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Abstract

We present a locally finitely presentable category with a finitely presentable regular
generator G and a finitely presentable object A, such that A is not a coequal-
izer of morphisms whose domains and codomains are finite coproducts of objects
in G, thereby settling a problem by Gabriel and Ulmer. We also show that in A-
orthogonality classes in Alggs 7 (category of S-sorted 7-algebras) for a A-ary sig-
nature 7, A-presentable objects have a presentation by less than A\ generators and
relations and use this to exhibit an example of a reflective subcategory of a locally
finitely presentable category which is closed under directed colimits, but not a Ry-
orthogonality class, disproving a characterization of A-orthogonality classes in the
book by Addmek and Rosicky.
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Introduction

Notation and preliminary results are from (Addmek, Herrlich, Strecker [2])
and (Addmek, Rosicky [3]). Throughout, A will be a regular cardinal, and all
subcategories are considered to be full. For a concrete category C over Set
resp. Set® (the category of S-sorted sets) with free objects, |-| will denote the
usual forgetful functor (which we tend to leave out notationally), and Fg the
usual free functor. For better readability, terms and their term functions will
be notationally identified.
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Recall that an object A is called A-presentable if hom(A, _) preserves A-directed
colimits, and a category A is called locally A-presentable if it is cocomplete
and has a set A of A-presentable objects such that every object in A is a
A-directed colimit of objects from A (or equivalently, if it is isomorphic to a
category of models of a limit theory in the logic Ly, [3, ch 1.B,5.B]).

It is well-known that in a variety of A-ary algebras, the A-presentable objects
are precisely the algebras presentable by less than A generators and less than A
equations [3, 3.13]. We generalize the latter notion to more general categories:
First recall that a set G C ObC of objects in a cocomplete category C is a
regular generator if for every object X € ObC the canonical morphism

I I é-—x

Geg fehom(G,X)

factoring through the cocone of all morphisms f € hom(G, X) (G € G) is a
regular epimorphism [1]. Let C be a cocomplete category with a A-presentable
regular generator G. Call an object C of C A-G-presented if there exists a
coequalizer

e =16 —c

jeJ el

with G;,G; € G and card I, card J < A.

Let Algs 7 be the category of S-sorted total algebras for a A-ary signature 7,
and C a reflective subcategory closed under A-directed colimits. Note that a set
G of representatives (w.r.t. isomorphism) of the class { Fc X : X € SetSA1X <
A} is a A-presentable regular generator (where Fg is the usual functor send-
ing a set to the free algebra generated by it, and for X = (X,),cs € Set®

we define £X := Y- card Xj). In this situation call the A-G-presented objects
seES
A-presented.

Thus in varieties the A-presented objects are exactly the algebras presentable
by less than A generators and less than A equations in the usual way.

Gabriel and Ulmer prove in [5] the following characterization of A-presentable
objects in locally presentable categories with a A-presentable regular generator:

Proposition 1 ([5, 7.6]) Let C be a locally presentable category and G C
ObC a A-presentable reqular generator. Then the \-presentable objects are
exactly the retracts of A\-G-presented objects.

If, additionally, reqular epimorphisms are closed under composition in C, then
the A-presentable objects are exactly the A\-G-presented objects.



In [5, 7.7¢] Gabriel and Ulmer state that they do not know an example of a
locally presentable category C with a A-presentable regular generator G and a
A-presentable object A, which is not A-G-presented. An example of this kind is
provided in this note. In a category A, = Alg X of single-sorted total algebras
for some specific signature ¥ consisting of two nullary and countably many
unary operations we construct an X;-orthogonal, hence reflective, subcategory
C., such that

e C, isclosed under directed colimits in A, hence a locally finitely presentable
category with a finitely presentable regular generator G, := {Fc. X : X €
Set® A X < Ny}, and

e C, contains a finitely presentable object C' which is not finitely G,-presented.

We also show how to obtain an analoguous example of a category A =AlgQ
with a subcategory C and an object C' where ) consists of finitely many
finitary operations.

Since in any A-orthogonality class of a category Algs ™ with a A-ary signature
7 an object is A-presentable iff it is A-presented (Proposition 3, a general-
ization of the situation in (quasi-)varieties), this subcategory C, cannot be
an Ng-orthogonality class in A,. This disproves the first part of theorem |3,
1.39] stating that a subcategory of a locally A-presentable category is a -
orthogonality class iff it is reflective and closed under A-directed colimits.

1 Results

One easily obtains the following ”single-step” modification of the orthogonal-
reflection construction in [3, 1.37]:

Proposition 2 Let A be a cocomplete category and M C MorA a set of
morphisms with \-presentable domains and codomains. Then for every A €
ObA there exists a limit ordinal i, and a diagram (b;; : B; = Bj)i<j<i. such
that

[ ] BU o A
® bjiy1: Bi = Biyy fori <, is defined either by
- a pushout
M—"=M
hOL h1
B; bi,i+i Bi"'l

ofaspanBiéMgM’ with m € M, or by



- a coequalizer M’ :pj B; gt Biy1 of a pair (hg,hy) for which there exists
(m: M — M) e M with ho om = hy om.
o For every limit ordinal j < i, (bi; : B; = Bj)i<; is a colimit cocone for the
diagmm (bi,i’ . Bz — Bi’)igi’<j-
o For each i < i, bi;. is a M*-reflection arrow. In particular we have a
reflection arrow by,;, : A — B;,.

Thus the X-orthogonality class M* is reflective in A.
The next result generalizes the corresponding fact in (quasi-)varieties:

Theorem 3 Let C be a A\-orthogonality class in a category Algs T for a A\-ary
signature 7. Then an object is A-presentable in C iff it is \-presented in C.

PROOF.

«<: This follows directly from Proposition 1.

=-: By Proposition 1 every A-presentable object in C is retract of a A-presented
object in C, it is hence sufficient to show that in C the class of A-presented
objects in C is closed under coequalizers

Let FcoY - FCX fHB FCY = FcX — B and B B — A be C- coequal-
izers with ttX, 1Y, 81X < A (ﬁY < A is not needed) To show that A is

A-presented we apply Lemma 5 with (¢ : Fo(X + X) — B) := [hoe,koeé]
(the brackets denote the factorising morphism from the Coproduct - up to

an isomorphism) and obtain a coequalizer FcY' = —,> FcX' = B with X' < A

and Y < A, thus g(Y” +X_) < A, and morphlsms h,k: FeX — FcX' such
that € oh=hoéeand e ok =Fkoe (see (1)).

_ . LfR] coe’
Then Fo(Y' + X) == FcX' — A is a coequalizer in C: co €' is obviously

lg’ k]



epimorphic. Let a : Fc X' — A’ be given with ao [f',h] =ao[¢, k|.

FeY

FcY’

Since we have ao f' = ao ¢, there exists a : B — A’ with a o ¢’ = a. This
implies aohoé =aokoe, and soaoh = aok, since € is an epimorphism.
Thus there exists a : A — A’ such that a = aoc,i.e.a=aocoe.

Remark 4 One can also show that in a A-orthogonality class in a category
Algs 1 for a A\-ary signature T, the A-small objects are exactly the A-presented
objects (see [7]), where an object A is A-small if hom(A, _) sends \-directed col-
imits to episinks (as defined in [{]). For further characterizations of smallness
conditions on objects in categories of algebras, see [17].

Lemma 5 Let C be a A-orthogonality class in a category Algst for a A-ary
szgnature T. Let X,Y,X € Set’ with tX < X\, 1Y < X and tX < \. Let

FcY ,—> FcX — B be a coequalizer in C and (q FCX — B) € C.
Then there exist X’ Y’ € Set® with X' < A\, 1Y’ <\, Y CY' and X C X',
coequalizer FCY’ FCX’ < B in C and (¢  FoX — FcX') € C, such that



the following diagram commutes (let u_ be the universal morphisms):

PROOF. Let the conditions in the premiss of the above statement be ful-
filled and write A := AlggT.
There exists M C Mor A, such that the domain and codomain of every mor-

f e
phism in M are A-presentable and such that C = M*. Let FeY = Fe X — K
be the coequalizer in A. Set By := K and let the reflection B;, :g: B of K in
C be constructed as in Proposition 2. We have a colimit (b;;, : B; — B, )i<i.
in A of the diagram (b; j : B; = Bj)i<j<i., and for the objects B; constructed
from spans there exists a pushout in A

P p

2

fit Lf{

By supposition on M, we have Ri,R’ S~ S! e SetS, each of cardinality less
than A\, and coequalizers FARZ = FaS; il P; and FAR, = FAS’ it Plin A. Tt

is easy to see that R], S! can be chosen such that R; C R’ and S; C S;. Then
the following d1agram commutes, where the universal arrows u are w.l.o.g.
inclusions, as well as the arrows without labels. Let r;, r} be reflection arrows



and let e; :== R(b;j—1,. o fio ;) and €} := R(b;;. o f! o p}) for the reflector R.

Ri——R; (2)

UR.: Up!

FCSi <

B

For j < i, and b € B; we define i, := min{i < j : b € b;;[B;]} (note that
bj; = idB].). Then we either have 7, = 0, or in the reflection construction a span
belongs to i, (because in A A-directed colimit-sinks and regular epimorphisms
are (jointly) surjective). In the latter case it is easy to see that, by construction
of pushouts in A, there exist U, C B;,_; and V}, C FASZfb with card U,, card V, <
A (because 7 is A-ary), such that b = by, ;(x,) for some xy € (bsy,—1,4,[Us] U fi, ©
1, [Va]) B,

Now define recursively W, for ordinals a:

a=0: Wy :=qoug[X]

Successor ordinal: For any ordinal aset Wy := U UyU fi, o, [Si, ]-
beEWq:ip>0
Limit ordinal: For a limit ordinal § set W5 := U W,.
a<f

It is easy to see that the sequence of the WWj is stationary for 4 > A and that
card Wy < A. Hence for J := {i : b € Wy} (note 0 € J) and X' := [[ S} (with

jed
Sp := X)) we have cardJ < A and 1X’ < \. Set €' := ([e}]jes : Fc I S} — B)
jeJ

(with e, :=e).



We now define ¢ : FcX — FcX' as follows: Let z € uX[f(] C FcX. By
construction of J, we have ¢(x) € (U bji. © f} o pi[FaS}])5. Choose y, €
Fa 11 5} with [bj;. o f} o pjljer(y2) = Q( ) and set ¢'(z) = 7, (11 51 () (for

JjeJ Jj€J
the reflection arrow of Fa(II S})).
jeJ

So far we have shown that the following parts of the diagram in the statement
of the lemma commute:

T A FCX FcX
[\ / ‘
X' FoX' 5= B FoX'——B

If we can show that €’ is a strict epimorphism in C, it is even a regular epi-
morphism by [5, 1 4], i. e. we have V' € Set® and f', ¢’ € homg(FcY', FeX')

such that FcY' — 54 FCX’ — B is a coequalizer in C. Since B is A-presentable

by [3, 1.16], Y’ then can be chosen to satisfy cardY’ < A by [5, 6.6¢], and it is
easy to see that furthermore Y can be chosen such that the following diagram
commutes.

Yy —2 F Y%FCX

L]

Uy

Y'—=FcY' —/—=FcX'
g

So it remains to show:

Observation 5.1 ¢ is a strict epimorphism in C.

PROOF of Observation. ¢ = [e}];c; is an epimorphism, since e = e is
epimorphic. Let (b’ : Fe X' — A’) € C be given with

Vt,t' € MorC : (e ot =€ ot' = h ot =h'ot). (3)

For i € J set h} := h’ o; for the canonical ¢; : FeS! — Fc 11 S’ We need
Jje€J

h € homg(B, A) with hoe' = h’. We have h with

hoe="h o, (4)



because e = €’ 0 14 is the coequalizer of (f, g) and €' ogo f = €' 0150 g implies
h'owyo f=h ouogby (3).
Fe X

Lo e

Fc I S;—~B

It remains to show hoe’ = h'. We show by transfinite induction on k that for
every k € J we have h o e} or} = hj, or} (this is obviously sufficient).

k = 0: The statement holds by (4), because e = e;.

Induction step: Let k € .J; suppose we have h'or}; = hoe'or’ for each j € J
with j < k. We need to show hoej or, = hj or. For every z € Sy C Fa S,
we have, by construction of J, 2’ € Fao I S} with €'(rp, (11 S})(z')) =

k>jed =
e'(ri(2)) (where the canonical Fp [I S; — Fa [I S is w.lo.g. considered
k>jed jes
to be an inclusion.) By (3) this implies /'(rp, (1 ¢y(2')) = hy,(r}(2)), and
JjEJ
thus
h(ey(ri(2))) =h(e' (rpy (1 sy (2)
JjEJ
= h'(TFA( I1 s;)(zl))
JjEJ
= hi(rk(2))
using the induction hypothesis. Thus we have
hocioriop=Horop 5

(with the inclusion ¢ : Fao Sy < FaS},). Since ¢}, o r}, factorizes through g,
see (2)), we have e} or, ov;, = e} or) oo, which by (3) implies h}. or} ov, =

KOTE OV = €, 0T OOy kOTE OV
hj, o}, 0 0}.. Since . is the coequalizer in A of (v, 0y,), there exists h, such
that h o pj = hj, o). This implies

Bomkouk@fzou;ﬁogy

=hpor,op

Dhob. o flomoyp

2o by, o fy o my o iy



and thus Bon}k :szbk,i* o fr.omy, since p is an epimorphism. But A" L my,
then implies h = h o by ;, o f}, which again leads to

hyory=ho
1, ! /
=hobg,. o fi o
T ] ]
=hoe,ory.

To provide a solution to the problem of Gabriel and Ulmer we define categories
A, and C, and a C,-object C as follows:

e A,:=Alg¥ with ¥ := {p,0,k} U{p,:n €Ny} (0,0 nullary and &, ¢,
unary operations),

e C, is the full subcategory of A, consisting of those Y¥-algebras that satisfy
the following formulas:

(1) o=0= (EI!(xl,a:Q,xg, ))( A )((pn(xn) =0NK(Tpe1) = xn)

n>1

(2) (Vz,y) (()On(x) = n(y) = k() = H(y)) for each n > 1
Thus C, is the orthogonality class M+ for M := {q} U {g, : n € N5} where

e ¢: E — FE’is the (unique) morphism having domain E and codomain E’
where
- E is the quotient of the initial ¥-algebra 0 under the relation o = ¢ and
- E' is the Y-algebra given by generators ey, es, 3, ... and relations p = o,
and, for all n > 1, ¢, (e,) = 0 and k(ep11) = €,.
e q,: A, — Al (for each n > 1) is the obvious quotient morphism with
- A, the X-algebra given by generators a,b and the relation ¢, (a) = ¢,(b)
and

- Al the Y-algebra given by generators a, b and the relations ¢, (a) = ¢, (b)
and k(a) = k(b).

Also we define C' to be the Y-algebra given by generators ¢y, ¢s, c3,... and
relations ¢ = o, pa(c1) = ¢ and, for all n > 1, ¢, (c,) = 0 and K(cp11) = cp.
We note C' € ObC,.

Theorem 6 a) C, is reflective and closed under directed colimits in A,

hence a locally finitely presentable category with a finitely presentable regular
generator G, == {Fc. X : X € Set® A4X < Ny}, and
b) C is finitely presentable, but not finitely G.-presented in C,.

PROOF.
a) The second part follows from the first by the second part of [3, 1.39].

10



C. is reflective by [3, 1.37], because it is an R;-orthogonality class. We note
that ¢ is a reflection arrow.

C. is closed under directed colimits:

Let (d; : D; — A);er be the A,-colimit of a directed diagram (with mor-
phisms d;; : D; — D,) in C,. We need to show A € ObC,. We have
Ae{qg,:ne€ N>0}L, because Ng-orthogonality classes are closed under di-
rected colimits [3, 1.35]. So we are left to show that homa, (¢, A) is bijective.
One can show as in the proof of [3, 1.35] that homa, (¢, A) is surjective, be-
cause homa, (¢, D;) is surjective for each i, and for each m € M, domm is
finitely presentable.

So we have to show that homa_ (g, A) is injective:

Let f,g: E' — A be given with f oq = goq. To show f = g it is sufficient to
show that f(e,) = g(e,) for each n € N. For given n € N define [ : K — E' by
[(k) = en41, where K is the Y-algebra given by the generator k and relations
o=o and ¢, 1(k) = 0. K is finitely presentable in the variety A., because it
is finitely presented. Therefore we have i € I and f’, ¢’ such that d;o f' = fol
and d;og' =gol.

4

K——=D; (6)

g
[ ‘/di

v f
q/ | ———
E——F——

This yields

i1 (f'(k)) = f'(oni1(k) = f'(0) = 0= g'(0) = n11(g'(k)).

Now D; L q,y1 implies (f'(k)) = (¢'(k)), thus
flen) = f(r(ens)) = f(r(I(R))) = di(r(f'(k))) = di(r(g'(K))) = g(en).

b) The proof of this part in many places uses the fact that all operations in
Y are at most unary.

FE is finitely presentable in A, as a finite colimit of finitely presentable objects
by [3, 1.16], so its reflection E' is finitely presentable in C, (since C, is closed
under directed colimits). Since C' is the regular quotient of E' in C, by the
relation @po(e1) = ey, it is also finitely presentable in C,.

It remains to show that there exists no C,-coequalizer Fg Y —= Fe, X — C

with finite sets X,Y. Let (h : Fo.X — C) € MorC, with finite X; we will
show that A is not a regular epimorphism in C,.

Case 1: ¢; ¢ h[Fc.X]. Let ¢ : E' — C be the quotient morphism of the
A ,-coequalizer which exists because C' is the regular quotient of E’ in A, by

11



the relation @s(e1) = e;.

Claim 6.1 For every x € X there exists x' € E' with ¢(a') = h(z), such
that there exists no term t with t{py(er)) = o' (i. e. ' ¢ {(py(er))ar for the
A -subalgebra of E' generated by po(eq) ).

PROOF of Claim. Since c is surjective we have y such that c(y) = h(z).
Suppose there exists a term § with §(e;) = y. Let n be maximal such that
there exists a term @ with § = @ o ¢} (n exists, because terms of finitary
operations have only finite length). By maximality of n there exists no term t
with @ =t o . Let 2’ := @(e;). Then there does not exist a term £ with 2/ =
t{(2(1)), either, by construction of E': (e;)5 is given by the generator e; and
the relations ¢ = o and ¢ (e;) = p. Thus, for every term 7, £ o p,(ey) = #(e1)
in E' implies to gy = 4. O

The chosen z' define a morphism b’ : Fc, X — E'. By the way of choosing
the 2/, and because we have e; ¢ h[Fc, X| by assumption, we know that for
every y € h'[Fg,X] there is no term # with £(¢s(e;)) = y. The congruence of
¢ in A, is contained in the reflexive hull of

({(w5(er), 95" (e1) - mym € N}) oo

Thus c|ppg, x] is injective. Since by construction we have h = c o I/, this
implies

Vf,g € MorC, :(hof=hog=h'of="nog).

But A’ does not factor through h (we even have homg, (C, E') = (), because F’
has no go-fixpoint), i. e. h is not strict and thus not a regular epimorphism
in C,.

Case 2: ¢; € h[Fg, X]. Suppose that h is a regular epimorphism in C,. Let
N :={n € N5y : ¢, € h[Fc,X]}. N is non-empty by supposition and finite
because otherwise C' would be generated as a X-algebra by the finite h[X],
but C' is obviously not finitely generated. So n := max /N exists. Let h =
(Fe.X % h[Fc.X] <% C) be the (Surjective, Injective)-factorization of h in
A.,. It follows easily that 7 is a reflection arrow. Now consider the following

12



A ,-pushout P:

(where d is the unique morphism E — h[Fc X]). Since we have C, =
({q} U{qn : n € Ny })* one can consider P as the first step in the orthogonal-
reflection construction of R(h[Fg,X]) =2 C (for the reflector R) (see Propo-
sition 2). So by Proposition 2 we have a reflection arrow rp : P — C with
rpo f =1i. Now we have f(c;) ¢ g[E'] (because it is easy to see that otherwise
we would have ¢; € d[E], which is obviously not the case). In particular we
have g(cz) # f(ca).

We also have f(cz) ¢ (k[P])p": Since (f, g) is jointly surjective as a colimit-
sink in A,, it is sufficient to show that we have f(cz) ¢ (ko f o h[Fc, X]) and

flea) & (Ko g[E']).
e We have f(cp) ¢ (ko f oh[Fc,X]), because otherwise we would have

¢a =rp(f(ca)) € rp[(ko fohlFe, X])]C(korpo foh[Fc.X])
= (Ko hlFc.X]),

i.e. ¢y = tor(y) for some y € h[Fe, X] and some term #. This is easily seen
to imply y = ¢z41, contradicting the maximality of n.

e We have f(c;) ¢ (ko g[E']): Otherwise we would in particular have f(cz) €
glE"].

By the lemma below, g(cz) # f(cn) then implies rp(g(cn)) # rp(f(cq)), i. e.
we have two different elements a € C' with ¢z(a) = 0. But this contradicts

the injectivity of ¢ on C.

Lemma 6.1 Let ©+ € A € ObA,. If we have x ¢ (k[A])4*, then for every
y € A we have:

PROOF of lemma. The reflection B;, := RA of By := A is iteratively
constructed in A, from pushouts of spans, coequalizers of pairs and directed
colimits (see Proposition 2, also for the notation used in the following). We
prove the above implication inductively for each of these construction steps
by making use of the fact that every strictly decreasing sequence of ordinal

13



numbers has only finitely many members: Let 2,y € A with ¢ (k[A])4" and
ra(x) = ra(y). To obtain x = y we show that for every j < i, we have the
implication

bo,j(x) = bo,;(y) = Fi < j :boi(x) = bos(y)-
Let us first note that from = ¢ (k[A])4" it is easy to obtain inductively (via the

three construction steps and by definition of the ¢, ¢,) that for every i < i, we
have by ;(z) € B; \ (/@[Bi]>‘§i*. Now we show the above implication inductively:

e Pushouts of spans: Let

M=
hot hl
B bi,iJr:l Bisy

be the pushout of a span B; 2 M ™M with m € M. Let bii+1(boi(x)) =

bi,i+1 (bg’l(y)) We need to show b()’i(.'L') = bO,z(y)

- Suppose m = ¢. Since ¢ is injective and monomorphisms in A, are easily
seen to be pushout-stable, b; ; is injective.

- Suppose m = ¢, for some n € N. By construction of the pushout we
have bi,i—l—l(bﬂ,i(x)) = bi,i—l—l(bO,i(y)) iff bo,i(]}) = bO,z(y) or there exist ] €
N>o, 21, ...,2; € domg, such that

b()’i(l') = hg(l‘l) A Qn(xl) = qn(l'g) A ho(.’L'Q) = ho(l‘g) AN hg(.’L’j) = bO,z(y)

Suppose by ;(z) # bo;(y). W.l.o.g. the z, are mutually distinct: If we have

z, = z, for p > v, we can remove z,,...,x, from the list. But ¢,(z;) =

n(22) for 1 # 5 implies 2, = #(k(¢)) for some term £ und + € {a, b} C A,

and thus by ;(r) = ho(x1) € (k[B;]), contradicting the above observation.

e Coequalizers of pairs: Let M’ = B; flas B; .1 be the A,-coequalizer of a
h

pair (hg, hy) with hg o m = hy o m for some (m: M — M) e M. Let

bii+1(boi(x)) = biiv1(boi(y)). We need to show by ;(x) = bo,i(y)-

- Suppose m = ¢q: By construction of a coequalizer in A, we have
bi,i-l—l(bﬂ,i(x)) = bi,i—l—l(bO,i(y)) iff bo,i(]}) = bgﬂ(y) or there exist ] € NZI;
T1,...,2; € E' and vy, ...,v; € {0,1} such that

bo,i(®) = hu, (21) Aoy, (1) = huy (w2) Ao A hey (35) = boi(y)
(with the notation =0 := 1, -1 := 0).

Suppose we have the latter case. Since {e, : n € N} =
k[{e, : n € Nsi}| generates E' (as a Y-algebra), we have 2| € E'

14



—, —,

and a term 7 with #(k(2})) = 21, and thus by;(v) = h,, ({(x(2)))) =
t(k(h, (21)))-

- Suppose m = ¢, for some n € N: This case is clear, since ¢, is an epimor-
phism in A,, and so b; ;41 is an isomorphism.

e Directed Colimits: Let (bjo : B; — Ba)j<a be the colimit in A, of the
directed diagram (bj,j' : Bj — Bj’)j<a with 7 < a. Let bi,a(bO,i(x)) =
bio(bo,i(y)) Then there exists a j < o with ¢ < j, such that b; j(by;(z)) =
bi.j(bo,i(y)), because in A, directed colimits are concrete.

O

Remark 7 We now sketch how to modify the above example so that one needs
only finitely many finitary operations:
We define categories A and C as follows:

o A:=AlgQ with Q := {«a, 3,7,0} where « is binary, (3 is unary and v and
0 are nullary operations,

o C is the full subcategory of A consisting of those Q-algebras that satisfy the
following formulas:

(1) a(B"y,x) = a(B™7,y) = a(y,x) = aly,y) foralln > 1

(2) (3'($1, T2,3, )) (VTL > 1) (O‘(ﬁnf)/a xn) =7A O‘(fya xn-}—l) = l‘n)

Then we have a functor G, : A — A, assigning to each Q-algebra its %-
reduct, where X is viewed as a subset of the set of derived operations of Q2 in
the following way:

e p:=7,0:=90
o ki=al(,)
® Oy = O‘(ﬂn/% —)

Since we can view any X-algebra as a partial (2-algebra via the above identifi-
cations, we also have a functor F, : A, — A assigning to each Y-algebra A
the free Q-algebra over the partial Q-algebra corresponding to A (Grdtzer [6,
125)). ]

Let G.: C — C, resp. F.: C, — C be the restrictions of G, resp. F,. Then
G is right adjoint to F.. G. preserves directed colimits, thus F, preserves
finitely presentable objects. So C is locally finitely presentable: it is cocomplete
as a small-orthogonality class in A, and {Fg1} is a finitely presentable reqular
generator.

Now C := F.C is finitely presentable. Since it is easy to see that F, reflects
finitely presented objects, C is not finitely presented.

Corollary 8 There exists a subcategory of a locally \-presentable category

which s reflective and closed under \-directed colimits, but not a \-orthogonality
class.

15



Remark 9 e For a direct proof that the subcategory C of A in Theorem 6 is
not an Wy-orthogonality class, see [7].

o As I was told by Prof. Adimek and Prof. Rosicky after completion of this
work, they recently have been informed by M. Hébert that it is implicit in
[8] that a subcategory of a locally A-presentable category which is reflective
and closed under \-directed colimits, need not be a A-orthogonality class.

Problem 10 Characterize A-orthogonality classes in locally A-presentable cat-
egories by closure properties.
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