()\return(balance) rb()\ret balance)
Account m(\return(true) WR(X)[x>=10000] /' rx(\return(falss)
fn\ \balance:=x /%

balance: Integer {high}
ExtraService NoExtraService
rb(): Data {high} \balance:=0
wh(x: Data {high}) wh(x)[x>=10000] wb(x)[x<10000] {b(x)[x<10000]
rx(): Boolean \balance:=x \balance:=x \balance:=

Fig. 1. Multi-level database

interface, stereotype) consisting of class names client and supplier (signify-
ing that client depends on supplier), an interface name interface (giving
the interface of the class supplier through which client accesses supplier; if
the access is direct this field contains the client name) and a stereotype
which for our present purposes can be either «send» or «cally. We require
that the names of the class models are mutually distinct.

Definition 2 A class diagram D gives secure dependency if whenever
there is a dependency with stereotype «send» or «call» from a client A to
an interface I of a supplier B then for each operation or signal o specified
in I the following holds:

— the security levels on the argument values of o in the statechart dia-
gram of A agree with those of o in the class diagram of B and
— the security levels of the return value of o (when o is an operation) in

the class diagram of B agree with those of o in the statechart diagram
of A.

If the statechart diagram is not specified for a certain class model, the
security levels can be given in a special model element newly introduced
here for this purpose, the output action list, which specifies the operations
an object can call and the signals an object can send.> An output action
list is a classifier given by a rectangle with the keyword «output actions
», carrying the name of the corresponding class and with the operations
and signals (with their types and security levels) listed in a compartment
of the rectangle. It is similar but dual to an interface.

Ezample In Figure 2, the random() operation of the server does not pro-
vide the security level required by the client for the seed.

% In future work we will examine the possibility to employ UML-RT capsules in this
context.

Random generator Random number Key generator

seed: Real 40_ ,,,,,,,,,
<<call>>

random(): Real newkey(): Key {high}
<<interface>> <<outgoing actions>>
Random number Key generator
random(): Real random(): Real {high}
keylength(): Integer

Fig. 2. Key generator

4 Interaction

We would like to model security-aspects in particular of distributed ob-
jects systems where messages are sent over networks (e.g. the Internet)
where they can be intercepted, modified or deleted. Here the security-
critical part of the interaction between objects is the exchange of encryp-
tion keys etc. by means of cryptographic protocols. Since it is not always
possible to use protocols off-the-shelf, but they have to be adjusted to
the specific application domain (cf. the example below), and because vul-
nerabilities often arise at the boundary between a protocol and the rest
of the system [Aba00], we would like to specify cryptographic protocols
within the general framework of a security-enhanced UML, which we do
using using sequence diagrams.

We concentrate on one kind of interaction diagram, the sequence dia-
grams (collaboration diagrams are very similar). We first give an abstract
syntax of aspects of sequence diagrams that allow specification of security-
critical interaction between objects (specifically employing cryptography).
We proceed to give a formal semantics tailored to our purposes. Again, a
more general account can be found elsewhere [IT95]. We concentrate on
concurrent objects that each have their own lifelines and exchange mes-
sages asynchronously (by sending signals). As pointed out in [BGHT 98],
sequential systems are a special case of concurrent ones, and synchronous
communication (i. e. operation calls) can be modeled using handshake.

A sequence diagram S = (Obj, MsgSpecs) is given by a list Obj of
pairs (obj_name, cls_-name) (where obj_name may be an empty string)
and a list of message specifications MsgSpecs. A message specification
m = (sender, receiver, guard, signal(args)) consists of the names of the
sender and the receiver, a guard, the name of the signal sent and a list
of arguments args. We assume that the messages can be ordered linearly,
following the view that two events never occur at exactly the same time

[RJB99, p.440]; the more general case follows by using a non-deterministic
scheduler. As above, a guard is a function g : Assignments — Bool eval-
uating each assignment to a boolean value (where an assignment is any
partial function f : Var — Exp similar to above). Here we assume the
set Var to consist of the variables msg,,) representing the n'" argument
of the signal with name m received most recently.

We define the data type Exp of cryptographic messages that can be
exchanged during the interaction. We assume a set D of basic data values.
The set Exp contains the expressions defined inductively by the grammar

FE

= expression

d data value (d € D)

K key (K € Keys)

x variable (z € Var)

E; . Ey concatenation

{E}e encryption (e € Keys U Var)
Dece(E) decryption (e € Keys U Var)

Here we consider asymmetric encryption, so the set Keys is the disjoint
union of the sets of private and public keys, where the private keys corre-
sponding to a public key K is denoted K ~1. We assume Decg -1 ({E}x) =
E, and for the following example (for RSA signing) also {Decg-1(F)}x =
E (for all E € Exp, K, K~!' € Keys), and that no other equations except
those implied by these hold. We write Msg for the set of messages of the
form sig(F1, ..., F,) where sig is a signal with n arguments of type Exp.

:client serve

init(NcKC,Dec K_%:(C::KC)

resp(NS,{DecKé (Iés:::lg)%,Defﬁ\l(S:: S))

_ 758,03k 70758,
[{msgrespv3 }KCA =

{DeCKél(mSgresp,Z)&: k'::NC]

S:k & xchd({m} Kcs)

Fig. 3. Variant of TLS

Ezample: Proposed variant of TLS The protocol in Figure 3 has been
proposed in [APS99] as a variant of the handshake protocol of TLS (the

successor of the Internet protocol SSL) to satisfy certain performance
constraints (for more details cf. [JirOlc]).

4.1 Interpreting Sequence Diagrams

To specify security properties we give a formal interpretation of sequence
diagrams in the specification framework Focus [BS00] which was sug-
gested in [BGH™ 98] for a formal semantics of UML and was used e.g. in
[JirOle, AJOO] to reason about security. In Focus, one can model concur-
rently executing systems interacting by transmitting sequences of data
values over unidirectional FIFO communication channels. Communica-
tion is asynchronous in the sense that transmission of a value cannot
be prevented by the receiver. Focus uses streams and stream-processing

functions defined in the following.

For a set C' we write Streamg def (Msg®“)® for the set of C-indexed

tuples of (finite or infinite) sequences of messages, the (untimed) streams.
A function f : Stream; — P(Streamy) from streams to sets of streams
represents a reactive system that receives an input stream s on the input
channels in I and nondeterministically sends out an output stream (from
the set of possible output streams f(s)) on the output channels in O.

The composition f; ® f2 : Stream; — P(Streamy) of two functions
fi : Stream;; — P(Streamy,) (i = 1,2) (with O; N0y = 0, I =
(I UILy) \ (O1 UO3) and O = (01 U O32) \ (11 U I)), linking input and
output channels, is defined by f1 ® fa(s) def {t|o: t € Streamj o At|;=
s|r AVit o€ fi(slr)}-

Interpretation Again we can only sketch the interpretation, details are in
[Jir01lb]. Suppose we have a sequence diagram S = (Objects, Messages).
For every O € Object we will define a function [O] : Streamg, ; —
P(Streamyq,}): Let MsgSpecs,, be the sublist of MsgSpecs of message
specifications with O as sender. Any s € Streamyg, ,, defines an as-
signment ass(s) by sending the variable msg,,) to the n* argument of
the signal named m received most recently. Let [OJ]/(s) be the singleton
set consisting of the sequence of those messages signal(arguments) from
MsgSpecs,, for which g(ass(s)) = true for the corresponding guard g.

4.2 Secrecy

We say that a stream-processing function f : Stream; — P(Streamy)
may eventually output an expression F € Exp if there exist streams

s € Stream; and t € f(s), a channel ¢ € O and an index j € N such
that F is an argument of the message (¢(c));.

The following definition uses the notion of an adversary from [JiirOlc],
which is a specific kind of stream-processing function that captures the
capabilities of an adversary intercepting the communication link between
the distributed objects (the exact definition of “adversary” and “without
access” have to be left out here for space limitations but can be found in
[JirOlc]).

Definition 3 We say that a system modeled by a sequence diagram S
leaks a secret d € D U Keys if there is an adversary A without access to
d such that [S] ® [A] may eventually output d. Otherwise we say that S
preserves the secrecy of d.

S preserves the secrecy of d if no adversary can find out d in interaction
with the system modeled by S, following the approach of Dolev and Yao
(1983), cf. [Aba00, JirOlc].

Ezample (continued) It has been shown in [JiirOlc] that the proposed
variant of the TLS handshake protocol given above does not preserve the
secrecy of d.

5 Physical View

We give the abstract syntax of (aspects of) deployment models, extended
with the tag {high} used to ensure that security requirements on com-
munication links between different components are met by the physical
layer.

A component C = (comp_name, Interfaces) is specified by its name
comp_name and a (possibly empty) set of Interfaces.

A node N = (node_name, Components) is given by a name node_name
and a set of contained Components.

A deployment diagram D = (Nodes, Links, Dependencies) is given by
a set of Nodes, a set of Links and a set of Dependencies. A link [=
(nds, tags) is given by a two-element set nds of nodes being linked and a
set of tags (that may or may not contain the tag {high} indicating the
corresponding security level of the link). Here a dependency is a tuple
(client, supplier, interface, tags) consisting of component names client and
supplier, an interface name interface and a set of tags giving the secu-
rity level of the dependency. We assume that for every dependency D =
(C,S,1,t) there is exactly one link Lp = (N,t') such that N = {C, S}
for the set of linked nodes.

Definition 4 A deployment diagram provides communication security if
for each dependency D that is tagged {high}, the corresponding link Lp
is also tagged {high}.

Ezample

client get_passwor <<high>> webserver

] -
-
-

browser
access_contrg

This model does not provide communication security, because the commu-
nication link between web-server and client does not provide the needed
security level.

6 Conclusion and Future Work

The aim of this work is to use UML to encapsulate knowledge on prudent
security engineering and to make it available to developers not specialised
in security by highlighting aspects of a system design that could give rise
to vulnerabilities.

Concentrating on the kinds of diagrams most important for our pur-
pose we showed how UML, by using its extension mechanisms, can be
used to express standard concepts from formal methods regarding multi-
level secure systems and security protocols. These definitions evaluate
diagrams of various kinds and indicate possible weaknesses.

In absence of a general formal semantics we use a specifically defined
one which covers the aspects needed and to the required degree of detail. It
is not a replacement for a general formal semantics but rather exemplifies
the need for one.

In further work [JiirOla], we have used UMLsec to reason about audit-
security in a smart-card based payment scheme.

In future work, we will consider the remaining kinds of diagrams and
move closer to the unabridged standard of UML by bringing in more de-
tail. In particular, we will explore the use of profiles or prefaces [CKM™99].
Also, we will try to link the various views on a system given by differ-
ent diagrams to gain additional information on the system that may be
security-relevant. To increase usability, we will consider how to automat-
ically derive security annotations from usual modelling information.

To enable tool support, we aim to find efficiently checkable conditions
equivalent to the ones given here and to give proof-techniques.

Further case-studies are planned, e.g. regarding development of mul-
tilateral security platforms such as [PSWT98].

7 Acknowledgements

This idea for this work arose when doing security consulting for a project
lead by S. Nagaraswany during a research visit with M. Abadi at Bell
Labs (Lucent Tech.), Palo Alto, whose hospitality is gratefully acknowl-
edged. This work was presented at the summer school “Foundations of
Security Analysis and Design 2000” (Bertinoro), the Computing Labora-
tory at the University of Oxford, the Department of Computer Science at
the TU Miunchen, and the Department of Computer Science at the TU
Dresden. Comments from S. Abramsky, C. Bolton, M. Broy, J. Davis, G.
Lowe, H. Muccini, G. Wimmel, the anonymous referees, and especially
A. Pfitzmann, B. Rumpe and P. Stevens are gratefully acknowledged.

References

[Aba00] M. Abadi. Security protocols and their properties. In F.L. Bauer and R. Stein-
brueggen, editors, Foundations of Secure Computation, pages 39-60. I0S
Press, 2000. 20th Int. Summer School, Marktoberdorf, Germany.

[AJOO] M. Abadi and Jan Jirjens. Formal eavesdropping and its computational
interpretation, 2000. submitted.

[And94] R. Anderson. Why cryptosystems fail. Communications of the ACM,
37(11):32—40, November 1994.

[APS99] V. Apostolopoulos, V. Peris, and D. Saha. Transport layer security: How
much does it really cost ? In Conference on Computer Communications
(IEEE Infocom), New York, March 1999.

[AR00] E. Astesiano and G. Reggio. Formalism and method, 2000. to appear in
Theoretical Computer Science.

[BAN89] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Pro-
ceedings of the Royal Society of London A, 426:233-271, 1989.

[BD00] C. Bolton and J. Davies. Using relational and behavioural semantics in the
verification of object models. In C. Talcott and S. Smith, editors, Proceedings
of FMOODS. Kluwer, 2000.

[BGH"98] R. Breu, R. Grosu, F. Huber, B. Rumpe, and W. Schwerin. Systems,
views and models of UML. In M. Schader and A. Korthaus, editors, The
Unified Modeling Language, Technical Aspects and Applications, pages 93—
109. Physica Verlag, Heidelberg, 1998.

[BS00] M. Broy and K. Stelen. Specification and Development of Interactive Systems.
Springer, 2000. (to be published).

[CKM'99] S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, and A. Wills.
Defining UML family members using prefaces. In Ch. Mingins and B. Meyer,
editors, TOOLS’99 Pacific. IEEE Computer Society, 1999.

[DS00] P. Devanbu and S. Stubblebine. Software engineering for security: a roadmap.
In The Future of Software Engineering, 2000. Special Volume (ICSE 2000).

[EFLR99] A. Evans, R. France, K. Lano, and B. Rumpe. The UML as a formal mod-
eling notation. In J. Bezivin and P.-A. Muller, editors, The Unified Modeling
Language - Workshop UML’98: Beyond the Notation, LNCS. Springer, 1999.

[For99] UML Revision Task Force. OMG UML Specification 1.3. Available at
http : //www.omg.org/uml, 1999.

[GM82] J. Goguen and J. Meseguer. Security policies and security models. In Sym-
posium on Security and Privacy, pages 11-20. IEEE Computer Society, 1982.

[GPP98] M. Gogolla and F. Parisi-Presicce. State diagrams in UML: A formal seman-
tics using graph transformations. In M. Broy, D. Coleman, T. Maibaum, and
B. Rumpe, editors, PSMT’98. TU Miinchen, TUM-I9803, 1998.

[Huff99] H. HuBmann. Formale Beschreibungstechniken und praktische Softwaretech-
nik — eine ungliickliche Verbindung ? In K. Spies and B. Schitz, editors,
Formale Beschreibungstechniken ’99, pages 1-6. Herbert Utz Verlag, 1999.

[IT95] ITU-T. Z.120 B — Message Sequence Chart Algebraic Semantics. ITU-T,
Geneva, 1995.

[Jir00] Jan Jirjens. Secure information flow for concurrent processes. In
C. Palamidessi, editor, CONCUR 2000 (11th International Conference on
Concurrency Theory), volume 1877 of LNCS, pages 395-409, Pennsylvania,
2000. Springer.

[JirOla] Jan Jirjens. Object-oriented modelling of audit security — a smart-card case
study. 2001. submitted.

[JirO1b] Jan Jirjens. Principles of Secure Systems Design. PhD thesis, Oxford Uni-
versity Computing Laboratory, 2001. in preparation.

[Jir0lc] Jan Jirjens. Secrecy-preserving refinement. In J. Fiadeiro and P. Zave,
editors, Formal Methods Europe, LNCS. Springer, 2001. to be published.

[Low96] G. Lowe. Breaking and fixing the Needham-Schroeder Public-Key Protocol
using FDR. In Margaria and Steffen, editors, TACAS, volume 1055 of LNCS,
pages 147-166. Springer, 1996.

[Ove00] G. Overgaard. Formal specification of object-oriented meta-modelling. In
FASE2000, volume 1783 of LNCS. Springer, 2000.

[PSW*98] A. Pfitzmann, A. Schill, A. Westfeld, G. Wicke, G. Wolf, and J. Zollner. A
Java-based distributed platform for multilateral security. In IFIP/GI Work-
ing Conference ”Trends in Electronic Commerce”, volume 1402 of LNCS,
pages 52—64. Springer, 1998.

[RACHO00] G. Reggio, E. Astesiano, C. Choppy, and H. Hufimann. Analysing UML
active classes and associated state machines — A lightweight formal approach.
In FASE2000, volume 1783 of LNCS. Springer, 2000.

[RCA00] G. Reggio, M. Cerioli, and E. Astesiano. An algebraic semantics of UML
supporting its multiview approach. In D. Heylen, A. Nijholt, and G. Scollo,
editors, AMiLP 2000, 2000.

[RIJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, 1999.

[RWW94] A. Roscoe, J. Woodcock, and L. Wulf. Non-interference through determin-
ism. In ESORICS 94, volume 875 of LNCS. Springer, 1994.

[SP0O0] P. Stevens and R. Pooley. Using UML. Addison-Wesley, 2000.

