Requirements Analysis: Concept Extraction and
Translation of Textual Specifications to Executable
Models

Leonid Kof

Fakultat fur Informatik, Technische Universitat Milmamn,
Boltzmannstr. 3, D-85748, Garching bei Miinchen, Germany
kof @ nf or mat i k. t u- nuenchen. de

Abstract. Requirements engineering, the first phase of any softwarelaje
ment project, is the Achilles’ heel of the whole developmemicess, as require-
ments documents are often inconsistent and incompletendustrial require-
ments documents, natural language is the main presentagans. This results
in the fact that the requirements documents are impredciseriplete, and incon-
sistent. A viable way to detect inconsistencies and omissio documents is to
extract system models from them.

In our previous work we developed approaches translatixigidé scenarios to
message sequence charts (MSCs) and textual descriptiomstahata to au-
tomata themselves. It turned out that these approachesigirly lsensitive to
proper definition of terms (communicating objects for MS&ates for automata).
The goal of the presented paper is a systematic comparisaiiffefent term
extraction heuristics, as a preliminary stage of MSC or mat@ extraction. The
extracted terms were declared to communicating objectth@rcase of MSCs)
or to states (in the case of automata). The heuristics wenpaed on the basis
of correctness of resulting MSCs and automata. We came toatigusion that
named entity recognition is the best performing technicquretérm extraction
from requirements documents.

1 Requirements Documents are Inconsistent and Incomplete

At the beginning of every software project, some kind of iegments document is
usually written. The majority of these documents are writte natural language, as
the survey by Mich et al. shows [1]. This results in the faet e requirements docu-
ments are imprecise, incomplete, and inconsistent, begaesision, completeness and
consistency are extremely difficult to achieve using metanahlanguage as the main
presentation means.

According to Boehm [2], in software development, the lateearor is found, the
more expensive its correction. Thus, it is one of the goaleqiiirements analysis, to
find and to correct the defects of requirements documentgaétipal way to detect
errors in requirements documents is to convert informatiéigations to executable
models. In this case, errors in documents would lead to isistencies or omissions in
models, and inconsistencies and omissions are easiergotdtetmodels than in textual
documents.

In our previous work [3—6] we developed approaches extrgdiehavior specifica-
tions (message sequence charts (MSCs) and automata) fouinerents documents
even in the presence of certain defects. It turned out tleagfiproach to scenario-to-
MSC translation is highly sensitive to the proper definitadrcommunicating objects,
and the approach producing automata is very sensitive tprtper definition of possi-
ble states:

— In the case of text-to-MSC translation, the algorithm tt@&entify two commu-
nicating objects in every sentence: one before the first,\art one after the last
verb. Communicating objects are just elements of the pusioconstructed set
of objects. Thus, in the case that the set of objects contaioag terms, wrong
communicating objects may be identified in some sentendashvieads to wrong
MSCs. Details of the text-to-MSC translation can be founfBir].

— In the case of text-to-automaton translation, the algoritties to identify a system
state after the main verb of every sentence. This allowsittstate sentences like “if
(some condi ti on), the system goes t(sone st at e)” to state transitions.
The states are identified as elements of previously corietitiset of states. Thus, in
the case that the set of states contains wrong terms, wratggshay be identified
in some sentences, which leads to wrong state transitioatilB of the text-to-
automaton translation can be found in [6].

The goal of the presented work was to compare different tedma&ion heuris-
tics. The heuristics were compared on the basis of corrsstokresulting MSCs and
automata: the extracted terms were declared to commumgcakijects (in the case of
MSCs) or to states (in the case of automata). To evaluatetheatness of the automata,
we used a manually constructed reference automaton. Toadeahe correctness of the
MSCs, we used the evaluation rules developed in our previauk [5]. Surprisingly,
it turned out that named entity recognition provided bestgeance in both cases,
despite completely different writing styles.

Terminology: For the remainder of the paper| mscTerminology definition

we use the following terminology for MSCs: A

scenariois a sequence of natural language ser)- | actor 1 | | acior 2 |
tences. AnMSC consists of a set afommuni-

cating objects, or actors, a sequence afes- message 1
sages sent and received by these actors, and :

a sequence odissertions interleaved with the __assertion >
message sequence. Figure 1 illustrates the ip- message 2
troduced MSC terminology. For automata, we I
use the standard definitions gthte and state

tran§ition [7]. .) Fig. 1. MSCs: terminology definition
Outline: The remainder of the paper is orga-

nized as follows: Section 2 introduces the case studiestosadluate the term extrac-
tion heuristics. Section 3 is the technical core of the papgresents the term extraction
heuristics and their evaluation. Sections 4 and 5 presergummary of the paper and
an overview of related work, respectively.

2 Case Studies

2.1 Automaton: The Steam Boiler

The Steam Boiler Specification was chosen for the automlassed case study, as it
was the standard benchmark for several case studies aimicgipare different for-
malization methods [8]. This specification describes tlearst boiler itself and states
the requirements to the control program for the steam hdilee steam boiler sys-
tem consists of four pumps to provide the steam boiler witkewane controller for
every pump, a device to measure the water level in the stedler,bend a device to
measure the quantity of steam coming out of the steam bditer.goal of the control
program is to maintain the water level between predefineksyan order to prevent
damage of the steam boiler. This water level should be magdaeven in case of cer-
tain equipment failures. In the case of equipment failuneder levels between certain
emergency marks are allowed. Water levels above/belowgamey marks cause steam
boiler damage.

The control program for the steam boiler should support abarmof modes: initial-
ization mode, normal mode, degraded mode, rescue mode nae@ency stop mode.
For every mode, the specification describes the requiregtanoreactions to different
operation situations. An example set of rules, applicabthé normal mode, is shown
in Table 1. Table 2 shows the required behavior of the coptrafjram (tabular repre-
sentation of the automaton), manually constructed on this lb&the specification. This
manually constructed automaton will be used as the referfmrche evaluation of the
automatically extracted automata in Section 3.2.

Table 1. The steam boiler, specification excerpt (copied from [9])

Normal mode

1. The normal mode is the standard operating mode in whicpribgram tries to maintain
the water level in the steam-boiler between N1 and N2 witplsical units operating
correctly.

2. As soon as the water level is below N1 or above N2 the levelbeaadjusted by the
program by switching the pumps on or off.

3. The corresponding decision is taken on the basis of therirdtion which has been
received from the physical units.

4. As soon as the program recognizes a failure of the watef leeasuring unit it goes
into rescue mode.

5. Failure of any other physical unit puts the program intgrdded mode.

6. Ifthe water level is risking to reach one of the limit vadud1 or M2 the program enter|
the mode emergency stop.

7. This risk is evaluated on the basis of a maximal behavibthveophysical units.

8. A transmission failure puts the program into emergency stode.

[2)

Table 2. Automaton for steam boiler control, manually constructed

[Initial mode| Target mode |

Transition condition |

initialization

initialization

message steam-boiler-waiting not yet received

initialization

emergency st

pnit for detection of the level of steam is defective

initialization emergency stgfailure of the water level detection unit

initialization \normal all the physical units operate correctly

initialization | degraded any physical unit is defective

initialization emergency stgpransmission failure

normal rescue failure of the water level measuring unit

normal degraded failure of any other physical unit

normal emergency stdthe water level is risking to reach one of the limit value
normal emergency stdfransmission failure

degraded |normal defective unit repaired

degraded |rescue failure of the water level measuring unit

degraded |emergency stdthe water level is risking to reach one of the limit value
degraded |emergency stgpransmission failure

rescue normal water level measurement unit repaired

rescue degraded water level measurement unit repaired

rescue emergency stgghe unit which measures the outcome of steam has a failure
rescue emergency stdghe units which control the pumps have a failure
rescue emergency stdghe water level risks to reach one of the two limit values
rescue emergency stdfransmission failure

2.2 MSCs: The Instrument Cluster

The instrument cluster specification describes the opdiesign of the instrument clus-
ter as a part of the car dashboard, its hardware, and, mosttamly, its behavior. The
behavior is specified as a set of scenarios, like the belompbeg taken from [10]:

1. The driver switches on the car (ignition key in positionitgn on).

2. The instrument cluster is turned on and stays active.

3. After the trip the driver switches off the ignition.

4. The instrument cluster stays active for 30 seconds amdtthas itself off.
5. The driver leaves the car.

For this scenario, several translations to an MSC are pes§ibr example, the sec-
ond sentence can be translated both to an assertion and 8sagedrom the instrument
cluster to the driver. The same is true for the fourth sergeDaie to the fact that, even
for a single scenario, several translations to an MSC arsilplesit makes no sense to
use a single set of MSCs for evaluation. Instead, we use tlosving correctness rules
for MSCs (cf. [5]):

— General statements that are actually irrelevant for the NES@., “There is no dif-
ference between rising and falling temperature valuesiukhbe translated to as-
sertions.

— General statements about the system state (e.g., “Theinmsitt cluster is acti-
vated”) can be translated both to messages and to assertions

— For a statement sequence like “X activates Y”, “Y is actiddt¢he first statement
should be translated to a message, the second one to ancassert

— If a statement does not have to be translated to an asseu#otoane of the above
rules, it should be translated to a message.

— If, for any particular actor, it is known that this actor cabneceive messages, as
for example some sensors used in automobiles, no messagdd bl sent to this
object.

These rules, applied manually, will be used to evaluatertfieance of different term
extraction heuristics on the correctness of the extract8@#in Section 3.3.

3 Term Extraction Heuristics and their Influence on Behavior
Models

This section is the technical core of the paper. First, iniBe@d.1 it presents the term
extraction heuristics. Then, it presents the evaluatiothefheuristics on the Steam
Boiler Specification (Section 3.2) and on the Instruments@u Specification (Sec-
tion 3.3).

3.1 Term Extraction Heuristics

Existing term extraction approaches are based either orediantity recognition or
on the analysis of sentence structure, cf. [11, 12]. Bagiasdf both approaches are
presented below.

Named Entitiy Recognition. Named entity recognition (NER) aims at identification
of standard classes of proper names, i.e. people, place®rganizations. For exam-
ple, the phrasePr esi dent Bush visits troops in |raq” contains two
named entities:Pr esi dent Bush” (person)andl r aq” (place). In its most simple
form, NER procedure just looks up every word in the predefirstaf people, places,
and organizations and decides whether the given word is a&damtity. This proce-
dure would work fine for I'r aq” and other country names, as the number of country
names is finite. It makes no sense to apply the lookup proegdurompound names
like “Pr esi dent Bush”: By means of a lookup table we can identify a finite number
of former presidents, but we would be unable to identify fatanes.

To identify compound names, the following idea can be appl#e define a set
of keywords, each keyword indicating either a person narmeeace or an organiza-
tion. For example, for people, the following keywords magese: “president”, “CEQ”,
“professor”, etc. In order to use the keyword approach toethentity recognition, it is
sufficient to apply a part-of-speech (POS) tagger to theyardltext. Then, we can just
extract the sequence of nouns (words having tags startig' WN") following the key-
word. For example, for the sentence “President George Wh Biséts troops in Iraq”
we would get the taggingPr esi dent | NNP Geor ge| NNP W | NNP Bush| NNP
visits| VBZ troops| NNS i n| I N Iraqg| NNP". If we extract the sequence of
nouns following the word “president”, we obtain the compleémed entity,Pr esi -
dent George W Bush”.

There already exist tools performing named entity recagmitas for example the
C&Ctoolsuite ot t p: / / svn. ask. i t. usyd. edu. au/ t rac/ candc).However,

existing tools are trained on newspapers texts and, thesliraited to recognition
of standard classes of entities. For requirements analysidave to recognize other
classes of entities, like system components or stateshwhakes a customized NER
procedure necessary. We use the following heuristics: adamntity consists of

— the keyword, followed by any number of substantives (taggrtreng with NN),
adjectives (tadJ), or verbs in the past participle form (t&BD), or

— any number of substantives, adjectives, or verbs in thegaastiple form, followed
by the keyword.

The decision to consider not only substantives, but alsectisies and verbs in the past
participle form was motivated by the concrete form of nametities occurring in our
case studies. It turned out in the case studies, that thelsoad! terms do not resultin
wrong communicating objects or wrong states of the automato

Extraction Based on Sentence Structure.If we go beyond POS-tagging and use
parsing [13], it becomes possible to extract terms withipaldr grammatical roles.
For example, if we extract the grammatical subject from thi@tence “The program
enters a state in which it waits for the message steam-besdéing to come from the
physical units”, we get “the program”, and if we extract thregositional object with
the preposition “for”, we get “the message steam-boileiting’.

In the case studies we used the following term extractiomisiges, already proven
useful for the Instrument Cluster Specification (cf. [5]):

— subjects of active sentences containing a direct objest, @tcurring in passive
sentences,

— subjects of active sentences containnuogdirect object, also occurring in passive
sentences,

— subjects of active sentences containing a direct objettoccurring in passive
sentences,

— subjects of active sentences containmtgdirect object,not occurring in passive
sentences,

— subjects of passive sentences,

direct objects.

This technique should be applied with caution, as the ejgiarsers are definitely less
precise than POS-taggers, so the parser itself could beanragor source.

3.2 Evaluation: Term Extraction from the Steam Boiler Specfication

The Steam Boiler Specification describes different statessdate transitions of the
control program. An automaton is the most suitable reptesien of such a specifica-
tion. To extract an automaton, it is necessary to know therg@l states [6]. In our
previous work, we investigated NER as the means of term tes@me) extraction. It
turned out that NER works well for the Steam Boiler Specifaratin the presented
paper, we go further and compare previously applied appesmwith term extraction
based on sentence structure.

Table 3. Steam Boiler Specification, extracted terms

explicitly listed modes

initialization mode, normal mode, degraded mode, rescudey
emergency stop mode

NER, keyword “mode”

initialization mode, emergency stop mode, normal mode)dstey
operating mode, rescue mode, degraded mode

subjects of active senteng
containing a direct object, al
occurring in passive sentence

kvel, exactly n liters
50
S

subjects of active senteng
containingno direct object, als
occurring in passive sentence

emter level
o)
S

subjects of active sentence
containing a direct objecthot
occurring in passive sentence

program, transmission failure, failure, limit, water lgweater leve
measuring unit, calculation, unit, water level risks, gnit
S

subjects of active sentence
containingno direct object,not
occurring in passive sentence

#itialization mode, message, steam, quantity, unit, aysunits
physical unit, mode, program, normal mode, ... (list pruded tq
space limitations)

subjects of passive sentence

smessage, level, signal, corresponding decision, risksumiatel

no

mode emergency stop, mode normal, mode rescue, mode dégrade

level, exactly n liters, calculation, water measuring umiode
physical units, message, state, steam-boiler, stean, tetection
emergency stop mode, water, valve, order, pump, ... (listgu du
to space limitations)

direct objects

The extracted terms are listed in Table 3. Additionally mtérms extracted by their
grammatical roles and by NER, Table 3 lists also the term#iattp mentioned in the
specification as mode names. To evaluate the influence oéitimeaxtraction heuristics
on the behavior extraction, each set of the extracted termsamsed as a set of potential
states for the automata extraction algorithm [6]. The tesyhutomata were evaluated
according to following criteria:

1.
2.

The manually constructed automaton, presented in Talbafused as reference.

If none of the modes listed in the first line of Table 3 wasspr# in the set of

potential states, the corresponding automaton was notateal: In this case the

automaton can contain correct transitions solely by cdentte.

. Transition conditions were considered as equivaletiey had at least two com-
mon words.

. For every transition, it was evaluated whether the ttammshas the same initial

state (called “source” in Table 4) and the same target staite Eable 2.

Evaluation results are presented in Table 4. Each colunsepts the number of tran-
sitions (total, missing, etc.) obtained with the corresfing set of potential states. For
sets of potential states containing the word “mode”, ev#dnavas performed twice:
for the original set of potential states and for the set okpbéal states with the word
“mode” manually removed from the set. The reason is that ‘&fidésla constituent of
the explicitly listed state names, so the presence of “mad#ie set of potential states
can lead to the state called just “mode”, and ignoring of & mode names.
Different heuristics combinations were not consideredt ass known from our
previous work [5] that unnecessarily extracted terms redhe quality of behavior

Table 4. Steam Boiler Specification: evaluation results

Transitions
correct |correct correct correct conpwrong
totallmissingcondition|condition |condition |dition, targetitransi-

only and target |and sourcgand source (tions
explicitly listed modes 12 9 — — — 11 1
NER, keyword “mode” 20 1 — — — 19 1
subjects of active sentenges
containing a direct object, also modes completely missing

occurring in passive sentences
subjects of active sentenges

containingno direct object, alsp modes completely missing
occurring in passive sentences
subjects of active sentences
containing a direct objectyot modes completely missing
occurring in passive sentences
subjects of active sentences
containingno direct object,not| 32 5 15 — — — 17
occurring in passive sentences
subjects of active sentences
contalrjmgno dlregt object,not 121 16 4 . . . 8
occurring in passive sentences,
without “mode”

subjects of passive sentence modes completely missing
direct objects 29| 12 5 3 — — 21
direct objects, without “mode’| 29 | 11 5 3 1 — 20

models, and NER (second line of Table 4) resulted in an alp$éct automaton: Out
of 20 state transitions in Table 2, 19 were correctly idesdifiwhich implies the recall
of 95%. 19 out of 20 identified transitions were correct, whimplies the precision of
95% too. To summarize, for the Steam Boiler SpecificationRNEas proven the best
heuristics to extract potential states of the automaton.

3.3 Evaluation: Term Extraction from the Instrument Cluster Specification

In our previous work we already evaluated the influence ahtexktraction heuristics
based on sentence structure on the quality of the producedsMY]. It turned out
that the best heuristics was to declare subjects of activiesees, containing a direct
object,not occurring in passive sentences, to communicating objects1SCs. Addi-
tionally, this set of communicating objects was augmentgl the objects initializing
the scenarios: “driver” and “car”. Due to good performaricag NER has shown on the
Steam Boiler Specification, we wanted to investigate how NBR be applied to the
Instrument Cluster Specification.

Manual analysis of the Instrument Cluster Specificationgrasvn that following
keywords are sensible for NER application to the Instrun@uaster Specification: dis-
play, flasher, indicator, indication, light, lights, pdsit, sensor, sensors, warning. Ta-
ble 5 shows the named entities extracted with these keyw8aise terms present in

Table 5 contain not only nouns but also verbs (e.g., “blizkBhis error was introduced
by the POS tagger.

Table 5.NER for the Instrument Cluster Specification

Keyword Extracted terms
display |digital display, dot matrix display, display RPM, warningsplay, error display, rev meter
display, display tolerance, analog display, ... (list gdidue to space limitations)
flasher |warning signal flasher, hazard warning signal flasher, itpeher

indicator |indicator lights, engine speed indicator, analog indicat@agram indicator, indicator lights
blinks
indicationaudible indication, authentic indication, indication {igpl display), indication scale, maxi-
mum respective minimum possible corresponding indication
light engine control light, light control unit

lights instrument cluster lights, warning lights, warning displights, error display lights, warning
symbol lights, ... (list pruned due to space limitations)
position |technical initial position, initial position, technicahfil position, technical position, degtee
technical final position, degree technical initial positipointer position
sensor |outside temperature sensor

sensors |wheel speed sensors, defect wheel speed sensors

warning |hazard warning, engine warning, ice warning, correspandiarning, section warning,
warning tone, warning characteristics, . .. (list pruned thuspace limitations)

On total, the Steam Boiler Specification contains 42 scerafl out of 42 sce-
narios were used for evaluation, due to technical diffiesltf batch processing one of
the scenarios. To evaluate the MSCs resulting from scegdtie rules introduced in
Section 2.2 were used. Additionally to these rules evalgdtiSCs as a whole, wrong
messages were counted: a message was considered as wrgrifjjtamas sent to a
communicating object not able to process this message Typeimplies that an MSC
can be wrong without containing a single wrong message, famgle if some sen-
tence that should be translated to a message is translaé@dassertion. The decision,
whether a sentence is translated to a message or to an@sseitifluenced by the set
of communicating objects too (see [5] for details).

For the first attempt, all terms extracted by NER were joitieid,set was declared to
the set of communicating objects. However, two importamhse namely “driver” and
“car” were missing from this set, which resulted in complgterong MSCs (cf. first
line of Table 6). For the second attempt, the set of NER-etdrhterms was augmented
with “driver” and “car”, and for the third attempt additiolhawith “instrument cluster”.
(“Instrument cluster” is an important term in the Instrurh@tuster Specification, but
it is not identified as a named entity.) This augmentatioalted in many more correct
MSCs, which can be seen in the second and third line of Table 6.

To investigate whether the results obtained with the usdgeammatical subjects
can be further improved by NER, we augmented the set of cormatimg objects used
before (subjects of active sentences, containing a dilgetgnot occurring in passive
sentences + “driver” + “car”) with different NER-extractéatms. It turned out that in
this case NER barely influences the results: in some casezsh#ting MSCs were
exactly the same as without NER, and in some cases the MS@sdiffarent, but the

Table 6. Instrument Cluster Specification: evaluation results

[

correct MSCs |wr0ng message
totalpercentaggotal| percentags

all NER-extracted terms 0 0% 17 3,5%
all NER-extracted terms + “driver” + “car” 40 | 97,5% 0 0%
ia_ll NER-extracted ”terms + “driver” + “car” A 40| 975% | 0 0%
instrument cluster
without NER 33 80% 20 4.2%
+ NER, keyword “display” || 33 80% 20 4.2%
+ NER, keyword “flasher” || 33 80% |20 4.2%

subjects of activ

zgzzir:ﬁgs'a + NER, keyword “indicator” || 33 80% |20 4.2%
: '9 + NER, keyword “light” 33| 80% |20 4.2%
direct objectnot T 5
S + NER, keyword “lights
occurring in

+ NER, keyword “position”
¥ NER, keyword “indication]|MSCs completely identical to th
+ NER, keyword “sensor” case without NER application
+ NER, keyword “sensors”
+ NER, keyword “warning”

passive sentence
+ “driver” + “car”

(V]

percentage of correct MSCs was the same. This can be exghlayrtbe fact that the set
of grammatical subjects contains unnecessary commungicabjects that cause both
wrong messages and wrong MSCs. To summarize, for the Inetru@luster Specifi-
cation, NER was proven the best heuristics to extract pialezdmmunicating objects.

4 Summary

Requirements engineering is an important project phaflagimcing all later develop-
ment phases. Requirements documents are mostly writteatural language, which
implies incomplete and inconsistent requirements. Tediwsi of natural language de-
scriptions to executable models is a viable way to deal witioimpleteness and incon-
sistency. The previously developed approaches to tektS&/automaton translation
turned out to be highly sensitive to proper term extractaaa prerequisite for their ap-
plication. In the presented paper, we systematically coetpdifferent term extraction
heuristics and came to the conclusion that named entitygrétton (NER) provides
best performance on two requirements documents, despitgtedr different writing
styles. However, it is still an open question whether NERvjates best results on any
requirements document. An answer to this question, oldaiméurther case studies,
would open the way to systematic concept extraction fromstibal documents.

5 Related Work

There are three areas where natural language processimglischto requirements en-
gineering: assessment of document quality, identificadimh classification of applica-
tion specific concepts, and analysis of system behaviorrdgmhes to the assessment
of document quality were introduced, for example, by Rupf],[Eabbrini et al. [15],
Kamsties et al. [16], and Chantree et al. [17]. These apexbave in common that

they define writing guidelines and measure document quajitheasuring the degree
to which the document satisfies the guidelines. These appesdave a different focus
from our work: their aim is to detect poor phrasing and to iavgrit, they do not target
at behavior analysis.

Another class of approaches, like for example those by G@dd Berry [18], Ab-
bott [19], or Sawyer et al. [20] analyzes the requirementudtents, extracts applica-
tion specific concepts, and provides an initial model of thpliaation domain. These
approaches do not perform any behavior analysis, either.

The approaches analyzing system behavior, as for exampée thy Vadera and
Meziane [21], Gervasi and Zowghi [22], and Avrunin et al.[#anslate requirements
documents to executable models by analyzing linguistitepas. In this sense they
are similar to our work. Vadera and Meziane propose a praectutranslate certain
linguistic patterns into first order logic and then to thedfieation language VDM,
but they do not provide automation for this procedure. Garaad Zowghi go further
and introduce a restricted language, a subset of Englisty &btomatically translate
textual requirements written in this restricted languadf@ st order logic. The approach
by Avrunin et al. is similar to the approach by Gervasi and gbinn the sense that it
introduces a restricted natural language. The differdesén the formal representation
means: Gervasi and Zowghi stick to first order logic, Avruetral. translate natural
language to temporal logic. Our work goes further than thevaliwo approaches, as
the language is not restricted.

If we consider a more general area of software engineetitig piossible to apply
natural language processing to other types of document®\iitte et al. [12] introduced
an approach to software documentation analysis, alloworignk software documen-
tation to code. They extract instances of previously defic@ucepts, like variables,
classes, methods, etc., using named entity recognitidnkeywords motivated by the
previously constructed ontology of programming concelptshe presented paper, we
have to deal with a more challenging situation, as therd®ris ontology of modeling
concepts, valid for all application domains.

To summarize, to the best of our knowledge, there is no agprtmarequirements
documents analysis, that is able to analyze documentsewritt non-restricted lan-
guage, and to extract behavior information from them.

References

1. Mich, L., Franch, M., Novi Inverardi, P.. Market reseam requirements analysis using

linguistic tools. Requirements Engineeri@2004) 40-56

Boehm, B.W.: Software Engineering Economics. Preritla#{1981)

3. Kof, L.: Scenarios: Identifying missing objects and aesi by means of computational lin-
guistics. In: 15th IEEE International Requirements Engiirgg Conference, New Delhi,
India, IEEE Computer Society Conference Publishing Ses/{2007) 121-130

4. Kof, L.: Treatment of Passive Voice and Conjunctions ie @ase Documents. In Kedad, Z.,
Lammari, N., Méthais, E., Meziane, F., Rezgui, Y., eds.pigation of Natural Language to
Information Systems. Volume 4592 of LNCS., Paris, Frangeinger (2007) 181-192

5. Kof, L.: From Textual Scenarios to Message Sequence €Hadusion of Condition Gen-
eration and Actor Extraction. In: 16th IEEE InternationadRirements Engineering Con-

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

ference, Barcelona, Spain, IEEE Computer Society Conéer@ublishing Services (2008)
331-332

. Kof, L.: Translation of Textual Specifications to Autormdtty Means of Discourse Context

Modeling. In Glinz, M., Heymans, P., eds.: Requirementsiiggying: Foundation for Soft-
ware Quality 15th International Working Conference, RERBQ9. Volume 5512 of LNCS.,
Springer (2009) 197-211

. Broy, M.: Informatik. Eine grundlegende Einfulhrung.lMme 2. Springer (1998)
. Abrial, J.R., Borger, E., Langmaack, H.: Formal Meth@mtsindustrial Applications: Spec-

ifying and Programming the Steam Boiler Control. Volume3d8LNCS. Springer (1996)

. Abrial, J.R., Borger, E., Langmaack, H.: The steam baifse study: Competition of formal

program specification and development methods. In Abrigl, Borger, E., Langmaack, H.,
eds.: Formal Methods for Industrial Applications. Volumsh of LNCS., Springer (1996)
Buhr, K., Heumesser, N., Houdek, F., Omasreiter, H.,h&wotehl, F., Tavakoli, R.,
Zink, T.: DaimlerChrysler demonstrator: System specificatinstrument cluster (2004)
http://ww. enpress-itea.org/deliverabl es/D5.1_Appendi x_B_v1.
0_Publ i ¢c_Ver si on. pdf , accessed 11.01.2007.

Kof, L.: Natural Language Processing: Mature EnougtRequirements Documents Anal-
ysis? In Montoyo, A., Munoz, R., Methais, E., eds.: Appiaraof Natural Language to
Information Systems. Volume 3513 of LNCS., Alicante, Sp&pringer (2005) 91-102
Witte, R., Li, Q., Zhang, Y., Rilling, J.: Ontological A&eMining of Software Documents. In
Kedad, Z., Lammari, N., Méthais, E., Meziane, F., Rezguij.eds.: Application of Natural
Language to Information Systems. Volume 4592 of LNCS.,R&nance, Springer (2007)
168-180

Clark, S., Curran, J.R.: Wide-coverage efficient diatisparsing with ccg and log-linear
models. Comput. LinguisB3 (2007) 493-552

Rupp, C.: Requirements-Engineering und -Managememntfe$sionelle, iterative An-
forderungsanalyse fir die Praxis. Second edn. Hansdee£2002) ISBN 3-446-21960-9.
Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: The lirsgigiapproach to the natural language
requirements quality: benefit of the use of an automatic tooR6th Annual NASA Goddard
Software Engineering Workshop, Greenbelt, Maryland, |IEEnputer Society (2001) 97—
105

Kamsties, E., Berry, D.M., Paech, B.: Detecting amhigsiin requirements documents us-
ing inspections. In: Workshop on Inspections in SoftwargiBeering, Paris, France (2001)
68 —80

Chantree, F., Nuseibeh, B., de Roeck, A., Willis, A.: nliifying nocuous ambiguities in
natural language requirements. In: RE '06: Proceedinghefltth IEEE International Re-
quirements Engineering Conference (RE’06), Washingtd, OSA, IEEE Computer Soci-
ety (2006) 56—65

Goldin, L., Berry, D.M.: AbstFinder, a prototype natuemguage text abstraction finder for
use in requirements elicitation. Automated Software Bnd.997) 375-412

Abbott, R.J.: Program design by informal English dggimns. Communications of the
ACM 26 (1983) 882-894

Sawyer, P., Rayson, P., Cosh, K.: Shallow knowledge asicato deep understanding in
early phase requirements engineering. |IEEE Trans. Softg. 3 (2005) 969-981

Vadera, S., Meziane, F.. From English to formal spedifioa. The Computer Journal
(1994) 753-763

Gervasi, V., Zowghi, D.: Reasoning about inconsis&nai natural language requirements.
ACM Trans. Softw. Eng. Methodol4 (2005) 277-330

Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil JL.. Propel: an approach supporting
property elucidation. In: ICSE’02: Proceedings of the 2itternational Conference on
Software Engineering, New York, NY, USA, ACM (2002) 11-21

