
Combining Model Checking and Deduction for I�O�Automata

Olaf M�uller and Tobias Nipkow�

TU M�uncheny

Abstract

We propose a combination of model checking and interactive theorem proving where the

theorem prover is used to represent �nite and in�nite state systems� reason about them

compositionally and reduce them to small �nite systems by veri�ed abstractions� As an

example we verify a version of the Alternating Bit Protocol with unbounded lossy and

duplicating channels� the channels are abstracted by interactive proof and the resulting

�nite state system is model checked�

� Introduction

The purpose of this paper is to combine the two major paradigms for the veri�cation of dis�
tributed systems� model checking and theorem proving� The advantages of each approach are
well known� model checking is automatic but limited to �nite state processes� theorem proving
requires user interaction but can deal with arbitrary processes� Recently attempts have been
made to combine the strength of both methods by using the deductive machinery of theorem
provers to reduce �large� correctness problems to ones which are small enough for model check�
ing� The key idea is abstraction whereby the state space is partitioned to obtain a smaller
automaton which is amenable to model checking� Of course the abstraction has to be sound
w�r�t� the property we want to check� if the abstracted automaton satis�es the property so
should the original automaton�

In our approach the theorem prover provides a common representation language and tools
for

� both �nite and in�nite state systems�

� checking the soundness of abstractions�

� reasoning about systems in a compositional manner�

Our work is based on Lynch and Tuttle�s Input�Output�Automata �IOA	
��
 as model of
distributed processes which have been embedded in the theorem prover Isabelle�HOL
��
� We
are interested in verifying safety properties of IOA� These safety properties are not expressed by
temporal logic formulae but again by IOA� Hence we need to check that the traces of one IOA C
�the implementation	 are included in the traces of another IOA A �the speci�cation	� Assuming
that C is in�nite or at least too large to check traces�C 	 � traces�A	 automatically� we de�ne
an intermediate automaton B which is an abstraction of C and should satisfy traces�C 	 �
traces�B	 � traces�A	� Thus we have achieved the following division of labor� traces�C 	 �
traces�B	� i�e� the soundness of the abstraction� is proved interactively in Isabelle� traces�B	 �

�Research supported by ESPRIT BRA ����� Types�
yAddress� Institut f�ur Informatik� Technische Universit�at M�unchen� �	
�	 M�unchen� Germany� Email�

fMueller�Nipkowg�Informatik�TU�Muenchen�De

�

traces�A	 is veri�ed automatically by a model checker� transitivity of � yields the desired
traces�C 	� traces�A	�

The main distinguishing feature of our approach is the ability to reason about the soundness
of arbitrary abstractions because we have the meta�theory of IOA at our disposal� Assuming
that the theorem prover and the formalization of IOA in it are correct� the only remaining source
of errors is the model checker which is treated like an oracle by the theorem prover� Note that
this includes the interface between model checker and theorem prover� which is particularly
critical because we need to ensure that the theorem prover formalizes exactly the logic the
model checker is based on�

The rest of the paper illustrates this approach using a particular example� namely an im�
plementation of the Alternating Bit Protocol using unbounded channels� This is in contrast to
pure model checking approaches where the channels are always of a �xed capacity �usually �	�
The key to the success of our approach is the fact that channels may lose and duplicate� but not
reorder messages� Thus is is possible to compactify channels without altering their behaviour
by collapsing all adjacent identical messages� This is what our abstraction from C to B does�
The full picture looks like this�

ABP

Ch

C

�
reduce

�Compositionality
ABP

RedCh

B

�Model Checking

abs
Speci�cation

A

The implementation C contains unbounded channels Ch which are abstracted�compacti�ed
by a function reduce� It is shown interactively that reduce is indeed an abstraction function�
i�e� traces�Ch	 � traces�RedCh	� B is the same as C except that collapsing channels are used�
Compositionality proves that C must be an implementation of B � i�e� traces�C 	 � traces�B	�
Although RedCh is not a �nite state system� it behaves like one if used in the context of the
ABP because at any one time there are at most two di�erent messages on each channel� Thus
B is a �nite state system� Note however� that we never need to prove this explicitly� This is
merely an intuition which is later con�rmed by the model checker which is given a description of
B and A together with an abstraction function abs between them� The model checker explores
the full state space of B verifying transition by transition that abs is indeed an abstraction� It
is only the successful termination of the model checker which tells us that B must be �nite�

��� Related work

Our paper is closely related to the work by Hungar
��
 who embeds a subset of OCCAM in the
theorem prover LAMBDA and combines it with an external model checker� The key di�erence
is that Hungar relies much more on unformalized meta�theory than we do� he axiomatizes
OCCAM�s proof rules instead of deriving them from a semantics� and does not verify the
soundness of his data abstractions�

The literature on abstraction for model checking is already quite extensive �see� for example�

�� �� �
	� The general idea is to compute an abstract program given a concrete one together with
an abstraction function�relation� The approach of Clarke et al� is in principle also applicable to
in�nite concrete systems� However� since they compute an approximation to the real abstract
program� the result is not necessarily �nite state� Nevertheless it would be interesting to
rephrase their ideas in terms of IOA and apply them to our example� In this case we would
not give B explicitly but would compute �via the rewriting machinery of the theorem prover	 a
�hopefully �nite state	 approximation of it�

�

Our work di�ers from most approaches to model checking because we do not check if an
automaton satis�es a temporal logic formula but if its traces are included in those of another
automaton� Although theoretically equivalent� automata can be compared by providing an
explicit abstraction function �or simulation relation	� abs above� The same approach is followed
in
��
 where abstraction functions are also used for reduction� and in
�
 where liveness is taken
into account� If the documentation aspect of an explicit abstraction function is not considered
important� one could also use a model checker which searches for an abstraction function using�
for example� the techniques of
�
� although this is bound to be less e�cient�

Finally there is the result by Abdulla and Jonsson
�
 that certain properties of �nite state
systems communicating via unbounded lossy channels are decidable� which they apply to the
Alternating Bit Protocol� However� in our work the channels can both lose and duplicate
messages� Hence their result does not apply directly�

� I�O�Automata in Isabelle�HOL

Isabelle notation� Set comprehension has the shape fe� Pg� where e is an expression and P a
predicate� Tuples are written between angle brackets� e�g� �s � a� t�� and are nested pairs with
projection functions fst and snd � If f is a function of type �� � �� � ��� application is written
f �x � y	 rather than f x y � Conditional expressions are written if �A�B �C 	� The empty list is
written

� and �cons� is written in�x� h �� tl � Function composition is another in�x� e�g� f � g �

��� I�O Automata

An IOA is a �nite or in�nite state automaton with labelled transitions� I�O automata� initially
introduced by Lynch and Tuttle
��
� are still under development� and the formalization we
used represents only a fragment of the theory one can �nd in recent papers
�
� For example� we
do not take care of fairness or time constraints� The details of the formalization can be found
in a previous paper
��
� so that we give only a brief sketch of the essential de�nitions inside
Isabelle�HOL�

An action signature is described by the type

��	signature � ��	set � ��	set � ��	set �

The �rst� second and third components of an action signature S may be extracted with inputs �
outputs � and internals � Furthermore� actions�S	 � inputs�S	� outputs�S	 � internals�S	� and
externals�S	 � inputs�S	�outputs�S	� Action signatures have to satisfy the following condition�

is asig�triple	 �

�inputs�triple	� outputs�triple	 � fg	�

�outputs�triple	 � internals�triple	 � fg	 �

�inputs�triple	� internals�triple	 � fg	

An IOA is a triple with type de�ned by

��� �	ioa � ��	signature � ��	set � �� � � � �	set

and it is further required that the �rst member of the triple be an action signature� the second
be a non�empty set of start states and the third be an input�enabled state transition relation�

IOA��asig � starts � trans�	 �

is asig�asig	� starts 	� fg � is state trans�asig � trans	�

�

The property of being an input�enabled state transition relation is de�ned as follows�

is state trans�asig �R	�

�
�s � a� t� � R� a � actions�asig		�

�
a � inputs�asig	�
s ��t � �s � a� t� � R	

The projections from an IOA are asig of � starts of � and trans of � The actions of an IOA are
de�ned acts � actions � asig of �

An execution�fragment of an IOA A is a �nite or in�nite sequence that consists of alternating
states and actions� In Isabelle it is represented as a pair of sequences� an in�nite state sequence
of type nat � state and an action sequence of type nat � �action	option� Here the option
datatype is de�ned as ��	option � None j Some��	 using an ML�like notation� A �nite
sequence in this representation ends with an in�nite number of consecutive Nones� Using this
representation� a step of an execution�fragment �as � ss� is �ss�i	� a� ss�i � �	� if as�i	 �
Some�a	� Formally�

is execution fragment�A� �as � ss�	 �

n a� �as�n	 � None
 ss�Suc�n		 � ss�n		�
�as�n	 � Some�a	
 �ss�n	� a� ss�Suc�n		� � trans of �A		

An execution of A is an execution�fragment of A that begins in a start state of A� If we
�lter the action sequence of an execution of A so that it has only external actions� we obtain a
trace of A� The traces of A are de�ned by

traces�A	 � f�lter��a�a � externals�asig of �A		� as	 � �ss � �as � ss� � executions�A	g

where �lter replaces Some�a	 by None if a is not an external action�

��� Composition and Re�nement

I�O automata provide a notion of parallel composition� In Isabelle this mechanism is realized
by a binary operator k� The de�nition simply re�ects the fact that each component performs
its locally de�ned transitions if the relevant action is part of its actions signature� otherwise it
remains unchanged�

A k B �

�asig comp�asig of �A	� asig of �B		�
f�u� v� � u � starts of �A	� v � starts of �B	g�
f�s � act � t� � �act � acts�A	� act � acts�B		�

if �act � acts�A	� �fst�s	� act � fst�t	� � trans of �A	� fst�s	 � fst�t		�
if �act � acts�B	� �snd�s	� act � snd�t	� � trans of �B	� snd�s	 � snd�t		g�

where an action signature composition is needed�

asig comp�S�� S�	 �

��inputs�S�	 � inputs�S�		� �outputs�S�	� outputs�S�		�
outputs�S�	 � outputs�S�	� internals�S�	 � internals�S�	�

Action signature composition presumes compatibility of actions� which is de�ned by

compatible�S�� S�	 �

�outputs�S�	 � outputs�S�	 � fg	�
�outputs�S�	 � internals�S�	 � fg	�
�outputs�S�	 � internals�S�	 � fg	

�

and is trivially extended to compatibility of automata�
For the aim of re�nement� we make use of abstraction functions which Lynch and Tuttle

call �weak possibility mappings�� The set of these maps is described by the following predicate�
which takes a function f �from concrete states to abstract states	� a concrete automaton C �
and an abstract automaton A�

is weak pmap�f �C �A	�
�
s� � starts of �C 	� f �s�	 � starts of �A		 �
�
s t a� reachable�C � s	��s � a� t� � trans of �C 	

 if �a � externals�asig of �C 		� �f �s	� a� f �t	� � trans of �A	� f �s	 � f �t			

The following theorem proved in Isabelle states that the existence of an abstraction function
from C to A implies that the traces of C are contained in those of A�

IOA�C 	� IOA�A	�
externals�asig of �C 		 � externals�asig of �A		�
is weak pmap�f �C �A	

 traces�C 	 � traces�A	

��� Renaming

As in
��
 we de�ne an operation for renaming actions� The motivation for this is modularity�
name clashes can be avoided and generic components can be plugged into di�erent environments�

rename � ��� �	ioa � �� � ��	option	 � ��� �	ioa

In contrast to
��
 we de�ne the action renaming function with type � � ��	option instead
of � � �� Therefore it does not have to be injective� which facilitates reasoning about such
functions�

rename�A� f 	 �

��fact � �act �� f �act	 � Some�act �	 � act � � inputs�asig of �A		 g�
fact � �act �� f �act	 � Some�act �	 � act � � outputs�asig of �A		 g�
fact � �act �� f �act	 � Some�act �	 � act � � internals�asig of �A		g��

starts of �A	�
f�s � act � t� � �act �� f �act	 � Some�act �	 ��s � act �� t� � trans of �A	g�

� Speci�cation

The Alternating Bit Protocol
�
 is designed to ensure that messages are delivered in order�
from a sender to a receiver� in the presence of channels that can lose and duplicate messages�
This FIFO�communication can be speci�ed by a simple queue and therefore a single automaton
Spec� As we are aiming for a �nite state system� we have to consider an additional point� The
sender bu�er of the implementation will not be able to store an unbounded number of incoming
messages� Restricting the number of input actions to yield a �nite sender bu�er is not allowed
because of the input�enabledness required of IOA�

What we really need is an assumption about the behaviour of the environment� namely that
it will only send the next message if requested to do so by an explicit action Next issued by
the system� In the IOA�model this can be expressed by including an environment IOA which
embodies this assumption� Therefore the speci�cation is a parallel composition of two processes�

Speci�cation � Env k Spec

and the interaction between them is shown in Fig� �� The two components Env and Spec are
described in the following subsections�

�

��
��
Env ��

��
Spec�

�
�

S msg

Next
R msg

Figure �� The Speci�cation

��� The Environment

Env models the assumption that the environment only outputs S msg when allowed to do so
by Next � The state of Env is a single boolean variable send next � initially true� which is set to
true by every incoming Next � S msg is enabled only if send next is true and sets send next to
false as a result�

Next input S msg�m	 output
post� send next � pre� send next

post� �send next �

where we use the following format to describe transition relations�

action �input j output j internal	
pre� P
post� Q

Predicate P is the constraint on the state s that must hold for the transition to apply� If it is
true� it is omitted� Predicate Q relates the state components before and after the transition�
we refer to the state components after the transition by decorating their names with a �� If no
state component changes� post is omitted�

��� The Speci�cation

The state of the IOA Spec is a message queue q � initially empty� modelled with the type �		list �
where the parameter 	 represents the message type� The only actions performed in the abstract
system are� S msg�m	� putting message m at the end of q � R msg�m	� taking message m from
the head of q � and Next � signaling the world outside to send the next message� Formally�

Next output S msg�m	 input R msg�m	 output
pre� true post� q � � q�
m
 pre� q � m �� rst

post� q � � rst

� Implementation

The system being proved correct also contains the component Env described in the previous
section�

Implementation � Env k Impl

Impl represents the Alternating Bit Protocol and is itself a parallel composition of � processes�

Impl � Sender k S Ch k Receiver k R Ch

�

��
��
Env ��

��
Sender ��

��
Receiver

�
�
�
�S Ch

�
�
�
�R Ch

�
� �

�
�
�
�
�� �

�
�
�
�
�R
�

�
�
�
�
���

�
�
�

�
�I

�
Next

S msg

S pkt R pkt

S ackR ack

R msg

Figure �� The Implementation

a sender� a receiver� and proprietary channels for both� The �data�ow� in the system is depicted
in Fig� �

Messages are transmitted from the sender to the receiver with a single header bit as packets
of type bool�	� The type of system actions� �		action� is described in Isabelle by the following
ML�style datatype�

�		action � Next j S msg�		 j R msg�		 j S pkt�bool � 		 j
R pkt�bool � 		 j S ack�bool	 j R ack�bool	

��� The Sender

The state of the process Sender is a pair�

Field Type Initial Value

message� �		option None
header � bool true

The Sender makes the following transitions�

Next output
pre� message � None

S msg�m	 input
post� message � � Some�m	 � header � � header

S pkt�b�m	 output
pre� message � Some�m	 � b � header

R ack�b	 input
post� if b � header

then message� � None � header � � �header
else message� � message � header � � header

Note that the presence of Env � i�e� the fact that the sender can control the �ow of incoming
messages via Next � enables us to get by with a bu�er of length � �modelled by �		option	 in
the sender� Next is only sent if the bu�er is empty� i�e� message � None�

��� The Receiver

The state of the process Receiver is also a pair di�ering from the Sender simply in the initial
value of the header variable�

�

Field Type Initial Value

message� �		option None
header � bool false

The Receiver makes the following transitions�

R msg�m	 output
pre� message � Some�m	
post� message� � None � header � � header

R pkt�b�m	 input
post� if b 	� header �message � None

then message� � Some�m	 � header � � �header
else message� � message � header � � header

S ack�b	 output
pre� b � header

Note that R pkt does not change the state unless message � None� This ensures that the
receiver has passed the last message on via R msg before accepting a new one� Alternatively�
one could add the precondition message � None to S ack which would preclude the sender
getting an acknowledgment and sending a new message before the receiver has actually passed
the old one on�

��� The Channels

The channels� R Ch and S Ch� have very similar functionality� Roughly speaking� messages are
added to a queue by an input action and removed from it by the corresponding output action�
In addition� there can be no change at all in order to model the possibility to lose messages
in case of the adding action and to duplicate messages in case of the removing action� The
only di�erences between the channels are the type of the messages delivered� packets for S Ch
and booleans for R Ch� and the speci�c names for input and output actions� S pkt and R pkt
or S ack and R ack � respectively� Therefore both channels can be designed as instances of a
generic channel using the renaming function described in section ��

This is done by introducing a new datatype ��	act � S��	 j R��	 of abstract actions and
de�ning an IOA Ch with a single state component q � ��	list by the following transition relation�

S�a	 input R�a	 output
post� q � � q � q � � q�
a
 pre� q 	�

 � a � hd�q	

post� q � � q � q � � tl�q	

In Isabelle we use a set comprehension format to describe transition relations� In the case of
Ch it looks like this�

Ch trans � f�s � act � s �� � case act of
S�a	 � s � � s � s � � s�
a

R�a	 � s 	�

 � a � hd�s	 �

�s � � s � s � � tl�s		 g

An automatic translation of the pre�post style into the set comprehension format is possible
and desirable but not the focus of our research�

The concrete channels are obtained from the abstract channel by rename�Ch� S acts	 and
rename�Ch�R acts	� where

S acts � �		action � �bool � 		 act option
R acts � �bool	action � �bool	 act option

�

map the concrete actions to the corresponding abstract actions� For example S acts is de�ned
by S acts�S pkt�b�m		 � Some�S��b�m�		� S acts�R pkt�b�m		 � Some�R��b�m�		 and
S acts�act	 � None for all other actions act �

� Abstraction

What we are aiming for is a �nite�state description of the Alternating Bit Protocol that is
re�ned by the given implementation described in the previous section� On the way there we
have to remove two obstacles�

�� The channel queues have to be �nite�

�� The message alphabet has to be �nite�

��� Finite Channels

Our attention is focused on this requirement� We de�ned an abstract version RedCh of Ch and
an abstraction function reduce from Ch to RedCh and prove is weak pmap�reduce�Ch�RedCh	�
The idea is based on the observation that at most two di�erent messages are held in each channel�
This is easily explained� each message is repeatedly sent to S Ch� until the corresponding
acknowledgment arrives� Once we switch to the next message� S Ch can only contain copies of
the previous message� Hence� S Ch�s queue is always of the form old�new�� The same is true
for R Ch� Thus� if all adjacent identical messages are merged� the channels have size at most
�� Fortunately� this reasoning never needs to be formalized but is implicitly performed by the
model checker�

����� Re�nement of Channels

A compacting channel RedCh is obtained from Ch if new messages are only added provided
they di�er from the last one added� Thus RedCh is identical to Ch except for action S �

S��	 input
post� q � � q � if a 	� hd�reverse�q		� q �

then q � � q�
a

else q � � q

By renaming RedCh we obtain the collapsed versions of R Ch and S Ch� called R RedCh and
S RedCh� Notice that the description is a priori not �nite� as q is an unbounded list� Finiteness
is only implied by the context� i�e� the behaviour of the protocol�

With the de�nition of an abstraction function reduce

reduce�

	 �

reduce�
x �� xs
	 � case xs of

 �
x

y �� ys � if �x � y � reduce�xs	� x �� reduce�xs		

we get the following re�nement goal�

is weak pmap�reduce�Ch�RedCh	

The proof of this obligation is rather straightforward� It proceeds by case analysis on the type
of actions� Using some lemmata on how reduce behaves when combined with operators like � or

�

tl � most cases are automatically solved by the conditional and contextual rewriting of Isabelle�
Finally� using the meta�theorem

is weak pmap�abs �C �A	

 is weak pmap�abs � rename�C � f 	� rename�A� f 		

we get the appropriate re�nement results for the concrete channels S Ch� R Ch and their
collapsed versions S RedCh and R RedCh�

����� Compositionality

In order to extend this re�nement result from the channels to the whole system� we have to
prove some compositionality results for re�nements� Lynch and Tuttle
��
 established the
required lemma on the level of trace inclusions� We decided� however� to prove it on the level
of abstraction functions for reasons of simplicity�

IOA�C�	 � IOA�C�	 � IOA�A�	 � IOA�A�	�
externals�asig of �C�		 � externals�asig of �A�		�
externals�asig of �C�		 � externals�asig of �A�		�
compatible�C��C�	 � compatible�A��A�	 �
is weak pmap�f �C��A�	 � is weak pmap�g �C��A�	

 is weak pmap���c�� c����f �c�	� g�c�	��C� k C��A� k A�	

Unfortunately� trace inclusion does not imply the existence of an abstraction function� Hence
the above theorem is not as general as the corresponding one about traces� in particular since
is weak pmap�id �A�A	 only holds if A has no internal actions� We intend to formalize and
prove compositionality on the trace level in the near future�

Performing the proofs of abstraction and compositionality with Isabelle we encountered a
mismatch between the time required for the re�nement proof and that required for the compat�
ibility checks� Nearly half the time ���� min on a SPARC station ��	 was needed to establish
that no component causes a name clash of input�output actions� These checks� although auto�
mated� are expensive if performed by a theorem prover� Partly this is caused by our decision to
have rename translate action names in the opposite direction one would expect �see section ���	�
something we may need to rethink�

��� Finite Number of Messages

The second requirement� the problem of abstracting out data from a data�independent program
has already been addressed by Wolper
��
� In his paper he shows how to reduce an in�nite
data domain to a small �nite one if data independence is guaranteed and the properties to be
checked are expressible in propositional temporal logic� In
�
 and
��
 this method is applied
to the Alternating Bit Protocol� There� only three di�erent message values are needed to verify
the protocol�s functional correctness�

Basically� a program is data�independent if its behaviour does not depend on the speci�c
data it operates upon� A su�cient condition for a program described by an IOA to be data
independent is that everywhere in the automaton the transitions are independent of the value
of messages being transmitted� An inspection of our description of the protocol shows that it
satis�es the condition�

In contrast to
�
 our speci�cation is not given as a collection of temporal formulae� but in
terms of I�O automata� Thus� the methods above are not directly applicable to our formalization
and until now� we did not investigate how to transfer them formally into our setting� However� it
is intuitively plausible that Wolper�s theory of data�independence holds generally� independently

��

of the respective formalization� That is why we analogously restricted our model checking
algorithm to deal with only three di�erent message values�

A formal treatment of data�abstraction in Isabelle�HOL needs a modi�cation of the way we
model data� Currently the diversity of data is modelled by polymorphic types�� But since types
are a meta�level notion and cannot be talked about �e�g� quanti�ed	 in HOL� even formalizing
data independence seems to be impossible� Using object�level sets instead of polymorphism
would cure this problem but is likely to complicate the theory�

� Model Checking

The task of the model checker is to verify that B � the implementation with collapsing channels
re�nes A� the speci�cation� It is done by a generic ML�function check

check�actions � internal � startsB �nextsB � startA� transA� abs	

where actions � ��	list is the list of all actions� internal � �� bool recognizes internal actions of
B � startsB � ��	list is the list of start states of B � nextsB � � � �� ��	list produces the list of
successor states in B � startsA � � � bool recognizes start states of A� transA � � � �� � � bool
recognizes transitions of A� and abs � � � � is the abstraction function�

It is easy to translate Isabelle�s predicative description of A�s transitions automatically
into an ML�function transA� For nextsB this is only possible if the predicates have a certain
recognizable form� for example disjunctions of assignments of values to the state components�
Otherwise how are we to compute the set of next states satisfying an arbitrary predicate� If ��
the state space of B �as opposed to the set of reachable states�	 is in�nite� this is impossible�
That is the main reason why we need to specify B � i�e� RedCh explicitly� otherwise we could
have described RedCh implicitly in terms of Ch and reduce�

The abstraction function abs is given by

abs�s	 � l�R�message	�if �R�header � S �header � l�S �message	� tl�l�S �message			

where l � ��	option � ��	list is de�ned by the equations l�Some�x		 �
x
 and l�None	 �

�
To distinguish between components of the receiver state and the sender state that have the
same �eld names� we use a dotted identi�er� notation� e�g� S �header and R�header �

It is also possible to generate abs automatically as a set of corresponding state pairs as done
in
��
� This would not allow to document abs explicitly� but it would mean a step forward
towards fully automatic support ! the major advantage of model checking�

check itself realizes the predicate is weak pmap�abs �B �A	 by simply performing full state
space exploration� Beginning with startsB the algorithm examines all reachable states� checking
for every transition �s�� a� s�� � trans of �B	 that either �abs�s�	� a� abs�s�	� � trans of �A	
�if a is external	 or abs�s�	 � abs�s�	 �if a is internal	�

At the moment the ML�code for the di�erent arguments of check is still generated manually�
However� we intend to automate this� subject to the restrictions on B described above� It should
also be noted that check is just a prototype which should be replaced by some optimized model
checker� for example the one described in
�
�

References

�
 P� Abdulla and B� Jonsson� Verifying programs with unreliable channels� In Proc� �th
IEEE Symp� Logic in Computer Science� pages ���"���� IEEE Press� �����

�It is not true that a polymorphic IOA is automatically data independent� HOL�formulae may contain the

polymorphic equality
�� which destroys data independence�

��

�
 S� Aggarwal� C� Courcoubetis� and P� Wolper� Adding liveness properties to coupled �nite�
state machines� ACM Transactions on Programming Languages and Systems� ����	����"
���� �����

�
 K� Bartlett� R� Scantlebury� and P� Wilkinson� A note on reliable full�duplex transmission
over half�duplex lines� Communications of the ACM� ����	����"���� �����

�
 E� M� Clarke� O� Grumberg� and D� E� Long� Model checking and abstraction� In Proc�
��th ACM Symp� Principles of Programming Languages� pages ���"���� ACM Press� �����

�
 D� Dams� O� Grumberg� and R� Gerth� Abstract interpretation of reactive systems� Ab�
stractions preserving
CTL�� �CTL� and CTL�� In E��R� Olderog� editor� Programming
Concepts� Methods and Calculi �PROCOMET	� pages ���"���� North�Holland� �����

�
 J��C� Fernandez and L� Mounier� �On the Fly� veri�cation of behavioural equivalences
and preorders� In K� G� Larsen� editor� Proc�
rd Workshop Computer Aided Veri�cation�
volume ��� of Lect� Notes in Comp� Sci�� pages ���"���� Springer�Verlag� �����

�
 R� Gawlick� R� Segala� J� Sogaard�Andersen� and N� Lynch� Liveness in timed and untimed
systems� Technical Report MIT�LCS�TR����� Laboratory for Computer Science� MIT�
Cambridge� MA�� December ����� Extended abstract in Proceedings ICALP����

�
 S� Graf and C� Loiseaux� A tool for symbolic program veri�cation and abstraction� In
C� Courcoubetis� editor� Computer Aided Veri�cation� volume ��� of Lect� Notes in Comp�
Sci�� pages ��"��� Springer�Verlag� �����

�
 P� Herrmann� T� Kraatz� H� Krumm� and M� Stange� Automated veri�cation of re�nements
of concurrent and distributed systems� Technical Report ���� Fachbereich Informatik�
Universit#at Dortmund� �����

��
 P� Herrmann and H� Krumm� Report on analysis and veri�cation techniques� Technical
Report ���� Fachbereich Informatik� Universit#at Dortmund� �����

��
 H� Hungar� Combining model checking and theorem proving to verify parallel processes� In
C� Courcoubetis� editor� Computer Aided Veri�cation� volume ��� of Lect� Notes in Comp�
Sci�� pages ���"���� Springer�Verlag� �����

��
 R� Kurshan� Reducibility in analysis of coordination� In K� Varaiya� editor� Discrete Event
Systems� Models and Applications� volume ��� of Lecture Notes in Control and Information
Science� pages ��"��� Springer�Verlag� �����

��
 N� Lynch and M� Tuttle� Hierarchical correctness proofs for distributed algorithms� Techni�
cal Report MIT�LCS�TR����� Laboratory for Computer Science� MIT� Cambridge� MA��
�����

��
 N� Lynch and M� Tuttle� An introduction to Input�Output automata� CWI Quarterly�
���	����"���� �����

��
 T� Nipkow and K� Slind� I�O automata in Isabelle�HOL� In Proc� TYPES Workshop �����
Lect� Notes in Comp� Sci� Springer�Verlag� To appear�

��
 K� Sabnani� An algorithmic technique for protocol veri�cation� IEEE Transactions on
Communications� ����	����"���� �����

��
 P� Wolper� Expressing interesting properties of programs in propositional temporal logic�
In Proc� �
th ACM Symp� Principles of Programming Languages� pages ���"���� ACM
Press� �����

��

