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ABSTRACT

We give a formal semantics for one of the main UML dia-
gram types for dynamical system behavior: statechart dia-
grams. This is the first semantics which explicitly models
message-passing between different diagrams. It therefore
lays a first foundation for executable UML modeling, allow-
ing whole systems of UML specifications (rather than single
diagrams) to be simulated.
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1. INTRODUCTION

The Unified Modeling Language (UML) [13] is an indus-
try standard for specifying object-oriented software systems.
Compared to other modelling languages, UML is rather pre-
cisely defined.

To reason about system behavior in a precise way, how-
ever, we need a precise (mathematical) semantics for the
behavioral model elements of UML. In the specification doc-
ument [15], a semantics for dynamic model elements is given
only in prose form, which leaves room for some ambiguities
and gives problems when trying to provide tool support.

There has in fact been some work towards providing a
formal semantics for behavioral UML diagrams (specifically,
our work extends the semantics given in [1] using Abstract
State Machines (ASMs)). However, so far it only provides
models for single UML diagrams seen in isolation. When
trying to give a precise mathematical meaning to whole
UML specifications (which is neccessary to provide tool sup-
port), one needs to be able to combine the formal models
for the different diagrams to give a coherent whole.

In this paper, we present work towards this goal. Specif-
ically, we provide a formal semantics for UML statecharts
which is the first to
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e model actions and internal activities explicitly (rather
than treating them as atomic given events), as well as
the operations and their parameters employed in them,

e provide message-passing between different diagrams,
including a dispatching mechanism for events and the
handling of actions, and thus

e allow whole specification documents be based on a for-
mal foundation, allowing to

e provide tool-support based on this precise semantics,
in particular allowing complete specifications to be
simulated, and

e ultimately provide the possibility of complete execut-
able UML specifications.

Note that the fact that events can carry parameters is also
one of the the major differences from Harel’s statecharts [15,
2-180] (which may be why so far it has not been addressed).

While the work here is to be seen within the context of
the greater approach which also deals with the other dia-
gram types (such as sequence diagrams) and which combines
them using UML packages (in particular subsystems), here
we can only give the case of statecharts, for space limita-
tions. However, since activity diagrams are just a special
case of statechart diagrams [15], they are also covered by
our semantics.

The more general motivation for this work is to widen
the impact of formalism on the actual software development
process, going beyond what traditional formal methods have
achieved in the context of industrial practice. Also, it al-
lows use of UML in contexts where a mathematically precise
modeling is indispensable (such as security-critical systems
[9, 10]).

In the following section, we give basic definitions of Ab-
stract State Machines needed for our semantics We then pro-
vide the semantics and give examples. We end with pointers
to related work, a conclusion and indication of future work.

2. ABSTRACT STATE MACHINES

We collect some central concepts. A state A of vocabulary
Voc(A) is a non-empty set X containing distinct elements
true, false, and undef together with interpretations of the
function names in Voc(A) on X. An ASM is executed by
updating its state iteratively by applying update rules:
f(3):=t updates f at the tuple 5 to map to the element .
if g then R else S If g holds, the rule R is executed,

otherwise S.



do — in — parallel Ry,..., R, enddo R; execute simulta-
neously, if for any two update rules f(3) := t and
f(3) :=t', we have t = t'; otherwise nothing changes.

seq R, S endseq R and S are executed sequentially.

loop v through list X R(v) iteratively execute R(z) for all
r € X.

casev of r; :do R;
case distinction.

T, :do R, else S execute by

An abstract state machine consists of a set of states and an
update rule. It is executed by iteratively firing the update
rule.

2.1 Interactive ASMs

We use ASMs to specify components of a system that
interact by exchanging messages which are dispatched from
resp. received in multi-set buffers (output queues resp. input

queues).
The set MsgINm of message names consists of finite se-
quences of names ni.ns. . ... ny where ni,...n,_o are names

of ASM systems (to be defined below), nx_; is a name of
an interactive ASM, and ny, is the local name of the mes-
sage. The idea is that a message ni.ns..... ng will be deliv-
ered as the message with name n; to the ASM with name
ni_1 which is part of the (iteratively nested) sequence of
ASM systems ng—_s2,...,n1. We assume a set Exp of ex-
pressions as given. Given a set of message names M C
MsgNm, we write Events for the set of terms of the form
msg(expi,...,exp,) where msg € MsgNm is an n-ary
message name and exp1,...,exp, € Exp are expressions.

We define Args(m) def [exp1, ..., expy] to be the list of its
arguments of m = msg(expu,...,exrp,), and msgname(m)

def msg to be the name of its message. For multi-sets, we
write { } . For two multi-sets M and N, M & N denotes
their union and M \ N the subtraction of N from M.

Definition 1 An interactive ASM (A,in,out) is given by
an ASM A and two sets in and out of multi-set names con-
tained in the signature of A, such that the rules in A change
the multi-sets in out only by adding elements, unless they
are also in in.

Here, each interactive ASM A has two rules, Initialize (A)
and Main(A), and is executed by first firing Initialize(A)
and then iterating Main(A) a finite number of times.

Definition 2 The input/output behavior of an interactive
ASM (A, inQueue(A),outQueue(A)) is a function [A] from
finite sequences of multi-sets of events to sets of finite se-
quences of multi-sets of events defined as follows. Given a
sequence Ii,...,I, of multi-sets, the execution of the fol-
lowing ASM rule defines a value for outlist(4) depending on
the resolution of possible choice rules in A. [A](I1,...,I5)
is defined to be the set of possible contents of outlist(A).

Rule IO(A)
seq outlist(S) := 0
Initialize(A)

loop i through list [1...n]
seq inQueue(A) := inQueue(A) W I;
Main(A)
outlist(A) := outlist(A4).outQueue(A)
outQueue(A) :=0

endseq
endseq

3. FORMAL SEMANTICSFOR UML

Objects, and more generally components in a system, can
communicate by exchanging messages. These consist of the
message name and arguments. The set of message names
MsgNm is partitioned into sets of operations Operation,
signals Signal, and return messages Return. For each op-
eration op € Operation there is a return signal return,, €
Return. The set Events consists of messages msg(expi,

..,expy) for msg € MsgNm and exp; € Exp. We model
sending a message msg = op(expi,...,expn) € Events
from an object S to an object R as follows:

(1) The object S places the message R.msg into its multi-
set outQueue(S).

(2) A scheduler distributes the messages from out-queues
to the intended in-queues (while removing the message
head); in particular, R.msg is removed from
outQueue(S) and msg added to inQueue(R).

(3) The object R removes msg from its in-queue and pro-
cesses its content.

We write Action for the set of actions which are expres-
sions of the following forms:

Call action: callyy(a,,....a,,) for an m-ary operation op €
Operation and expressions a; € Exp (called the ar-
guments of op).

Send action: send;g(a,,....a,,) for an n-ary signal sig €
Signal and argument a; € Exp.

Return action: sendretym,,(o) for an operation op €
Operation with return value a € Exp.

Assignment: att := exp where att € Attribute is an at-
tribute and exp € Exp an expression.

Void action: nil

We fix a set Activity whose elements represent the ac-
tivities that may be used or explained in a UML specifica-
tion. We assume that it contains an element nil € Activity
representing absence of activity. We assume that for every
activity actv € Activity there is an associated ASM rule
ActvRule(actv). The activity nil has the associated ASM
rule that sets finished to true.

4. STATECHART DIAGRAMS

For readability, we give the formal semantics for state-
charts that are simplified as follows (our semantics can how-
ever be extended straightforwardly to the general case).

e Events can not be deferred.
e There are no history states.

e Transitions may not cross boundaries within or out-
with composite states; transitions from composite states
must be completion transitions.



4.1 Abstract Syntax of Statechart Diagrams
We will define the abstract syntax of statechart diagrams.
A statechart diagram D = (Objectp,Classp,Statesp,

Initialp, Transitionsp) is given by an object name Objectp, a

class name Classp, a set of states Statesp, an initial state

Initialp, and a set of transitions Transitionsp. Statesp is a set

of tuples S = (name(S), kind(S), entry(S), init(S), state(S),

internal(S), exit(S)) where

e name(S) is the name of the state,

e kind(S) € {initial, final, simple, concurrent, seq}
entry(S) € Action is called the entry action,

init(S) € Statesp U {undef} is the initial substate,

state(S) C Statesp is the set of substates of S,

internal(S) € Activity is the internal activity,

exit(S) € Action is the exit action,

under the following conditions:

e for states S,7 € Statesp with S # T we have
name(S) # name(T') and state(S) Nstate(T) = 0,

e VS € Statesp.init(S) € state(S) A S ¢ state(S),

e kind(S) € {initial, final, simple} = state(S) =0,

e if kind(S) € {initial, final}, we have entry(S) = nil,
internal(S) = nil, and exit(S) = nil

e kind(S) € {concurrent, seq} = internal(S) = nil,

e if kind(S) = concurrent, we have init(S) = undef.

Transitionsp is a set of tuples ¢ = (source(t),event(t),

guard(t), action(t), target(¢), intern(¢)) where
e source(t) € Statesp is the source state of t,

event(t) € Events is the triggering event of ¢,
guard(t) € BoolExp is a Boolean expression,
action(t) € Action is an action,
target(t) € Statesp is the target state of t, and
intern(t) € Bool is a Boolean.

event(t) must be of the form op(expi,...,exp,) € Events
where expi,...,exp, € Var are variables (called parame-
ters), which must be mutually distinct. As in [3], we assume
a special event ComplEv € Events (with no parameters) and
call a transition ¢ with event(t) = ComplEv a completion
transition. If intern(t) = true then ¢ is called an internal
transition, otherwise it is called external. Transitions from
initial states must have the guard true. Final states can not
have outgoing transitions. Multiple completion transitions
leaving the same state must have mutually exclusive guard
conditions. We assume that return messages are given ex-
plicitly in the diagrams.

4.2 Behavioral semantics

We give a semantics extending the one in [1]. According to
our aims, we add mechanisms to model actions and internal
activities explicitly (rather than treating them as atomic
given events), as well as the operations and their parameters
employed in them, and to provide message-passing between
different diagrams, including a dispatching mechanism for
events and the handling of actions.

We fix a statechart diagram D modeling an object O ef
Object, and give its behavioral semantics as an interactive
ASM ([D]*¢,inQueue(0), outQueue(0)).

The signature of [D]°“ consists of the following names:

e the set name currState (storing the set of currently
active states),

e the multi-set names inQueue(O), outQueue(O) (the in-
put resp. output queue),

e the function name trigsusy() mapping each operation
name to the object or subsystem that last sent it (to
allow sending back return values),

e the function name finished (mapping states to Boolean
values, indicating whether a given state is finished),
and

e all variables names in event(t) for all ¢ € Transitionsp.

The Boolean finisheds may be set to true at the end of an
ASM interpretation ActvRule(internal(S)) of an internal
activity at state S to indicate that S is finished.

The formal interpretation of the actions (when executed
by an object O) is given by ASM rules of the following form:

Call action: We define the ASM rule:

Rule ActionRule(callopargs])
outQueue(O) := outQueue(O) W {opo[args]}

Send action: We define the ASM rule:

Rule ActionRule(sendc)
outQueue(O) := outQueue(O) W {e}

Return action: We define the ASM rule:

Rule ActionRule(sendetumn,,,(a))
outQueue(0) :=
outQueue(O) W {trigsusy(op).return,,(a)}

Assignment: att := exp is interpreted (trivially) by the
ASM rule

Rule ActionRule(att := exp)
att := exp

Void action: nil is interpreted as the ASM rule skip.

State machines process one event at a time and finish all
consequences before processing the next event. There are se-
mantic variation points wrt. dispatching events and choosing
between conflicting transitions, which in our semantics are
left open (following [3]). In accordance with the UML spec-
ification, among conflicting transitions with nested source
states those transitions with the innermost source state have
priority.

The ASM [D]°¢ has two rules, SCInitialize(D) and
SCMain(D), given below (both are defined using other
rules defined in the rest of the subsection). The former rule
initializes the variables of the ASM. The latter rule consists
of selecting the event to be executed next (where priority is
given to the completion event) and executing it, and then
executing the rules for the internal activities in a random
order.

Rule SClnitialize(D)

do — in — parallel
inQueue(Object ) := 0
outQueue(Object,) := 0
currState := {Initialp }
finishedinitial , := false

enddo



Rule SCMain(D)
seq if Completed # ) then eventExecution(ComplEv)
else choose ¢ : e € inQueue(Objectp,)
seq inQueue(Object ) := inQueue(Objecty,) \ {e}
if e = 0psender[args] € Operationthen seq
e := oplargs] trigsusy(e) := sender endseq
eventExecution(e)
endseq
loop S through set currState
seq finisheds := false
ActivityRule(internal(S))
endseq
endseq

Here Completed is a syntactic macro as follows:

{S € Statesp : (3t € Transitionsp.source(t) = S
Aevent(t) = ComplEv) A
(kind(S) = initial V finisheds
V (kind(S) € {seq, concurrent}
A VT € state(S) N currState.kind(T") = final)})

The macro eventExecution(e) (for an event e) is defined as
follows:

eventExecution(e) =
choose t : t € FirableTrans(e)
if intern(trans) then execEv(trans,e,)
else
seq
exitState(source(t))
execEv(t,e)
enterState(target(t))
endseq

FirableTrans(e) is defined as follows.
For any transition ¢ we define enabled(t, ComplEv) L
if the following conditions are fulfilled (otherwise it is false):
e event(t) = ComplEy,
e guard(t) is true,
e source(t) € currState,
e source(t) € Completed.

For any transition ¢ and any event e # ComplEv we define

enabled(t, e) 4 true if the following conditions are fulfilled
(otherwise it is false):
e the operation or signal names of event(t¢) and e coin-
cide: msgname(event(t)) = msgname(e),
e guard(t) evaluates to true when its variables are sub-
stituted with the arguments of e,
e source(t) € currState,

Given an event e, the nesting of states induces a total
order < on the set of transitions such that enabled(t, ) holds,
by defining ¢; < t» if the source state of ¢, is a (possibly
nested) substate of the source state of t>. Let FirableTrans(e)
be the set of transitions ¢ with enabled(¢, e) that are minimal
wrt. < (the set of enabled transitions with the innermost
state).

We define the macro exitState(S) for a state S:

exitState(S) =
do — in — parallel
if state(S) N currState # 0

sender: Sender

send(d)
Wait Send

Figure 1: Sender

then
loop T through set state(S) N currState
exitState(S)
else do — in — parallel
currState := currState \ {S}
ActionRule(exit(S))
enddo
enddo

The macro execEv(t,e) (for a transition ¢ and an event e)
is defined as follows:

execEv(t,e) =
seq
Args(event(t)) := Args(e)
ActionRule(action(t))
endseq

We define the macro enterState(S) for a state S:

enterState(S) =
do — in — parallel
currState := currState U {S}
ActionRule(entry(S))
if kind(S) = seq then currState := currState U {init(S)}
else currState := currState U state(S)
enddo

4.3 Example

The statechart sender given in Figure 1 is interpreted by
the interactive ~ASM  ([sender]®,inQueue(sender),
outQueue(sender)) whose main behavior is equivalent to
that given by the following rule.

case currState of
{Initialsender } : do currState := {Wait}
{Wait} : do
choose ¢ : e € inQueue(sender)
do — in — parallel
inQueue(sender) := inQueue(sender) \ {e}
if msgname(e) = send then
do — in — parallel
currState := {Send}
d := Args(e)
enddo
enddo
{Send} : do
do — in — parallel
currState := {Wait}
outQueue(sender) := outQueue(sender)
W{transmit(d)}
enddo



5. RELATED WORK

There has been a considerable amount of work towards
a formal semantics for various parts of UML; a complete
overview has to be omitted. [4] discusses some fundamen-
tal issues concering a formal foundation for UML. [11, 12]
gives an approach using algebraic specification. [2] uses a
framework based on stream-processing functions. [7] em-
ploys graph transformations. [14] gives a semantics for use
case diagrams based on the process algebra CCS. Finally, [1]
uses ASMs. There has been a lot of work on formal meth-
ods for object-orientation in a more general setting beyond
UML, cf. e.g. [6, 5].

6. CONCLUSION AND FUTURE WORK

To conclude, the formal semantics for UML statechart di-
agrams presented here seems to provide a significant further
step towards formal modeling of complete UML specifica-
tions, going beyond the formal models of single diagrams
in isolation presented so far. Since our semantics is the
first semantics to explicitly model actions, internal activi-
ties, operations with their parameters, message-passing be-
tween different diagrams and event dispatching, it provides
a first foundation for executable UML modeling. For space
reasons, we only present the semantics for a simplfied kind
of statecharts; the extension to the full definition of UML
statecharts gives increased complexity, but no problems in
principle.

While this work has already been extended to the other
UML diagrams (such as sequence diagrams), this has to be
left out here for space reasons.

The ultimate goal is to allow whole systems of UML spec-
ifications (rather than single diagrams) to be simulated.
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