Architectural Design of a Broadcasting System using UML-RT

Ingolf Kriiger, Wolfgang Prenninger, Robert Sandner *

Technical University of Munich, D-80290 Munich, Germany
email: {kruegeri | prenning | sandnerr}@in.tum.de

Abstract

UML-RT provides graphical description techniques for modeling important aspects of
software architectures for reactive and embedded real-time systems. One of its short-
comings is its restriction to binary communication links between components. Here, we
show how to integrate the notion of broadcasting into architectural design with UML-RT.
We introduce both a variant of sequence diagrams for graphically modeling broadcasting
interaction patterns, and methodological guidelines for the systematic transformation of
scenarios captured using these diagrams into a structural model for the system under
development.

1 Introduction

The definition of an adequate software architecture is one of the decisive steps in the de-
velopment process for complex distributed and reactive systems. In our view a system’s
software architecture comprises three central ingredients: the (hierarchical) decomposi-
tion of the system into components, the precise specification of the relationships (also
called interfaces) between these components, and the forces and constraints that govern
the chosen decomposition and definition of component relationships (cf., for instance,
[BMR 196, DW98, Kru99] for other definitions of this term).

Given the importance of defining an adequate software architecture two key challenges
arise: 1.) how to transfer the requirements, constraints, and forces captured for the system
under consideration into a matching set of subcomponents with corresponding interfaces
and connections, and 2.) how to document the selected architecture in a precise, yet
transparent way such that the idea behind the architecture can be easily communicated
to the developers of the system?

While these two challenges exist for architectural descriptions of arbitrary systems,
embedded real-time systems typically pose additional problems; examples are the man-
ifestation of requirements at timing behavior, of resource limitations, as well as of the
underlying infrastructure for component communication within the software architecture.

UML-RT[SR98, Lyo98], a sequel to ROOM[SGW94], has been suggested as a notation
for representing hierarchical structural decomposition, asynchronous binary component
interactions via clear interfaces, and individual component behavior. The corresponding
graphical description techniques available in UML-RT are capsule (and class) diagrams,
sequence diagrams, and a subset of the UML’s statecharts. These are significant aids in
capturing important architectural aspects, and thus help addressing the second of the key
challenges mentioned above.

*Our research was supported by the DFG within the priority program “SoftSpez” (SPP 1064) under project
name InTime.

However, the binary communication model underlying UML-RT has its disadvantages
in modeling real-world examples in the technical and embedded systems domain. Con-
sider, for instance, the multicast and broadcast communication frequently used in auto-
motive systems, avionics, and in mobile communications. This raises the question whether
UML-RT is also an adequate means for architecture specifications despite its lack of ex-
plicit support for broadcasting.

In the remainder of this text we show how to use UML-RT effectively in developing
software architectures for broadcasting systems; in particular, we will introduce system-
atic steps for performing the transition from captured requirements to a corresponding
initial software architecture. Along the way we will cover two major topics. First, in Sec-
tion 4, we introduce a new notation (similar to Message Sequence Charts and the UML’s
sequence diagrams) for capturing component interaction especially in broadcasting sys-
tems. Second, in Section 5, we show how to derive the major system components and
their interaction behavior schematically from the captured interaction requirements.

We use the running example of Section 2, an autonomous transport system, to illus-
trate our approach. In Section 3 we briefly introduce the component model underlying
UML-RT.

2 Running Example: Broadcasting Architecture of an
Autonomous Transport System

As the running example for illustrating our methodological approach we use an au-
tonomous transport system within a production plant. The purpose of this system is
to ensure that workpieces are transferred from their present location to another where
the next production step is then carried out. In the beginning, fresh workpieces reside in
an “in store”. Workpieces whose processing is finished are transported to an “out store”.
Machine tools perform the actual processing of workpieces. Whenever a machine tool is
free it requests to obtain a workpiece, which is then delivered by an autonomous vehicle
(termed “holonic transport system”, or “HTS” for short).

Machine tools and HTSs use broadcasting to negotiate the delivery of a workpiece: a
machine tool broadcasts its requests to all HTSs; the HTSs, in turn, broadcast their offer
(an estimate on how long it takes them to satisfy the request). Finally, the machine tool
broadcasts which HTS has “won the deal”.

Status * Database

1

WorkPiece

1 _ 1
. 1
@lneﬂ)ol HTS
0-1 1
1
Storage ProdProg
1
‘ InStorage ‘ ‘ OutStorage
1 1 ‘ 1

CommunicationSystem ‘

Figure 1: domain model

The domain model of Figure 1 captures the mentioned entities, as well as a few ad-
ditional ones, in the form of a UML-RT class diagram. The entire production is driven

by a production plan, modeled by class ProdProg. This plan defines, among others, the
required daily throughput of workpieces. The classes Database and Status model the
storage of information about the HTSs’ and machine tools’ view of the current state of
the production process. The destination of an HTS to pick up a workpiece is captured by
class Location. Job is the class for modeling the pick-up tasks negotiated between ma-
chine tools and HTSs. We take class CommunicationSystem as the explicit architectural
manifestation of the requirement to use broadcasting in the binary communication model
of UML-RT. This domain model is the starting point for deriving an initial architecture
(cf. Section 5).

3 The component model of UML-RT

In this section we give a rather dense overview of the modeling concepts of UML-RT.
We refer the reader to [SR98] to obtain a more detailed understanding of the (syntactic)
transfer from ROOM via UML to UML-RT.

UML-RT constitutes a merge of the ideas behind ROOM[SGW94] and the notation
included in the UML[Rat98]. The key additions of UML-RT wrt. what is known from the
UML are

1. hierarchic components as central elements applicable in the entire range from logical
analysis to technical design and implementation,

2. a transparent non-technical notion of interfaces, defining the binary communication
protocols for the interactions of components,

3. a clear communication concept: interaction between components proceeds exclu-
sively via asynchronous signal exchange along binary communication links,

4. a clear notion of concurrency - all components are potentially active units, operating
independently from all others, and

5. predefined access to the timing mechanisms of an underlying real-time operating
system.

UML-RT achieves these additions essentially by means of three modeling elements:
capsules, ports, and connectors. A capsule (graphically denoted by a box labeled with
the capsule’s name) represents a potentially active component in UML-RT whose com-
munication with its environment proceeds by means of asynchronous signal exchange via
its ports. A port (graphically denoted by a small filled or outlined square on the bound-
ary of a capsule box) is an interface object defining the role of the capsule it belongs to
within a communication protocol. Connectors (graphically denoted by a line between two
port symbols) establish binary communication links between different ports, and define
the protocol carried out on this link. A protocol in UML-RT consists of a set of signals
sent and received along a connector. The port defined to play the role of the sender or
receiver in the binary protocol is graphically represented by a filled or outlined square,
respectively. The receiver role is sometimes also called the conjugated role wrt. the sender
role of the protocol.

Capsules can nest hierarchically to arbitrary depth; an enclosing capsule communicates
with its sub-capsules also via ports and connectors just as it does with its environment.
There is no means for accessing sub-capsules directly from the environment of their con-
tainer. The behavior of each capsule must, in particular, conform to the protocol roles
the capsule commits to via its port definitions.

Consider the capsule diagram of Figure 2, which displays capsules for the HTSs, the
stores, and the machine tools as an exemplary subset of the entities contained in Figure

CommunicationSystem

[] mstorage

Figure 2: capsule diagram

1'. Each member of this set is a sub-capsule of CommunicationSystem. Every HTS has
connectors to each of the stores, as well as to every machine tool, with corresponding
ports. Moreover, there exist connectors between the HTSs and their container; similar
connections exist for the machine tools and the out store. The ports of the container are
graphically indicated by outlined squares containing filled circles.

Clearly, the restriction to binary communication protocols is a limitation especially in
the context of complex technical and embedded real-time systems. In the following sec-
tions we describe how to model broadcasting communication effectively in the framework
set up by UML-RT’s component model.

4 Sequence Diagrams for Broadcasting

Of particular importance in defining an adequate architecture is the precise description of
component interaction. UML-RT employs UML’s Sequence Diagrams (SDs) in a rather
loose and methodologically unfounded way. Yet, these SDs provide no notational means
for dealing with broadcast communication. In this section, we show how SDs can easily
be extended to model broadcast communication as well as binary communication. To
discuss the extension, let us consider an application scenario of the autonomous transport
system. Figure 3(a) shows the simplest case of the negotiation of a transport task.

Just as in classical SDs labeled, vertical axes represent part of the behaviour of the
corresponding components. By means of labeled horizontal arrows we indicate communi-
cation via asynchronous communication. Labeled boxes denote local actions of a compo-
nent. Reading the diagram from top to bottom determines an order on the interactions
occurring among the components over time.

Broadcast communication is modeled by a communication line without arrow head.
An outlined circle marks the originator of the message and filled circles mark the receivers
of the message. This allows us also to model multicast communication. More complex
scenarios, such as messages by multiple senders or iterated protocols, can be modeled
using standard SD syntax such as decomposition of components or the loop construct?.
By this notation we make explicit the presence of and the participants in the broadcast
communication. We abstract from concrete implementation details, such as individual
communication delays between originator and recipients of a message.

In Figure 3(a), a machine tool announces an order using broadcast communication.
Each HTS stores the order in its local database which serves as a basis for the calculation
of the price within the locally performed action compute bid. In our example scenario,

'We have used the syntax of ROOM which deviates only slightly from that of UML-RT, but is so far better
supported by corresponding tools.

“Note that scenarios are interpreted as exemplary interaction patterns in the sense of [Krii00a, Krii00b]. In
particular, they are not interpreted as a complete behavior specification.

only one HTS announces a bid for the order and finally, the machine tool ends the ne-
gotiation after a certain time. Figure 3(b) shows a combination of broadcast and binary
communication which occurs during the execution of a transport: When the HTS arrives
at a machine tool to pick up a workpiece, it sends a request to the machine tool, which re-
sponds by a release message. Finally, the HTS announces the picking up of the workpiece
by means of a broadcast message.

m: MachineTool h:HTS :HTS
[[
[Order(jobno) m: MachineTool h:HTS :HTS
1 1
j createJob] createJob -
drive to
[compute bid | compute bjd location1
I requestWP
jBid(jobno) >
releaseWP
JEndOfNegotiation(jobno) > "Transporting(job o) |
update j update
update update
JobStatus Jobstatus j JobStatus j Jobstatus
_— - - -
(a) Scenario for order negotiation (b) Scenario for picking up a workpiece

Figure 3: Broadcast SDs

The semantics of the new communication construct can be easily embedded into the
semantics of “normal” SDs: Each broadcast line corresponds to a set of messages, each
directed from the originator to one recipient.

5 From MSCs to capsules and protocols

In this section we suggest a method for developing structure diagrams using the knowledge
about our system gained during requirements analysis and expressed via the domain
model and the SDs of Section 4. We show how capsules, connectors and protocols can
be derived systematically and discuss the embedding of broadcast communication using
these concepts. The model we obtain can serve as a starting point for the development
of a system design, which can be completed, generalized and optimized by subsequent
refinement steps. The advantage of the proposed procedure is that we obtain consistency
with the requirements analysis by construction.

We start with an overview of the steps which have to be performed to get a first
sketch of a structure diagram. We assume that, starting from the domain model, the
active components have been identified already during domain analysis. The procedure
consists of three phases: First, the capsules of the system are defined (steps 142, below).
Second, protocols are derived from the SDs (step 3). Third, the protocols are assigned to
ports which are linked by connectors (steps 4+5). The methodical steps are as follows:

1. Create a capsule for each class which appears in the SDs as an axis.

2. Create a container capsule which contains the capsules from step 13. This container
acts as the mediator for broadcast messages.
3. (a) Create a binary protocol for each pair of capsules which exchange messages in
SDs and include all respective messages into this protocol.

3This step can be omitted if the container capsule is predefined already.

(b) If necessary, create an individual protocol for each capsule which uses broadcast
communication.

4. Assign to each capsule its respective ports associated with the respective protocol
roles.

5. Establish a connector between any two ports derived from binary communication
protocols; establish a connector between any port derived for broadcasting and the
container capsule.

Steps 3 through 5 are straightforward for binary communication: After protocol gen-
eration we just need to create a port for each protocol role and link the conjugated ports
by connectors. Unfortunately, we cannot use connectors in such a straightforward way for
broadcast communication, because in general there are more than two capsules involved?.
We discuss two possibilities for a workaround to map broadcast communication to binary
communication: The first one is to introduce a new capsule BC explicitly, which handles
the broadcast communication. Therefore every capsule role which uses broadcast commu-
nication has to be connected to the role of capsule BC. As a consequence there will be a
clutter of connectors. For that reason we do not follow this path further. The second one
— which we use here — is that the broadcast communication is handled implicitly by the
behavior of a container capsule. Each capsule which is involved in broadcast communi-
cation is equipped with a port connecting it to its container capsule. This approach has
several advantages. It enables a compact way of modeling, and it also supports dealing
with changing system configurations gracefully: The model need not be changed if we
change the number of HTS components in the system, even dynamically.

By means of our running example we illustrate the methodological steps introduced
above: We derive the capsules HTS, InStorage, OutStorage and MachineTool (step 1).
These capsules are embedded into a container capsule called CommunicationSystem (step 2).
For the generation of a protocol, let us consider the handshake communication HTS
MachineTool. From the SDs, the binary protocol Request (tab. 1(a)) is created. The cor-
responding protocol for the machine tool is easily derived by conjugation of this protocol,
i.e. the exchange of send and receive messages. Analogously we proceed with other pairs
of communicating capsules (step 3a). For broadcast communication we consider every

Request BroadcastHTS

send: request WP send: requestProdPrg
receive: releaseWP send: jBid(jobno)

send: requestPlace send: jTransporting(jobno)
receive: releasePlace send: jFinished(jobno)

receive: requestProdPrg

(a)

receive: jFinished(jobno)

(b)

Table 1: protocols

capsule and create an individual binary protocol for each capsule. These protocols con-
tain the messages which the capsule under consideration sends and which it can receive,
i.e. all broadcast messages. Table 1(b) shows the protocol BroadcastHTS as an exam-
ple. As discussed above the ports derived to map broadcast protocols to sets of binary
protocols will be connected to the container capsule which will perform the broadcast
message passing (step 3b). Every capsule gets its ports associated to base/conjugated

4in our example there are three: HTS, MachineTool and OutStorage

roles of appropriate protocols, e.g. capsule HTS gets ports associated to the base role of
Request, BroadcastHTS and other protocols which we omitted here for simplicity (step
4). Finally the connectors between the related handshake ports and between broadcast
ports and container capsule are added (step 5). The result is a first prototype of the
system’s structure diagram. Clearly, we have to adjust the cardinality of the capsule roles
HTS and MachineTool to their required number, as given in a concrete instance of the
system. The resulting structure diagram is shown in Figure 2.

6 Conclusions and Outlook

In this paper, we have presented an approach which facilitates the incorporation of broad-
cast communication into the modeling of architectural design using UML-RT. We have
shown how to integrate the notation of broadcasting into architectural modeling with
UML-RT. This notation of broadcast SDs is flexible enough to model both broadcast and
multicast communication and can easily be embedded into the standard semantics of SDs.

We have also introduced methodological guidelines for a schematic transformation
of interaction requirements into prototypical structure diagrams. These diagrams are
ideally suited to serve as a starting point for the design of the system to be developed
because they guarantee consistency with the requirements analysis by construction. They
can be refined in subsequent development steps: For example, new messages can be
introduced or entire interaction protocols can be reorganized in order to develop more
general capsule interfaces. A structuring of these development steps can be based on
formal notions of refinement, even supported with guidance given by constructive rules
(see for instance [Krii0Oa]). Furthermore, by using our SD variant, we open potential
for applying fully automatic transformation techniques (such as [KGSB99]) for deriving
individual component behaviour from sets of interaction patterns.

The approach of using container capsules to model broadcasting fits seamlessly with
a hierarchical structuring following the Composite design pattern [GHJV95]. Therefore,
it shows potential for scaling well to complex applications. The introduction of such
a hierarchical mediation concept also eases the separation of different communication
paradigms within a single system architecture. We refer the reader to [KPSO01] for a
detailed discussion of these concepts.

References

[BMR*™96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. A System of Patterns. Pattern-Oriented Software Architecture.
Wiley, 1996.

[DW9g] Desmond D’Souza and Alan Cameron Wills. Objects, Components, and
Frameworks with UML- The Catalysis Approach. Addison Wesley, 1998.

[GHIV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements od Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-Wesley Publishing Company, New
York, NY, 1995.

[KGSB99] Ingolf Kriiger, Radu Grosu, Peter Scholz, and Manfred Broy. From MSCs to
statecharts. In Franz J. Rammig, editor, Distributed and Parallel Embedded
Systems, pages 61-71. Kluwer Academic Publishers, 1999.

[KPS01] Ingolf Kriiger, Wolfgang Prenninger, and Robert Sandner. Development of an
autonomous transport system using UML-RT. Technical report, Technische
Universitdt Miinchen, to appear, 2001.

[Kru99]
[Krii00a]

[Krii00b]

[Lyo98]

[Rat98]
[SGW94]

[SR9S]

Philippe Kruchten. The Rational Unified Processs. An Introduction. Addison
Wesley, 1999.

Ingolf Kriiger. Distributed System Design with Message Sequence Charts. PhD
thesis, Technische Universitdt Miinchen, 2000.

Ingolf Kriiger. Notational and Methodical Issues in Forward Engineering
with MSCs. In Tarja Systé, editor, Proceedings of OOPSLA 2000 Work-
shop: Scenario-based round trip engineering. Tampere University of Technol-
ogy, Software Systems Laboratory, Report 20, 2000.

A. Lyons. UML for Real-Time Overview. Objectime Ltd., April 1998. http:
//www.objectime.com/otl/technical/umlrt.html.

Rational. UML Notation guide, version 1.3. January 1998.

Bran Selic, Garth Gullekson, and Paul T. Ward. Real-Time Object-Oriented
Modeling. Wiley, 1994.

B. Selic and J. Rumbaugh. Using UML for modeling complex real-time sys-
tems. http://www.objectime.com/otl/technical, April 1998.

