
Translation of Textual Specifications to Automata by
Means of Discourse Context Modeling

Leonid Kof

Fakultät für Informatik, Technische Universität München,
Boltzmannstr. 3, D-85748, Garching bei München, Germany

kof@informatik.tu-muenchen.de

Abstract. [Context and motivation] Natural language is the main presentation
means in industrial requirements documents. In such documents, system behavior
is specified either in the form of scenarios or in the form of automata described in
natural language. The behavior descriptions are often incomplete: For the authors
of requirements documents some facts are so obvious that they forget to mention
them; this surely causes problems for the requirements analyst.
[Question/problem] Formalization of textual behavior description can reveal de-
ficiencies in requirements documents. Formalization can take two major forms: it
can be based either on interaction sequences or on automata, cf. survey [1]. Trans-
lation of textual scenarios to interaction sequences (Message Sequence Charts, or
MSCs) was presented in our previous work [2–4]. To close the gap and to provide
translation techniques for both formalism types, an algorithm translating textual
descriptions of automata to automata themselves is necessary.
[Principal ideas/results] It was shown in our previous work that discourse con-
text modeling allows to complete information missing from scenarios written in
natural language and to translate scenarios to MSCs. The goal of the approach
presented in this paper is to translate textual descriptions of automata to automata
themselves, by adapting discourse context modeling to texts describing automata.
[Contribution] The presented paper shows how the previously developed con-
text modeling approach can be adapted in order to become applicable to texts
describing automata. The proposed approach to translation of text to automata
was evaluated on a case study, which proved applicability of the approach.

Key words: requirements analysis, behavior extraction, behavior modeling, nat-
ural language processing

1 Requirements Documents Suffer from Missing Information

At the beginning of every software project, some kind of requirements document is
usually written. The majority of these documents are written in natural language, as
the survey by Mich et al. shows [5]. This results in the fact that the requirements docu-
ments are imprecise, incomplete, and inconsistent, because precision, completeness and
consistency are extremely difficult to achieve using mere natural language as the main
presentation means. From the linguistic point of view, document authors may introduce
three defect types, without perceiving them as defects, cf. Rupp [6]:1

1 The following definitions are translations of the definitions from [6], in German

Deletion: “. . . is the process of selective focusing of our attention on some dimensions
of our experiences while excluding other dimensions. Deletion reduces the world
to the extent that we can handle.”

Generalization: “. . . is the process of detachment of the elements of the personal mo-
del from the original experience and the transfer of the original exemplary experi-
ence to the whole category of objects.”

Distortion: “. . . is the process of reorganization of our sensory experience.”

The authors of requirements documents are not always aware of these document
defects. Even documents that are precise from the human point of view can omit some
facts relevant for behavior specification. The goal of the presented paper is to translate
texts to automata despite such defects.

According to Boehm [7], the later an error is found, the more expensive its cor-
rection. Thus, it is one of the goals of requirements analysis, to find and to correct
the defects of requirements documents. Our previous work [2–4] focused on defects
in scenarios, specially on the “deletion” defects. The goal of the previous work was to
identify missing parts of scenarios written in natural language and to produce Message
Sequence Charts (MSCs) containing the reconstructed information. The key idea was to
model the discourse context and to infer the missing parts of scenarios from the context.
In the case of MSCs, the discourse context model included the set of messages that are
sent but not yet answered.

According to our survey of modeling techniques [1], all modeling techniques are
either interaction-based (MSC-like) or automata-based. Similarly, texts describing sys-
tem behavior fall in the same two categories: They either specify scenarios (interaction
between system components) or give textual description of automata. The goal of the
approach presented in this paper is to translate automata-based textual descriptions to
automata. Together with our previous work, this provides extraction of both model types
from textual documents. It turns out that, in the case of automata, the discourse context
model is simpler than for MSCs and contains only a default initial state for incompletely
specified state transitions (see Section 3 for details).
Contribution: The presented paper shows how the idea of discourse context modeling
can be transferred to texts describing automata. It shows that a different approach to
context modeling, even simpler than the approach developed to translate textual sce-
narios to MSCs, is sufficient to translate textual descriptions of automata to automata
themselves.
Outline: The remainder of the paper is organized as follows: Section 2 introduces the
case study used to evaluate the presented approach. Section 3 is the technical core of the
paper, it presents and evaluates the approach to translate texts to automata. Sections 4, 5,
and 6 present an overview of related work, the summary of the paper, and possible
directions for future work, respectively.

2 Case Study: The Steam Boiler

Authors of requirements documents tend either to forget facts that seem obvious to them
or they are reluctant to precisely specify the context in which their statements apply.
This is quite natural, and is just a part of the human process of focusing attention onto

facts that seem most important at the moment of writing. This results in the problem
that even precise specifications, as for example the Steam Boiler Specification [8], used
in the presented work, cannot be analyzed on the sentence level.

The Steam Boiler Specification was chosen for the case study, as it was the standard
benchmark for several case studies aiming to compare different formalization meth-
ods [9]. This specification describes the steam boiler itself and states the requirements
to the control program for the steam boiler. The steam boiler system consists of four
pumps to provide the steam boiler with water, one controller for every pump, a device
to measure the water level in the steam boiler, and a device to measure the quantity of
steam coming out of the steam boiler. The goal of the control program is to maintain the
water level between predefined marks, in order to prevent damage of the steam boiler.
This water level should be maintained even in case of certain equipment failures. In the
case of equipment failures, water levels between certain emergency marks are allowed.
Water levels above/below emergency marks cause steam boiler damage.

The control program for the steam boiler should support a number of modes: initial-
ization mode, normal mode, degraded mode, rescue mode, and emergency stop mode.
For every mode, the specification describes the required program reactions to different
operation situations. An example set of rules, applicable in the normal mode, is shown
in Table 1. It is easy to see that it makes no sense to analyze every sentence of the
specification separately: Some sentences, as for example Sentence 1, Sentence 3, and
Sentence 7, do not contain any explicit behavior specification. Others contain behav-
ior information, but cannot be directly translated to state transitions, as they specify
the state after the transition only. The initial state, normal mode, is common for all
transitions and remains unspecified in the sentences describing transitions. Every such
omission is a “deletion” defect in the sense of the definitions given in Section 1. The
goal of the presented paper is to translate texts to automata despite such defects.

In spite of the fact that separate analysis of every sentence is insufficient even for
the relatively well-written Steam Boiler Specification, the existing approaches trans-
lating textual specifications to models analyze every specification sentence separately
(cf. Section 4). It is the goal of the presented work, to capture context information in
order to complete information not explicitly mentioned in sentences specifying state
transitions.

Table 2 shows the required behavior of the control program, manually constructed
on the basis of the specification. This manually constructed automaton will be used to
evaluate the proposed text-to-automaton translation procedure in Section 3.

3 Translation of Texts to Automata

The process of text-to-automaton translation is motivated by the already tested and
validated algorithm for text-to-MSC translation presented in [2–4]. The process of text-
to-MSC translation consisted of three steps:

– identification of communicating objects,
– splitting of every sentence into segments,

Table 1. The steam boiler, specification excerpt (copied from [8])

Normal mode

1. The normal mode is the standard operating mode in which the program tries to maintain
the water level in the steam-boiler between N1 and N2 with all physical units operating
correctly.

2. As soon as the water level is below N1 or above N2 the level can be adjusted by the
program by switching the pumps on or off.

3. The corresponding decision is taken on the basis of the information which has been
received from the physical units.

4. As soon as the program recognizes a failure of the water level measuring unit it goes
into rescue mode.

5. Failure of any other physical unit puts the program into degraded mode.
6. If the water level is risking to reach one of the limit values M1 or M2 the program enters

the mode emergency stop.
7. This risk is evaluated on the basis of a maximal behaviour of the physical units.
8. A transmission failure puts the program into emergency stop mode.

Fig. 1. Automaton for steam boiler control, manually constructed

– for every segment, translation of the segment to an MSC element. An MSC element
can be either a message between two communicating objects or an assertion about
system state.

The process of text-to-automaton translation follows similar steps: First, the set
of potential states is determined. Then, every sentence is split into segments. Finally,
segments are translated either to state transitions or to transition conditions. These steps
are presented in Sections 3.1-3.3. Section 3.4 presents the results of the evaluation of
the presented text-to-automaton translation on the Steam Boiler Specification.

To stay robust, the presented approach uses solely a part-of-speech (POS) tag-
ger [10] on linguistic side and does not use more sophisticated techniques like Dis-
course Representation Theory (DRT) [11], as the use of techniques like DRT would
render the approach highly fragile.

Table 2. Automaton for steam boiler control, manually constructed

Initial mode Target mode Transition condition
initialization initialization message steam-boiler-waiting not yet received
initialization emergency stop unit for detection of the level of steam is defective
initialization emergency stop failure of the water level detection unit
initialization normal all the physical units operate correctly
initialization degraded any physical unit is defective
initialization emergency stop transmission failure
normal rescue failure of the water level measuring unit
normal degraded failure of any other physical unit
normal emergency stop the water level is risking to reach one of the limit values
normal emergency stop transmission failure
degraded normal defective unit repaired
degraded rescue failure of the water level measuring unit
degraded emergency stop the water level is risking to reach one of the limit values
degraded emergency stop transmission failure
rescue normal water level measurement unit repaired
rescue degraded water level measurement unit repaired
rescue emergency stop the unit which measures the outcome of steam has a failure
rescue emergency stop the units which control the pumps have a failure
rescue emergency stop the water level risks to reach one of the two limit values
rescue emergency stop transmission failure

3.1 Identification of States

In our previous work [2–4] it was shown that the algorithm for text-to-MSC translation
that inspired the presented work is highly sensitive to the proper definition of the set of
communicating objects. Thus, it was to expect that the presented algorithm for text-to-
automaton translation is sensitive to the proper definition of the set of states.

Identification of states is necessary for later decision whether to translate a particular
sentence segment to a state transition. As a first approximation, it is possible to manually
extract the names of the states explicitly listed in the text. However, this set of states can
be incomplete. In our case study, this incompleteness resulted in missing transitions in
the extracted automaton, cf. Section 3.4.

The name of a state can consist of several words, like “emergency stop mode”. Fur-
thermore, the same mode can be called, for example, both “emergency stop mode” and
“mode emergency stop” in the specification text. To automatically extract the different
forms of the mode names, the following procedure was applied:

– The whole text was tagged by a part-of-speech (POS) tagger. The applied tag-
ger [10] has a precision of about 97%, which makes it unlikely to be an error source.

– Following tags were considered: (1) tag “VBD”, identifying verbs in the past par-
ticiple form (“been”, “done”), (2) any tag starting with “NN”, identifying different
noun forms, and (3) tag “JJ”, identifying adjectives

– Following patterns were extracted from the tagged text:
• Word “mode”, followed by any number of substantives (like in “mode|NN
rescue|NN”), adjectives (like in “mode|NN normal|JJ”), or verbs in the
past participle form (like in “mode|NN degraded|VBD”).

• Any number of substantives, adjectives, or verbs in the past participle form,
followed by the word “mode”.

Technically, the extraction of the above patterns from the tagged text was performed
by the application of the UNIX tool grep with the following regular expressions:
• mode|NN ([ˆ|]*|(NN|VBD|JJ))+
• ([ˆ |]*|(NN|VBD|JJ))+ mode|NN

Here it is important to emphasize that the signal word “mode” used to identify state
names, is specific to the Steam Boiler Specification. For other specification texts,
it is necessary to provide other signal words or to use other extraction techniques:
For example, in [4] the names of modeling elements were identified as subjects of
sentences having particular grammatical features.

The above procedure resulted in the extraction of the word sequences shown in
Table 3. This table contains not only the states explicitly defined in the document, but
also noise, “standard operating mode”. However, as the case study has shown,
this noise can be compensated for when constructing the automaton (cf. Section 3.4).

Table 3. Automatically extracted states

“mode”, followed by other words: mode emergency stop, mode normal, mode rescue, mode
degraded

“mode”, preceded by other words: initialization mode, emergency stop mode, normal mode,
standard operating mode, rescue mode, degraded mode

The procedure to extract the potential states of the automaton by extracting the
named entities with the signal word “mode” was sufficient for the steam boiler case
study. In general, it is easy to extend the procedure by adding further signal words. Fur-
thermore, it is possible to integrate the above procedure with grammar-based methods
from [4]. Applicability of every particular method depends on the writing style of the
concrete document.

3.2 Categories of Sentences

One of the prerequisites for the text-to-automaton translation is the assignment of every
(sub)sentence to one of the four categories: “state transition”, “transition condition”,
“context setting”, or “irrelevant”, cf. Section 3.3. The assignment of sentence segments
to categories takes place in the following steps:

1. Splitting of every sentence to segments
2. Assignment of segments to categories on the basis of grammatical information only
3. Re-assignment of segments to categories, by using context information

Each of these steps is described below.
Sentence splitting: To split sentences, just the following assumption is made: punctu-
ation marks are correctly placed to separate subsentences. The splitting process itself is
rather simple. Punctuation symbols and the words “if” and “when” are used as splitting

marks. Additionally, the conjunctions “and” and “or” are used as splitting marks, un-
less they directly follow an adjective or a number. This heuristics prevents splitting of
expressions like “if the water level lies between N1 and N2, . . . ”. A splitting example
is shown in Table 4.

Table 4. Splitting example

Original sentence
as soon as this signal has been received, the program enters either the mode normal if all the
physical units operate correctly or the mode degraded if any physical unit is defective

Splitting
1. as soon as this signal has been received
2. the program enters either the mode normal
3. all the physical units operate correctly
4. the mode degraded
5. any physical unit is defective

Assignment of segments to categories on the basis of grammatical information: On
total, we differentiate four classes of sentence segments:

– Segments translated to transitions, like “the program enters either the mode nor-
mal” in the example in Table 4. Such segments are called “state transition” in the
remainder of the paper.

– Segments translated to transition conditions, like “as soon as this signal has been
received” in the example in Table 4. Such segments are called “transition condition”
in the remainder of the paper.

– Segments that are not translated to any element of the automaton, but setting the
context for the subsequent segments, like the first sentence in Table 1. Such seg-
ments are called “context setting” in the remainder of the paper.

– Segments that are irrelevant for the text-to-automaton translation, like the third sen-
tence in Table 1. Such segments are called “irrelevant” in the remainder of the paper.

Identification of the four segment classes is possible on the basis of the POS tags
and the previously extracted set of states. The identification consists of two phases. In
the first phase, every sentence segment is marked on its own. In the second phase, the
decision of the first phase is revised by taking the neighbors of the analyzed segment
into account. In the first phase, the assignment of the sentence segment to one of the
four classes is fairly simple:

– If the sentence segment does not contain any reference to a state (element of the
extracted set of states), it is marked as “irrelevant”. This holds, for example, for the
first segment in Table 4.

– If the sentence segment contains a reference to a state, but first occurrence of the
state is not preceded by a verb, this segment is marked as “context setting”. A word
is considered as a verb if the POS tagger assigns a tag starting with “VB” to this
word. For example, in Table 1, the header (“normal mode”) and the first sentence
set the context for the translation of the following sentences.

– Otherwise, the sentence segment is marked as “state transition”.

Here it is important to emphasize that in the first phase no sentence segment is marked
as “transition condition”.
Re-assignment of segments to categories, by using context information: To take
context into account, it is necessary to revise the “context setting”-marks first. For ex-
ample, the fourth segment in Table 4 is marked as “context setting” in the first phase,
although it actually specifies a state transition. Here, the following heuristics is applied:
If, for a given sentence, any of its segments is marked as “state transition”, then all seg-
ments marked as “context setting” are relabeled to “state transition”. This compensates
for potentially missing verbs in some sentence segments. In the case of the example
shown in Table 4, it marks the fourth segment as “state transition” and leaves the other
marks unchanged.

When the marking of segments as “state transition” is finished, it is possible to
identify transition conditions:

– If a sentence segment is marked as “irrelevant” and directly precedes a segment
marked as “state transition”, then the former segment is relabeled to “transition
condition”. This allows to mark the first segment of the example in Table 4, “as
soon as this signal has been received”, as “transition condition”.

– After the above step, if a sentence segment is marked as “irrelevant” and directly
precedes a segment marked as “transition condition”, the former segment is rela-
beled to “transition condition”. This allows to treat compound conditions, like “if
message A or message B is received,. . . ”.

– If a sentence segment is marked as “irrelevant” and directly follows a segment
marked as “state transition”, then the former segment is relabeled to “transition
condition”. This allows to treat conditions like “〈some transition〉 if 〈some
condition〉”.

– After the above step, if a sentence segment is marked as “irrelevant” and directly
follows a segment marked as “transition condition”, the former segment is relabeled
to “transition condition”. This allows to treat compound conditions, like “〈some
transition〉 if 〈some condition〉 or 〈some other condition〉”.

When this relabeling process is finished, we have enough information to translate the
text to an automaton.

The process of sentence splitting is purely syntactic, which is its major advantage:
this makes sentence splitting independent of writing style of a particular document au-
thor. Furthermore, this allows to treat grammatically different types of conditions, like
“if something happens” and “as soon as something happens”, in a uniform way.

3.3 Context Modeling and Generation of Transitions

When every sentence segment is assigned to one of the four classes (“state transition”,
“transition condition”, “context setting”, or “irrelevant”), we can use this information
to translate the text to an automaton. The actual text-to-automaton translation exploits
the fact that sentence segments marked as “context setting” or “state transition” always
refer to a state. The translation algorithm sequentially goes through the marked sentence
segments. Depending on the sentence segment class, it performs the following actions:

– Segments marked as “irrelevant” are ignored.
– If the translation algorithm comes across a sentence segment marked as “context

setting”, the state contained in this segment becomes the default initial state for the
transitions generated afterwards.

– If the translation algorithm comes across a sentence segment marked as “state tran-
sition”, then several transitions are generated. The initial state of the transitions is
always the current default initial state (context), the target state is the state taken
from the “state transition” segment under analysis. The transitions conditions de-
pend on the neighbors of the segment under analysis:
• If the “state transition” segment under analysis is followed by a contiguous

block of “transition condition” segments, then a state transition is generated for
every segment from the “transition condition” block. The textual representation
of every “transition condition” segment becomes a transition condition in the
generated automaton.

• If the “state transition” segment under analysis is preceded by a contiguous
block of “transition condition” segments, and the “state transition” segment
under analysis is the first “state transition” segment of its sentence, then a state
transition is generated for every segment of the “transition condition” block, in
the same way as above.

• If no state transition can be generated due to the above two rules, the translation
algorithm re-analyzes the current “state transition” segment and extracts the
word sequence preceding its main verb. The word sequence preceding the main
verb becomes the transition condition. This allows to handle constructions like
“a transmission failure puts the program into the mode emergency stop”. In this
case, “a transmission failure puts” becomes the transition condition, cf. Table 5.

• If all the above rules fail, a transition with an empty transition condition is
generated.

By inferring the initial states of transitions, the presented algorithm visualizes presup-
positions of the document author. This can be used for validation, in particular to proof
whether the document author and the document reader interpret the specification in the
same way.

The generated automaton is flat: it contains neither parallel nor nested states. Gen-
eration of such constructions would require deep semantic analysis, going far beyond
capabilities of the existing linguistic tools.

The above rules were implemented in a Java program. This program generates au-
tomata represented as table, like Table 2 or Table 5. At the moment, the generated
transition conditions are represented in natural language, and are not automatically an-
alyzable. In the long run, the presented approach should be integrated with the approach
by Gervasi and Zowghi [12]. Gervasi and Zowghi can translate conditions written in a
restricted natural language to logical formulae. This translation would allow to perform
further analysis of the automata, like for example completeness of input coverage.

3.4 Evaluation

Three case studies were performed to evaluate the presented approach. The case studies
were performed on the same text, namely on Section 4 of the Steam Boiler Speci-

fication [8]. This section describes the required behavior of the steam boiler control
program. This section was manually cut out of the document and submitted to the text-
to-automaton translation.

The case studies differed in the definition of the states:

1. In the first case study, the algorithm for text-to-automaton translation was provided
with the set of states explicitly listed in the following specification sentence:

The program operates in different modes, namely: initialization, normal,
degraded, rescue, emergency stop.

Thus, the translation algorithm was provided with the following set of states: “ini-
tialization mode”, “normal mode”, “degraded mode”, “rescue mode”, “emergency
stop mode”.

2. In the second case study, the algorithm for text-to-automaton translation was pro-
vided with the automatically extracted set of states shown in Table 3. The state
name “standard operating mode” was manually removed from the set, as
it does not represent a real state of the control program.

3. In the third case study, the algorithm for text-to-automaton translation was again
provided with the automatically extracted set of states shown in Table 3. In contrast
to the second case study, however, “standard operating mode” was not
removed from the set.

The first case study produced the automaton shown in Figure 2(a). When compared with
the manually constructed automaton, shown in Figure 1, the automaton in Figure 2(a)
definitely lacks several state transitions.

The second and the third case studies produced the same automaton, shown in Fig-
ure 2(b) and Table 5. Interestingly, the state “standard operating mode” did
not result in any additional state transitions in the third case study. As the output algo-
rithm ignores such standalone states, this state is not presented in Figure 2(b).

(a) Translation with explicitly mentioned states (b) Translation with automatically extracted
states, cf. Section 3.1

Fig. 2. Automaton for steam boiler control, automatically extracted

To evaluate the text-to-automaton translation, we compare the manually constructed
automaton with the generated one. If we compare the graphical representations, i.e. Fig-

Table 5. Automaton for steam boiler control, automatically extracted

Initial mode Target mode Transition condition
initialization emergency stop the unit for detection of the level of steam is defective – that is,

when v is not equal to zero – the program enters
initialization emergency stop the program realizes a failure of the water level detection unit it

enters
initialization normal all the physical units operate correctly
initialization degraded any physical unit is defective.
initialization emergency stop a transmission failure puts
normal rescue as soon as the program recognizes a failure of the water level

measuring unit it goes
normal degraded failure of any other physical unit puts
normal emergency stop the water level is risking to reach one of the limit values m1 or

m2 the program enters
normal emergency stop a transmission failure puts
degraded normal once all the units which were defective have been repaired, the

program comes
degraded rescue as soon as the program sees that the water level measuring unit

has a failure, the program goes
degraded emergency stop the water level is risking to reach one of the limit values m1 or

m2 the program enters
degraded emergency stop a transmission failure puts
rescue degraded as soon as the water measuring unit is repaired
rescue normal
rescue emergency stop it realizes that one of the following cases holds: the unit which

measures the outcome of steam has a failure,
rescue emergency stop the units which control the pumps have a failure,
rescue emergency stop the water level risks to reach one of the two limit values.
rescue emergency stop a transmission failure puts
emergency stop emergency stop the program stops.

ure 1 with Figure 2(b), we see that the automata coincide, except for the loop in the
“initialization” mode in Figure 1 and the loop in the “emergency stop”
mode in Figure 2(b). Manual analysis of the steam boiler specification shows that the
behavior in the emergency stop mode is underspecified. It can be interpreted both as
a loop and as its absence: “once the program has reached the emergency stop mode,
the physical environment is then responsible to take approrpiate actions, and the pro-
gram stops”. As for the loop in the “initialization” mode, its extraction requires
semantic analysis, going beyond the capabilities of the available linguistic tools. This
loop stems from the sentence “the program enters a state in which it waits for the mes-
sage steam-boiler-waiting to come from the physical units”. It is not yet possible for
linguistic tools to interpret the word “wait” as a state loop. Hard-coding generation of
loops for words like “wait” would make the approach highly dependent on the writing
style and would make generalization extremely difficult.

If we compare the table representations, Table 2 and Table 5, we see that they co-
incide except for the already discussed loops, if we ignore phrasings for the transition
conditions. Furthermore, due to the applied sentence splitting algorithm, transition con-
ditions in Table 5 are sometimes grammatically incomplete. A closer analysis shows

that the transition conditions in Table 2 and Table 5 are semantically equivalent and
differ in their lexical representation only. The only exception is the transition from the
rescue mode to the normal mode that lacks a transition condition. This transition orig-
inates from the sentence “as soon as the water measuring unit is repaired, the program
returns into mode degraded or into mode normal”. The exact transition condition to
“mode normal” is not specified. In Table 2 it was just guessed that the transition
conditions to “mode normal” and “mode degraded” coincide.

Anyway, none of the automata, neither the manually constructed nor the automat-
ically extracted can be directly used for further system development. Both automata
rather serve to visualize the specification and thus to ease its validation. For this reason
differences in lexical representations of transition conditions are unimportant.

To summarize, the presented approach to text-to-automaton translation is able to
translate texts about automata to automata themselves and the translation result is pre-
cise enough to be used for behavior validation.

4 Related Work

Ryan [13] claimed that natural language processing is not mature enough to fully au-
tomate requirements engineering. In the same paper he admitted, however, that natural
language processing can be useful to support human analysts. There was a lot of work
aiming to support human analysts in recent years.

There are three areas where natural language processing is applied to requirements
engineering: assessment of document quality, identification and classification of appli-
cation specific concepts, and analysis of system behavior. Approaches to the assessment
of document quality were introduced, for example, by Rupp [6], Fabbrini et al. [14],
Kamsties et al. [15], and Chantree et al. [16]. These approaches have in common that
they define writing guidelines and measure document quality by measuring the degree
to which the document satisfies the guidelines. These approaches have a different focus
from the approach presented in this paper: their aim is to detect poor phrasing and to
improve it, they do not target at behavior analysis.

Another class of approaches, like for example those by Goldin and Berry [17], Ab-
bott [18], or Sawyer et al. [19] analyzes the requirements documents, extracts applica-
tion specific concepts, and provides an initial model of the application domain. These
approaches do not perform any behavior analysis, either.

The approaches analyzing system behavior, as for example those by Vadera and
Meziane [20], Gervasi and Zowghi [12], and Avrunin et al. [21] translate requirements
documents to executable models by analyzing linguistic patterns. In this sense they are
similar to the approach presented in this paper. Vadera and Meziane propose a procedure
to translate certain linguistic patterns into first order logic and then to the specification
language VDM, but they do not provide automation for this procedure. Gervasi and
Zowghi go further and introduce a restricted language, a subset of English. They auto-
matically translate textual requirements written in this restricted language to first order
logic. The approach by Avrunin et al. is similar to the approach by Gervasi and Zowghi
in the sense that it introduces a restricted natural language. The difference lies in the
formal representation means: Gervasi and Zowghi stick to first order logic, Avrunin et

al. translate natural language to temporal logic. The presented paper goes further than
the above two approaches, as the language is not restricted, and the assumptions about
phrasing are minimal: It is solely assumed that punctuation marks are correctly placed.

To summarize, to the best of our knowledge, there is no approach to requirements
documents analysis, that is able to analyze documents written in non-restricted lan-
guage, model context information and use this context modeling to complete the infor-
mation missing from the text when translating the text to an executable model.

5 Summary

The approach presented in this paper automates parts of the step from requirements
documents to design. Despite minimal assumptions about the structure of the sentences
to be translated, the approach is effective, which was shown in case studies. The transla-
tion of texts to design imitates the way how human analysts would model the discourse
context. This context model is then applied to infer information not explicitly stated in
the behavior specification.

The presented approach relies, in its pure form, on the writing style of the Steam
Boiler Specification. Under following assumptions, it can be generalized and applied to
other specifications too:

The set of system states is known: In the presented work, the set of states was ex-
tracted from the specification, but, in general, it is possible to provide the approach
with a predefined set of states. It is important that the provided set of states be
complete: if a state is missing, some sentences may be wrongfully identified as “ir-
relevant” instead of “context setting” or “state transition”, which would definitely
hurt the correctness of the generated automaton. Presence of noise states (“standard
operating mode” in the presented case study), however, can be compensated for, as
long as the noise states do not occur in sentences identified as “state transition”.

Sentences describing state transitions contain a reference to the target state, as in
“if . . . , the system goes into 〈target state〉”. Given that the initial state of a state
transition can be inferred from the context, this allows to extract a complete state
transition.

Context setting is stated explicitly, either in paragraph titles or in describing senten-
ces like “〈context state〉 is the state in which . . . ”

Comma setting is correct: “if 〈condition〉, then 〈action〉” or “〈action〉 if 〈condition〉”.

Before being used in the further development process, the generated behavior model
has to be validated. Validation is necessary for at least two reasons:

– The original requirements document can contain inconsistencies or omissions.
– The applied linguistic tools do not offer 100% precision, and errors introduced by

the linguistic tools may interfere with the presented heuristic for automata con-
struction.

Validation of the produced automaton can make apparent the ambiguities or omissions
in the document, not perceived by a human analyst. Validation of the automaton be-
comes especially valuable if the automaton generated by the presented approach radi-
cally differs from the manually constructed automaton. This can mean that the require-
ments text has several interpretations and thus should be made more precise before

used in the further development steps. When the generated automaton is validated, it
can be used in the further development process. Thus, the presented approach makes a
contribution both to document improvement and validation and to the transition from
requirements to design.

6 Future Work

The approach presented in this paper is a proof-of-concept that discourse context mod-
eling can be successfully applied to translate specification texts to behavior models. It
can be further developed in different directions. First of all, the case study used to eval-
uate the approach was relatively small. A larger case study would allow more signifi-
cant conclusion about the precision of the proposed approach. Secondly, the generated
transition conditions, as for example those shown in Table 5, sometimes contain un-
necessary words. This problem arises from the fact that it is not possible to determine
the boundaries of the subordinate clauses without parsing the sentence. In the presented
work, mere part-of-speech (POS) tagging was applied instead of parsing, as POS tag-
ging is much more precise (97% precision for tagging [10] vs. approx. 80% for pars-
ing [22]). To combine the advantages of both technologies, the presented approach can
be augmented in such a way that POS tagging is used for the actual text-to-automaton
translation and parsing is used to determine clause boundaries. In this way it is possible
to generate better transition conditions.

To validate the generated automata, a technique similar to CREWS-SAVRE [23]
can be applied: In the original version of CREWS-SAVRE, a sequence of events is
taken as input, and, for this sequence, questions like “What happens if the specified
event does not occur?” are generated. In a similar way, for every state transition of
the generated automaton, we could generate questions like “What happens if the input
signal necessary for the transition does not occur?”, “What happens if the input signal
necessary for the transition occurs several times?”, etc.

Developments sketched above would further improve the presented approach and
make it industrially applicable.

References

1. Kof, L., Schätz, B.: Combining aspects of reactive systems. In: Ershov Memorial Confer-
ence. Volume 2890 of LNCS., Springer (2003) 344–349

2. Kof, L.: Scenarios: Identifying missing objects and actions by means of computational lin-
guistics. In: 15th IEEE International Requirements Engineering Conference, New Delhi,
India, IEEE Computer Society Conference Publishing Services (2007) 121–130

3. Kof, L.: Treatment of Passive Voice and Conjunctions in Use Case Documents. In Kedad, Z.,
Lammari, N., Méthais, E., Meziane, F., Rezgui, Y., eds.: Application of Natural Language to
Information Systems. Volume 4592 of LNCS., Paris, France, Springer (2007) 181–192

4. Kof, L.: From Textual Scenarios to Message Sequence Charts: Inclusion of Condition Gen-
eration and Actor Extraction. In: 16th IEEE International Requirements Engineering Con-
ference, Barcelona, Spain, IEEE Computer Society Conference Publishing Services (2008)
331–332

5. Mich, L., Franch, M., Novi Inverardi, P.: Market research on requirements analysis using
linguistic tools. Requirements Engineering 9 (2004) 40–56

6. Rupp, C.: Requirements-Engineering und -Management. Professionelle, iterative An-
forderungsanalyse für die Praxis. Second edn. Hanser–Verlag (2002) ISBN 3-446-21960-9.

7. Boehm, B.W.: Software Engineering Economics. Prentice-Hall (1981)
8. Abrial, J.R., Börger, E., Langmaack, H.: The steam boiler case study: Competition of formal

program specification and development methods. In Abrial, J.R., Borger, E., Langmaack, H.,
eds.: Formal Methods for Industrial Applications. Volume 1165 of LNCS., Springer (1996)

9. Abrial, J.R., Börger, E., Langmaack, H.: Formal Methods for Industrial Applications: Spec-
ifying and Programming the Steam Boiler Control. Volume 1165 of LNCS. Springer (1996)

10. Curran, J.R., Clark, S., Vadas, D.: Multi-tagging for lexicalized-grammar parsing. In: 21st
International Conference on Computational Linguistics and 44th Annual Meeting of the As-
sociation for Computational Linguistics, Sydney, Australia, 17-21 July. (2006)

11. Blackburn, P., Bos, J., Kohlhase, M., de Nivelle, H.: Inference and computational semantics.
CLAUS-Report 106, Universität des Saarlandes, Saarbrücken (1998)

12. Gervasi, V., Zowghi, D.: Reasoning about inconsistencies in natural language requirements.
ACM Trans. Softw. Eng. Methodol. 14 (2005) 277–330

13. Ryan, K.: The role of natural language in requirements engineering. In: Proceedings of
IEEE International Symposium on Requirements Engineering, IEEE Computer Society Press
(1992) 240–242

14. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: The linguistic approach to the natural language
requirements quality: benefit of the use of an automatic tool. In: 26th Annual NASA Goddard
Software Engineering Workshop, Greenbelt, Maryland, IEEE Computer Society (2001) 97–
105

15. Kamsties, E., Berry, D.M., Paech, B.: Detecting ambiguities in requirements documents us-
ing inspections. In: Workshop on Inspections in Software Engineering, Paris, France (2001)
68 –80

16. Chantree, F., Nuseibeh, B., de Roeck, A., Willis, A.: Identifying nocuous ambiguities in
natural language requirements. In: RE ’06: Proceedings of the 14th IEEE International Re-
quirements Engineering Conference (RE’06), Washington, DC, USA, IEEE Computer Soci-
ety (2006) 56–65

17. Goldin, L., Berry, D.M.: AbstFinder, a prototype natural language text abstraction finder for
use in requirements elicitation. Automated Software Eng. 4 (1997) 375–412

18. Abbott, R.J.: Program design by informal English descriptions. Communications of the
ACM 26 (1983) 882–894

19. Sawyer, P., Rayson, P., Cosh, K.: Shallow knowledge as an aid to deep understanding in
early phase requirements engineering. IEEE Trans. Softw. Eng. 31 (2005) 969–981

20. Vadera, S., Meziane, F.: From English to formal specifications. The Computer Journal 37
(1994) 753–763

21. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: Propel: an approach supporting
property elucidation. In: ICSE’02: Proceedings of the 24th International Conference on
Software Engineering, New York, NY, USA, ACM (2002) 11–21

22. Clark, S., Curran, J.R.: Wide-coverage efficient statistical parsing with ccg and log-linear
models. Comput. Linguist. 33 (2007) 493–552

23. Maiden, N.A.M.: CREWS-SAVRE: Scenarios for Acquiring and Validating Requirements.
Automated Software Engineering 5 (1998) 419–446

