
Requirements Analysis: Concept Extraction and
Translation of Textual Specifications to Executable

Models

Leonid Kof

Fakultät für Informatik, Technische Universität München,
Boltzmannstr. 3, D-85748, Garching bei München, Germany

kof@informatik.tu-muenchen.de

Abstract. Requirements engineering, the first phase of any software develop-
ment project, is the Achilles’ heel of the whole developmentprocess, as require-
ments documents are often inconsistent and incomplete. In industrial require-
ments documents, natural language is the main presentationmeans. This results
in the fact that the requirements documents are imprecise, incomplete, and incon-
sistent. A viable way to detect inconsistencies and omissions in documents is to
extract system models from them.
In our previous work we developed approaches translating textual scenarios to
message sequence charts (MSCs) and textual descriptions ofautomata to au-
tomata themselves. It turned out that these approaches are highly sensitive to
proper definition of terms (communicating objects for MSCs,states for automata).
The goal of the presented paper is a systematic comparison ofdifferent term
extraction heuristics, as a preliminary stage of MSC or automata extraction. The
extracted terms were declared to communicating objects (inthe case of MSCs)
or to states (in the case of automata). The heuristics were compared on the basis
of correctness of resulting MSCs and automata. We came to theconclusion that
named entity recognition is the best performing technique for term extraction
from requirements documents.

1 Requirements Documents are Inconsistent and Incomplete

At the beginning of every software project, some kind of requirements document is
usually written. The majority of these documents are written in natural language, as
the survey by Mich et al. shows [1]. This results in the fact that the requirements docu-
ments are imprecise, incomplete, and inconsistent, because precision, completeness and
consistency are extremely difficult to achieve using mere natural language as the main
presentation means.

According to Boehm [2], in software development, the later an error is found, the
more expensive its correction. Thus, it is one of the goals ofrequirements analysis, to
find and to correct the defects of requirements documents. A practical way to detect
errors in requirements documents is to convert informal specifications to executable
models. In this case, errors in documents would lead to inconsistencies or omissions in
models, and inconsistencies and omissions are easier to detect in models than in textual
documents.

In our previous work [3–6] we developed approaches extracting behavior specifica-
tions (message sequence charts (MSCs) and automata) from requirements documents
even in the presence of certain defects. It turned out that the approach to scenario-to-
MSC translation is highly sensitive to the proper definitionof communicating objects,
and the approach producing automata is very sensitive to theproper definition of possi-
ble states:

– In the case of text-to-MSC translation, the algorithm triesto identify two commu-
nicating objects in every sentence: one before the first verb, and one after the last
verb. Communicating objects are just elements of the previously constructed set
of objects. Thus, in the case that the set of objects containswrong terms, wrong
communicating objects may be identified in some sentences, which leads to wrong
MSCs. Details of the text-to-MSC translation can be found in[3, 4].

– In the case of text-to-automaton translation, the algorithm tries to identify a system
state after the main verb of every sentence. This allows to translate sentences like “if
〈some condition〉, the system goes to〈some state〉” to state transitions.
The states are identified as elements of previously constructed set of states. Thus, in
the case that the set of states contains wrong terms, wrong states may be identified
in some sentences, which leads to wrong state transitions. Details of the text-to-
automaton translation can be found in [6].

The goal of the presented work was to compare different term extraction heuris-
tics. The heuristics were compared on the basis of correctness of resulting MSCs and
automata: the extracted terms were declared to communicating objects (in the case of
MSCs) or to states (in the case of automata). To evaluate the correctness of the automata,
we used a manually constructed reference automaton. To evaluate the correctness of the
MSCs, we used the evaluation rules developed in our previouswork [5]. Surprisingly,
it turned out that named entity recognition provided best performance in both cases,
despite completely different writing styles.

actor 1 actor 2

message 1

assertion
message 2

mscTerminology definition

Fig. 1.MSCs: terminology definition

Terminology: For the remainder of the paper
we use the following terminology for MSCs: A
scenario is a sequence of natural language sen-
tences. AnMSC consists of a set ofcommuni-
cating objects, or actors, a sequence ofmes-
sages sent and received by these actors, and
a sequence ofassertions interleaved with the
message sequence. Figure 1 illustrates the in-
troduced MSC terminology. For automata, we
use the standard definitions ofstate and state
transition [7].
Outline: The remainder of the paper is orga-
nized as follows: Section 2 introduces the case studies usedto evaluate the term extrac-
tion heuristics. Section 3 is the technical core of the paper, it presents the term extraction
heuristics and their evaluation. Sections 4 and 5 present the summary of the paper and
an overview of related work, respectively.

2 Case Studies

2.1 Automaton: The Steam Boiler

The Steam Boiler Specification was chosen for the automaton-based case study, as it
was the standard benchmark for several case studies aiming to compare different for-
malization methods [8]. This specification describes the steam boiler itself and states
the requirements to the control program for the steam boiler. The steam boiler sys-
tem consists of four pumps to provide the steam boiler with water, one controller for
every pump, a device to measure the water level in the steam boiler, and a device to
measure the quantity of steam coming out of the steam boiler.The goal of the control
program is to maintain the water level between predefined marks, in order to prevent
damage of the steam boiler. This water level should be maintained even in case of cer-
tain equipment failures. In the case of equipment failures,water levels between certain
emergency marks are allowed. Water levels above/below emergency marks cause steam
boiler damage.

The control program for the steam boiler should support a number of modes: initial-
ization mode, normal mode, degraded mode, rescue mode, and emergency stop mode.
For every mode, the specification describes the required program reactions to different
operation situations. An example set of rules, applicable in the normal mode, is shown
in Table 1. Table 2 shows the required behavior of the controlprogram (tabular repre-
sentation of the automaton), manually constructed on the basis of the specification. This
manually constructed automaton will be used as the reference for the evaluation of the
automatically extracted automata in Section 3.2.

Table 1.The steam boiler, specification excerpt (copied from [9])

Normal mode

1. The normal mode is the standard operating mode in which theprogram tries to maintain
the water level in the steam-boiler between N1 and N2 with allphysical units operating
correctly.

2. As soon as the water level is below N1 or above N2 the level can be adjusted by the
program by switching the pumps on or off.

3. The corresponding decision is taken on the basis of the information which has been
received from the physical units.

4. As soon as the program recognizes a failure of the water level measuring unit it goes
into rescue mode.

5. Failure of any other physical unit puts the program into degraded mode.
6. If the water level is risking to reach one of the limit values M1 or M2 the program enters

the mode emergency stop.
7. This risk is evaluated on the basis of a maximal behaviour of the physical units.
8. A transmission failure puts the program into emergency stop mode.

Table 2.Automaton for steam boiler control, manually constructed

Initial mode Target mode Transition condition

initialization initialization message steam-boiler-waiting not yet received
initialization emergency stopunit for detection of the level of steam is defective
initialization emergency stopfailure of the water level detection unit
initialization normal all the physical units operate correctly
initialization degraded any physical unit is defective
initialization emergency stoptransmission failure

normal rescue failure of the water level measuring unit
normal degraded failure of any other physical unit
normal emergency stopthe water level is risking to reach one of the limit values
normal emergency stoptransmission failure

degraded normal defective unit repaired
degraded rescue failure of the water level measuring unit
degraded emergency stopthe water level is risking to reach one of the limit values
degraded emergency stoptransmission failure

rescue normal water level measurement unit repaired
rescue degraded water level measurement unit repaired
rescue emergency stopthe unit which measures the outcome of steam has a failure
rescue emergency stopthe units which control the pumps have a failure
rescue emergency stopthe water level risks to reach one of the two limit values
rescue emergency stoptransmission failure

2.2 MSCs: The Instrument Cluster

The instrument cluster specification describes the opticaldesign of the instrument clus-
ter as a part of the car dashboard, its hardware, and, most importantly, its behavior. The
behavior is specified as a set of scenarios, like the below example, taken from [10]:

1. The driver switches on the car (ignition key in position ignition on).
2. The instrument cluster is turned on and stays active.
3. After the trip the driver switches off the ignition.
4. The instrument cluster stays active for 30 seconds and then turns itself off.
5. The driver leaves the car.

For this scenario, several translations to an MSC are possible: For example, the sec-
ond sentence can be translated both to an assertion and to a message from the instrument
cluster to the driver. The same is true for the fourth sentence. Due to the fact that, even
for a single scenario, several translations to an MSC are possible, it makes no sense to
use a single set of MSCs for evaluation. Instead, we use the following correctness rules
for MSCs (cf. [5]):

– General statements that are actually irrelevant for the MSC(e.g., “There is no dif-
ference between rising and falling temperature values”) should be translated to as-
sertions.

– General statements about the system state (e.g., “The instrument cluster is acti-
vated”) can be translated both to messages and to assertions.

– For a statement sequence like “X activates Y”, “Y is activated”, the first statement
should be translated to a message, the second one to an assertion.

– If a statement does not have to be translated to an assertion due to one of the above
rules, it should be translated to a message.

– If, for any particular actor, it is known that this actor cannot receive messages, as
for example some sensors used in automobiles, no messages should be sent to this
object.

These rules, applied manually, will be used to evaluate the influence of different term
extraction heuristics on the correctness of the extracted MSCs in Section 3.3.

3 Term Extraction Heuristics and their Influence on Behavior
Models

This section is the technical core of the paper. First, in Section 3.1 it presents the term
extraction heuristics. Then, it presents the evaluation ofthe heuristics on the Steam
Boiler Specification (Section 3.2) and on the Instrument Cluster Specification (Sec-
tion 3.3).

3.1 Term Extraction Heuristics

Existing term extraction approaches are based either on named entity recognition or
on the analysis of sentence structure, cf. [11, 12]. Basic ideas of both approaches are
presented below.

Named Entitiy Recognition. Named entity recognition (NER) aims at identification
of standard classes of proper names, i.e. people, places, and organizations. For exam-
ple, the phrase “President Bush visits troops in Iraq” contains two
named entities: “President Bush” (person) and “Iraq” (place). In its most simple
form, NER procedure just looks up every word in the predefinedlist of people, places,
and organizations and decides whether the given word is a named entity. This proce-
dure would work fine for “Iraq” and other country names, as the number of country
names is finite. It makes no sense to apply the lookup procedure to compound names
like “President Bush”: By means of a lookup table we can identify a finite number
of former presidents, but we would be unable to identify future ones.

To identify compound names, the following idea can be applied: We define a set
of keywords, each keyword indicating either a person name ora place or an organiza-
tion. For example, for people, the following keywords make sense: “president”, “CEO”,
“professor”, etc. In order to use the keyword approach to named entity recognition, it is
sufficient to apply a part-of-speech (POS) tagger to the analyzed text. Then, we can just
extract the sequence of nouns (words having tags starting with “NN”) following the key-
word. For example, for the sentence “President George W. Bush visits troops in Iraq”
we would get the tagging “President|NNP George|NNP W.|NNP Bush|NNP
visits|VBZ troops|NNS in|IN Iraq|NNP”. If we extract the sequence of
nouns following the word “president”, we obtain the complete named entity, “Presi-
dent George W. Bush”.

There already exist tools performing named entity recognition, as for example the
C&C tool suite (http://svn.ask.it.usyd.edu.au/trac/candc).However,

existing tools are trained on newspapers texts and, thus, are limited to recognition
of standard classes of entities. For requirements analysis, we have to recognize other
classes of entities, like system components or states, which makes a customized NER
procedure necessary. We use the following heuristics: a named entity consists of

– the keyword, followed by any number of substantives (tags beginning with NN),
adjectives (tagJJ), or verbs in the past participle form (tagVBD), or

– any number of substantives, adjectives, or verbs in the pastparticiple form, followed
by the keyword.

The decision to consider not only substantives, but also adjectives and verbs in the past
participle form was motivated by the concrete form of named entities occurring in our
case studies. It turned out in the case studies, that these additional terms do not result in
wrong communicating objects or wrong states of the automaton.

Extraction Based on Sentence Structure.If we go beyond POS-tagging and use
parsing [13], it becomes possible to extract terms with particular grammatical roles.
For example, if we extract the grammatical subject from the sentence “The program
enters a state in which it waits for the message steam-boiler-waiting to come from the
physical units”, we get “the program”, and if we extract the prepositional object with
the preposition “for”, we get “the message steam-boiler-waiting”.

In the case studies we used the following term extraction heuristics, already proven
useful for the Instrument Cluster Specification (cf. [5]):

– subjects of active sentences containing a direct object, also occurring in passive
sentences,

– subjects of active sentences containingno direct object, also occurring in passive
sentences,

– subjects of active sentences containing a direct object,not occurring in passive
sentences,

– subjects of active sentences containingno direct object,not occurring in passive
sentences,

– subjects of passive sentences,
– direct objects.

This technique should be applied with caution, as the existing parsers are definitely less
precise than POS-taggers, so the parser itself could becomean error source.

3.2 Evaluation: Term Extraction from the Steam Boiler Specification

The Steam Boiler Specification describes different states and state transitions of the
control program. An automaton is the most suitable representation of such a specifica-
tion. To extract an automaton, it is necessary to know the potential states [6]. In our
previous work, we investigated NER as the means of term (=state name) extraction. It
turned out that NER works well for the Steam Boiler Specification. In the presented
paper, we go further and compare previously applied approaches with term extraction
based on sentence structure.

Table 3.Steam Boiler Specification, extracted terms

explicitly listed modes initialization mode, normal mode, degraded mode, rescue mode,
emergency stop mode

NER, keyword “mode” mode emergency stop, mode normal, mode rescue, mode degraded,
initialization mode, emergency stop mode, normal mode, standard
operating mode, rescue mode, degraded mode

subjects of active sentences
containing a direct object, also
occurring in passive sentences

level, exactly n liters

subjects of active sentences
containingno direct object, also
occurring in passive sentences

water level

subjects of active sentences
containing a direct object,not
occurring in passive sentences

program, transmission failure, failure, limit, water level, water level
measuring unit, calculation, unit, water level risks, units

subjects of active sentences
containingno direct object,not
occurring in passive sentences

initialization mode, message, steam, quantity, unit, physical units,
physical unit, mode, program, normal mode, . . . (list pruneddue to
space limitations)

subjects of passive sentencesmessage, level, signal, corresponding decision, risk, units, water
level, exactly n liters, calculation, water measuring unit, mode

direct objects physical units, message, state, steam-boiler, steam, level, detection,
emergency stop mode, water, valve, order, pump, . . . (list pruned due
to space limitations)

The extracted terms are listed in Table 3. Additionally to the terms extracted by their
grammatical roles and by NER, Table 3 lists also the terms explicitly mentioned in the
specification as mode names. To evaluate the influence of the term extraction heuristics
on the behavior extraction, each set of the extracted terms was used as a set of potential
states for the automata extraction algorithm [6]. The resulting automata were evaluated
according to following criteria:

1. The manually constructed automaton, presented in Table 2, was used as reference.
2. If none of the modes listed in the first line of Table 3 was present in the set of

potential states, the corresponding automaton was not evaluated: In this case the
automaton can contain correct transitions solely by coincidence.

3. Transition conditions were considered as equivalent, ifthey had at least two com-
mon words.

4. For every transition, it was evaluated whether the transition has the same initial
state (called “source” in Table 4) and the same target state as in Table 2.

Evaluation results are presented in Table 4. Each column presents the number of tran-
sitions (total, missing, etc.) obtained with the corresponding set of potential states. For
sets of potential states containing the word “mode”, evaluation was performed twice:
for the original set of potential states and for the set of potential states with the word
“mode” manually removed from the set. The reason is that “mode” is a constituent of
the explicitly listed state names, so the presence of “mode”in the set of potential states
can lead to the state called just “mode”, and ignoring of the real mode names.

Different heuristics combinations were not considered, asit was known from our
previous work [5] that unnecessarily extracted terms reduce the quality of behavior

Table 4.Steam Boiler Specification: evaluation results

Transitions

total missing
correct
condition
only

correct
condition
and target

correct
condition
and source

correct con-
dition, target,
and source

wrong
transi-
tions

explicitly listed modes 12 9 — — — 11 1
NER, keyword “mode” 20 1 — — — 19 1

subjects of active sentences
containing a direct object, also
occurring in passive sentences

modes completely missing

subjects of active sentences
containingno direct object, also
occurring in passive sentences

modes completely missing

subjects of active sentences
containing a direct object,not
occurring in passive sentences

modes completely missing

subjects of active sentences
containingno direct object,not
occurring in passive sentences

32 5 15 — — — 17

subjects of active sentences
containingno direct object,not
occurring in passive sentences,
without “mode”

12 16 4 — — — 8

subjects of passive sentences modes completely missing
direct objects 29 12 5 3 — — 21
direct objects, without “mode” 29 11 5 3 1 — 20

models, and NER (second line of Table 4) resulted in an almostperfect automaton: Out
of 20 state transitions in Table 2, 19 were correctly identified, which implies the recall
of 95%. 19 out of 20 identified transitions were correct, which implies the precision of
95% too. To summarize, for the Steam Boiler Specification, NER was proven the best
heuristics to extract potential states of the automaton.

3.3 Evaluation: Term Extraction from the Instrument Cluste r Specification

In our previous work we already evaluated the influence of term extraction heuristics
based on sentence structure on the quality of the produced MSCs [5]. It turned out
that the best heuristics was to declare subjects of active sentences, containing a direct
object,not occurring in passive sentences, to communicating objects for MSCs. Addi-
tionally, this set of communicating objects was augmented with the objects initializing
the scenarios: “driver” and “car”. Due to good performance that NER has shown on the
Steam Boiler Specification, we wanted to investigate how NERcan be applied to the
Instrument Cluster Specification.

Manual analysis of the Instrument Cluster Specification hasshown that following
keywords are sensible for NER application to the InstrumentCluster Specification: dis-
play, flasher, indicator, indication, light, lights, position, sensor, sensors, warning. Ta-
ble 5 shows the named entities extracted with these keywords. Some terms present in

Table 5 contain not only nouns but also verbs (e.g., “blinks”). This error was introduced
by the POS tagger.

Table 5.NER for the Instrument Cluster Specification

Keyword Extracted terms
display digital display, dot matrix display, display RPM, warning display, error display, rev meter

display, display tolerance, analog display, . . . (list pruned due to space limitations)
flasher warning signal flasher, hazard warning signal flasher, signal flasher
indicator indicator lights, engine speed indicator, analog indicator, diagram indicator, indicator lights

blinks
indicationaudible indication, authentic indication, indication (optical display), indication scale, maxi-

mum respective minimum possible corresponding indication
light engine control light, light control unit
lights instrument cluster lights, warning lights, warning display lights, error display lights, warning

symbol lights, . . . (list pruned due to space limitations)
position technical initial position, initial position, technical final position, technical position, degree

technical final position, degree technical initial position, pointer position
sensor outside temperature sensor
sensors wheel speed sensors, defect wheel speed sensors
warning hazard warning, engine warning, ice warning, corresponding warning, section warning,

warning tone, warning characteristics, . . . (list pruned due to space limitations)

On total, the Steam Boiler Specification contains 42 scenarios. 41 out of 42 sce-
narios were used for evaluation, due to technical difficulties of batch processing one of
the scenarios. To evaluate the MSCs resulting from scenarios, the rules introduced in
Section 2.2 were used. Additionally to these rules evaluating MSCs as a whole, wrong
messages were counted: a message was considered as wrong, only if it was sent to a
communicating object not able to process this message type.This implies that an MSC
can be wrong without containing a single wrong message, for example if some sen-
tence that should be translated to a message is translated toan assertion. The decision,
whether a sentence is translated to a message or to an assertion is influenced by the set
of communicating objects too (see [5] for details).

For the first attempt, all terms extracted by NER were joined,this set was declared to
the set of communicating objects. However, two important terms, namely “driver” and
“car” were missing from this set, which resulted in completely wrong MSCs (cf. first
line of Table 6). For the second attempt, the set of NER-extracted terms was augmented
with “driver” and “car”, and for the third attempt additionally with “instrument cluster”.
(“Instrument cluster” is an important term in the Instrument Cluster Specification, but
it is not identified as a named entity.) This augmentation resulted in many more correct
MSCs, which can be seen in the second and third line of Table 6.

To investigate whether the results obtained with the usage of grammatical subjects
can be further improved by NER, we augmented the set of communicating objects used
before (subjects of active sentences, containing a direct object,not occurring in passive
sentences + “driver” + “car”) with different NER-extractedterms. It turned out that in
this case NER barely influences the results: in some cases theresulting MSCs were
exactly the same as without NER, and in some cases the MSCs were different, but the

Table 6. Instrument Cluster Specification: evaluation results

correct MSCs wrong messages
total percentagetotal percentage

all NER-extracted terms 0 0% 17 3,5%
all NER-extracted terms + “driver” + “car” 40 97,5% 0 0%
all NER-extracted terms + “driver” + “car” +
“instrument cluster”

40 97,5% 0 0%

subjects of active
sentences,
containing a
direct object,not
occurring in
passive sentences
+ “driver” + “car”

without NER 33 80% 20 4.2%
+ NER, keyword “display” 33 80% 20 4.2%
+ NER, keyword “flasher” 33 80% 20 4.2%
+ NER, keyword “indicator” 33 80% 20 4.2%
+ NER, keyword “light” 33 80% 20 4.2%
+ NER, keyword “lights”

MSCs completely identical to the
case without NER application

+ NER, keyword “position”
+ NER, keyword “indication”
+ NER, keyword “sensor”
+ NER, keyword “sensors”
+ NER, keyword “warning”

percentage of correct MSCs was the same. This can be explained by the fact that the set
of grammatical subjects contains unnecessary communicating objects that cause both
wrong messages and wrong MSCs. To summarize, for the Instrument Cluster Specifi-
cation, NER was proven the best heuristics to extract potential communicating objects.

4 Summary

Requirements engineering is an important project phase, influencing all later develop-
ment phases. Requirements documents are mostly written in natural language, which
implies incomplete and inconsistent requirements. Translation of natural language de-
scriptions to executable models is a viable way to deal with incompleteness and incon-
sistency. The previously developed approaches to text-to-MSC/automaton translation
turned out to be highly sensitive to proper term extraction,as a prerequisite for their ap-
plication. In the presented paper, we systematically compared different term extraction
heuristics and came to the conclusion that named entity recognition (NER) provides
best performance on two requirements documents, despite ofrather different writing
styles. However, it is still an open question whether NER provides best results on any
requirements document. An answer to this question, obtained in further case studies,
would open the way to systematic concept extraction from industrial documents.

5 Related Work

There are three areas where natural language processing is applied to requirements en-
gineering: assessment of document quality, identificationand classification of applica-
tion specific concepts, and analysis of system behavior. Approaches to the assessment
of document quality were introduced, for example, by Rupp [14], Fabbrini et al. [15],
Kamsties et al. [16], and Chantree et al. [17]. These approaches have in common that

they define writing guidelines and measure document qualityby measuring the degree
to which the document satisfies the guidelines. These approaches have a different focus
from our work: their aim is to detect poor phrasing and to improve it, they do not target
at behavior analysis.

Another class of approaches, like for example those by Goldin and Berry [18], Ab-
bott [19], or Sawyer et al. [20] analyzes the requirements documents, extracts applica-
tion specific concepts, and provides an initial model of the application domain. These
approaches do not perform any behavior analysis, either.

The approaches analyzing system behavior, as for example those by Vadera and
Meziane [21], Gervasi and Zowghi [22], and Avrunin et al. [23] translate requirements
documents to executable models by analyzing linguistic patterns. In this sense they
are similar to our work. Vadera and Meziane propose a procedure to translate certain
linguistic patterns into first order logic and then to the specification language VDM,
but they do not provide automation for this procedure. Gervasi and Zowghi go further
and introduce a restricted language, a subset of English. They automatically translate
textual requirements written in this restricted language to first order logic. The approach
by Avrunin et al. is similar to the approach by Gervasi and Zowghi in the sense that it
introduces a restricted natural language. The difference lies in the formal representation
means: Gervasi and Zowghi stick to first order logic, Avruninet al. translate natural
language to temporal logic. Our work goes further than the above two approaches, as
the language is not restricted.

If we consider a more general area of software engineering, it is possible to apply
natural language processing to other types of documents too. Witte et al. [12] introduced
an approach to software documentation analysis, allowing to link software documen-
tation to code. They extract instances of previously definedconcepts, like variables,
classes, methods, etc., using named entity recognition with keywords motivated by the
previously constructed ontology of programming concepts.In the presented paper, we
have to deal with a more challenging situation, as there exists no ontology of modeling
concepts, valid for all application domains.

To summarize, to the best of our knowledge, there is no approach to requirements
documents analysis, that is able to analyze documents written in non-restricted lan-
guage, and to extract behavior information from them.

References

1. Mich, L., Franch, M., Novi Inverardi, P.: Market researchon requirements analysis using
linguistic tools. Requirements Engineering9 (2004) 40–56

2. Boehm, B.W.: Software Engineering Economics. Prentice-Hall (1981)
3. Kof, L.: Scenarios: Identifying missing objects and actions by means of computational lin-

guistics. In: 15th IEEE International Requirements Engineering Conference, New Delhi,
India, IEEE Computer Society Conference Publishing Services (2007) 121–130

4. Kof, L.: Treatment of Passive Voice and Conjunctions in Use Case Documents. In Kedad, Z.,
Lammari, N., Méthais, E., Meziane, F., Rezgui, Y., eds.: Application of Natural Language to
Information Systems. Volume 4592 of LNCS., Paris, France, Springer (2007) 181–192

5. Kof, L.: From Textual Scenarios to Message Sequence Charts: Inclusion of Condition Gen-
eration and Actor Extraction. In: 16th IEEE International Requirements Engineering Con-

ference, Barcelona, Spain, IEEE Computer Society Conference Publishing Services (2008)
331–332

6. Kof, L.: Translation of Textual Specifications to Automata by Means of Discourse Context
Modeling. In Glinz, M., Heymans, P., eds.: Requirements Engineering: Foundation for Soft-
ware Quality 15th International Working Conference, REFSQ2009. Volume 5512 of LNCS.,
Springer (2009) 197–211

7. Broy, M.: Informatik. Eine grundlegende Einführung. Volume 2. Springer (1998)
8. Abrial, J.R., Börger, E., Langmaack, H.: Formal Methodsfor Industrial Applications: Spec-

ifying and Programming the Steam Boiler Control. Volume 1165 of LNCS. Springer (1996)
9. Abrial, J.R., Börger, E., Langmaack, H.: The steam boiler case study: Competition of formal

program specification and development methods. In Abrial, J.R., Borger, E., Langmaack, H.,
eds.: Formal Methods for Industrial Applications. Volume 1165 of LNCS., Springer (1996)

10. Buhr, K., Heumesser, N., Houdek, F., Omasreiter, H., Rothermehl, F., Tavakoli, R.,
Zink, T.: DaimlerChrysler demonstrator: System specification instrument cluster (2004)
http://www.empress-itea.org/deliverables/D5.1_Appendix_B_v1.
0_Public_Version.pdf, accessed 11.01.2007.

11. Kof, L.: Natural Language Processing: Mature Enough forRequirements Documents Anal-
ysis? In Montoyo, A., Mu n̄oz, R., Methais, E., eds.: Application of Natural Language to
Information Systems. Volume 3513 of LNCS., Alicante, Spain, Springer (2005) 91–102

12. Witte, R., Li, Q., Zhang, Y., Rilling, J.: Ontological Text Mining of Software Documents. In
Kedad, Z., Lammari, N., Méthais, E., Meziane, F., Rezgui, Y., eds.: Application of Natural
Language to Information Systems. Volume 4592 of LNCS., Paris, France, Springer (2007)
168–180

13. Clark, S., Curran, J.R.: Wide-coverage efficient statistical parsing with ccg and log-linear
models. Comput. Linguist.33 (2007) 493–552

14. Rupp, C.: Requirements-Engineering und -Management. Professionelle, iterative An-
forderungsanalyse für die Praxis. Second edn. Hanser–Verlag (2002) ISBN 3-446-21960-9.

15. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: The linguistic approach to the natural language
requirements quality: benefit of the use of an automatic tool. In: 26th Annual NASA Goddard
Software Engineering Workshop, Greenbelt, Maryland, IEEEComputer Society (2001) 97–
105

16. Kamsties, E., Berry, D.M., Paech, B.: Detecting ambiguities in requirements documents us-
ing inspections. In: Workshop on Inspections in Software Engineering, Paris, France (2001)
68 –80

17. Chantree, F., Nuseibeh, B., de Roeck, A., Willis, A.: Identifying nocuous ambiguities in
natural language requirements. In: RE ’06: Proceedings of the 14th IEEE International Re-
quirements Engineering Conference (RE’06), Washington, DC, USA, IEEE Computer Soci-
ety (2006) 56–65

18. Goldin, L., Berry, D.M.: AbstFinder, a prototype natural language text abstraction finder for
use in requirements elicitation. Automated Software Eng.4 (1997) 375–412

19. Abbott, R.J.: Program design by informal English descriptions. Communications of the
ACM 26 (1983) 882–894

20. Sawyer, P., Rayson, P., Cosh, K.: Shallow knowledge as anaid to deep understanding in
early phase requirements engineering. IEEE Trans. Softw. Eng.31 (2005) 969–981

21. Vadera, S., Meziane, F.: From English to formal specifications. The Computer Journal37
(1994) 753–763

22. Gervasi, V., Zowghi, D.: Reasoning about inconsistencies in natural language requirements.
ACM Trans. Softw. Eng. Methodol.14 (2005) 277–330

23. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: Propel: an approach supporting
property elucidation. In: ICSE’02: Proceedings of the 24thInternational Conference on
Software Engineering, New York, NY, USA, ACM (2002) 11–21

