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Abstract� A formal veri�cation of the soundness and completeness of
Milner�s type inference algorithm W for simply typed lambda�terms is
presented� Particular attention is paid to the notorious issue of �new�
variables� The proofs are carried out in Isabelle�HOL� the HOL instan�
tiation of the generic theorem prover Isabelle�

� Introduction

Type systems for programming languages are usually de�ned by type inference
rules which inductively de�ne the set of well�typed programs� Functional lan�
guages of the ML�tradition also come with a type inference algorithm which
computes the �most general� type of a program� The inference algorithm needs
to be sound and complete w�r�t� the rules� the rules and the algorithm must
determine the same set of type correct programs�

The idea of type inference goes back to Hindley ���� Milner �	
� gave the �rst
account of type inference for a simply�typed lambda�calculus with let� the core
of ML �	��� In particular� he presented a type inference algorithm W based on
uni�cation of types� Although Milner
s original article only proves soundness of
W w�r�t� the rules� completeness has been settled in the mean time �
� ���� This
polymorphic type system forms the basis of most modern functional languages�
usually in some extended or generalized form� Each extension of the type system
requires a corresponding modi�cation of algorithm W � which again has to be
proved sound and complete� e�g� ��� 	�� 	�� ���� However� all these proofs have
been carried out in a mathematical or informal way� We are not aware of any
completely machine checked proof�

This paper presents a formalization of the original type system restricted to
the monomorphic case� The soundness as well as the completeness property of
the type inference algorithmW is formally established within the Isabelle�HOL
system� The paper provides the complete de�nition of all concepts� the key lem�
mas and theorems� but no proofs� The complete development is accessible via
http���www��informatik�tu�muenchen�de��nipkow�isabelle�HOL�MiniML��

The rest of the paper is organized as follows� after a brief introduction to Isa�
belle�HOL in Section �� Section � deals with the formalization of the type level�
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It includes theories of substitution and uni�cation and the treatment of �new�
type variables� In Section 
 the type inference system is presented� Algorithm
W is formalized in Section �� we brie�y show how to model exception handling
in a functional style using monads and discuss the soundness and completeness
proofs of W� In Section � we compare our case study to related work� Section �
concludes with some lessons learned and some future work�

� Isabelle�HOL

Isabelle is an interactive theorem prover which can be instantiated with di�er�
ent object logics� One particularly well�developed instantiation is Isabelle�HOL�
which supports Church
s formulation of Higher Order Logic and is very close
to Gordon
s HOL system ���� In the remainder of the paper HOL is short for
Isabelle�HOL�

We present no proofs but merely de�nitions and theorems� Hence it su�ces to
introduce HOL
s surface syntax� A detailed introduction to Isabelle and HOL can
be found elsewhere �	��� We have intentionally refrained from recasting HOL
s
ASCII syntax in ordinary mathematical symbols to give the reader a bit of an
idea what interacting with HOL looks like�

Terms and formulae The following table summarizes the correspondence be�
tween ASCII and mathematical symbols�

�� �� � � ��	� 

	 � � 
� 

 �
 � Un UN 



� � � �� � � � �� � �
S

�� 	

The two universal quanti�ers� implications and equalities stem from the ob�
ject and meta�logic� respectively� The distinction can be ignored while read�
ing this paper� The notation �� A�� � � � �An �� 

	 A is short for the nested
implication A� �� � � � �� An �� A� The predicate 

 is overloaded and
applies to natural numbers ��� and to sets �	��

Types follow the syntax for ML�types� except that the function arrow is 
	

rather than �	� The notation ���� � � ���n� 
	 � abbreviates �� 
	 � � �
	

�n 
	 � � A term t is constrained to be of type � by writing t��� �
Isabelle also provides Haskell�like type classes ���� the details of which are
explained as we go along� A type variable �a is restricted to be of class c by
writing �a��c�

Theories introduce constants with the keyword consts� non�recursive de��
nitions with defs� and primitive recursive de�nitions with the keyword
primrec� For general axioms the keyword rules is used� Further constructs
are explained as we encounter them�

Although we do not present any of the proofs� we usually indicate their
complexity� If we do not state any complexity the proof is almost automatic� That
means� it is either solved by rewriting or by the �classical reasoner�� fast�tac in
Isabelle parlance �	��� The latter provides a reasonable degree of automation for
predicate calculus proofs� Note� however� that its success depends on the right
selection of lemmas supplied as parameters�
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� Types and Substitutions

This section describes the language of object�level types used in our case study�
They should not be confused with Isabelle
s built�in meta�level type system
described in the previous section� To emphasize this distinction we sometimes
call the object�level types type terms�

��� Types

Type terms consist only of type variables and the function space constructor�
They are expressed as an inductive data type with two constructors� Type vari�
ables are modeled by natural numbers�

datatype typ � TVar nat � 	�
	 typ typ �infixr �
�

We do not need quanti�ed types because our term language does not contain
let�expressions�

��� Substitution

A substitution is a function mapping type variables to types� In HOL� all func�
tions are total� The identity substitution is denoted by id�subst�

types subst � nat �
 typ

consts id�subst �� subst

defs id�subst �� ��n�TVar n�

Substitutions can be extended to type terms� lists of type terms� etc� Type
classes� i�e� overloading� allow us to use the same notation in all of these cases�

classes type�struct � term

introduces a new class type�struct as a subclass of term� the prede�ned class
of all HOL types� Class type�struct is meant to encompass all meta�level types
which substitutions can be applied to� This is expressed by declaring

consts app�subst �� �subst� �a��type�struct� �
 �a �	�	�

The purpose of app�subst is to apply substitutions to values of types in class
type�struct� � is syntactic sugar for app�subst� Because identi�ers in Isabelle
do not contain ��� we may write �s instead of � s� The notation �s emphasizes
that we regard � as a modi�er acting on the substitution s�

So far there is no de�nition of app�subst� but there will be several� one for
each instance of �a we are interested in� Hence app�subst will be overloaded�
In Haskell� app�subst is a member function of class type�struct�

Now we want to turn typ into an element of class type�struct by extending
substitutions from type variables to types in the usual fashion� This requires two
steps� First we simply tell Isabelle that typ is an element of type�struct�

arities typ �� type�struct
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The general form of the arities declaration is t �� �C�� � � � � Cn�C� where t

must be an n�ary type constructor� It expresses that ���� � � � � �n�t is of class C
provided each �i is of class Ci�

Then we de�ne the appropriate instance of app�subst by primitive recursion
over typ�

primrec app�subst typ

� s �TVar n� � s n

� s �t� �
 t�� � �� s t�� �
 �� s t��

In Haskell� both steps are combined into the instance construct�

In the same way we extend app�subst to lists�

arities list �� �type�struct�type�struct

Hence ���list is of class type�struct provided the element type � is� A sub�
stitution is applied to a list by mapping it over that list� where map is prede�ned�

defs � s �� map �� s�

Note that � s on the left has type �a list 
	 �a list and on the right type
�a 
	 �a� where �a��type�struct�

In the sequel� a type structure is a type in class type�struct�

Now we can prove that the extension of the identity substitution to type
terms and list of type terms again yields identity functions�

� id�subst � ��t��typ�t�

� id�subst � ��ts��typ list�ts�

For the composition of substitutions the following propositions hold�

� g �� f t��typ� � � ��x� � g �f x� � t

� g �� f ts��typ list� � � ��x� � g �f x�� ts

��� Free Type Variables

The set of type variables occurring in a type structure is denoted by free�tv�
Again� we overload this function by using class type�struct� The de�nitions
below describe the usual behaviour of the typ and list instances� respectively�

consts free�tv �� �a��type�struct �
 nat set

primrec free�tv typ

free�tv �TVar m� � �m�

free�tv �t� �
 t�� � �free�tv t�� Un �free�tv t��

primrec free�tv list

free�tv �� � ��

free�tv �x�xs� � free�tv x Un free�tv xs

Note that in�x � �� ��a� �a list� 
	 �a list is the list constructor adding
an element to the front of a list�






These de�nitions enable us to show some interesting properties�

�� � s� �t��typ� � � s� t� n � free�tv t �� ��
 s� n � s� n

��n� n� free�tv t ��
 s� n � s� n� ��
 � s� �t��typ� � � s� t

�t��typ� mem ts ��
 free�tv t �� free�tv ts

The �rst one states that if applying two di�erent substitutions to the same type
term yields the same result� then the substitutions coincide on the free type
variables occurring in the type term� The second one reverses this implication�
The third one states that if a type term is an element �in�x mem� of some list�
then the set of free type variables of the type term is a subset of the set of free
type variables of the list� The �rst two propositions have also been proved for
lists of type terms�

Domain and codomain of a substitution are de�ned in the usual way�

consts dom� cod �� subst �
 nat set

defs dom s �� �n� s n �� TVar n�

cod s �� UN m�dom s� free�tv �s m�

The set of variables occurring either in the domain or the codomain of a
substitution is called the set of free variables of a substitution� We want to use
the identi�er free tv to denote this set� Hence� we must add type subst to class
type struct� Type subst� however� is only an abbreviation for the composed
type nat 
	 typ� Just like Haskell� Isabelle does not allow to add composed
types to type classes directly� Instead� we must state the propagation of class
membership for the type constructor 
	� We already met this mechanism when
adding the list types to class type struct� In the same way we de�ne an arity
for the type constructor 
	 which is the in�x name for fun�

arities fun���term�type�struct�type�struct

Because nat��term and typ��type struct� this implies subst��type struct�
Note� however� that it also implies further types to belong to class type struct�
for example bool 
	 typ� This may seem a bit permissive but does no harm�
Now we can de�ne the subst instance of free tv�

defs free�tv s �� �dom s� Un �cod s�

We do not de�ne other possible instances of free tv� Neither do we provide an
instance for function app subst at type subst�

The following lemmas capture important relationships between substitution
application and free type variables�

free�tv �� s �t��typ�� �� cod s Un free�tv t

�� v � free�tv�s n�� v �� n �� ��
 v � cod s

free�tv ��n��nat� � s� �s� n� �� typ� �� free�tv s� Un free�tv s�

We need these propositions in the soundness and completeness proofs of the type
inference algorithm�
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��� New Type Variables

Algorithm W needs to generate new type variables� This mechanism is rarely
formalized in the description of the algorithm� It is simply assumed that there
always exists some type variable never used before� However� to perform formal
proofs we have to completely formalize the algorithm� The obvious way of han�
dling the generation of new type variables is as follows� the set of already used
type variables is explicitly passed to W � all new variables generated during the
execution are added to this set� and the enlarged set is returned upon successful
termination �	��� Because we use natural numbers for type variables we have a
total ordering on these variables� Instead of passing all used type variables to
W � we only pass the successor of the greatest one used up to now� Each time
algorithmW needs a new type variable it uses the counter and increments it by
one� Predicate new tv formalizes our notion of a new type variable� It takes a
type variable and a type structure and determines whether the given variable is
greater than any type variable occurring in the structure� Such a type variable
is called new w�r�t� the structure�

consts new�tv �� �nat��a��type�struct� �
 bool

defs new�tv n ts �� � m� m�free�tv ts ��
 m�n

This predicate is a necessary precondition for most propositions about algorithm
W � To prove these propositions we need some theorems about new tv� The �rst
one is quite simple� it states that all greater type variables are also new type
variables� This holds not only for type terms� but also for lists of type terms and
for substitutions�

�� n��m� new�tv n �t��typ� �� ��
 new�tv m t

This proposition is proved by induction on the structure of t� The next theorems
show how substitutions and new tv interact�

�� new�tv n s� new�tv n �t��typ� �� ��
 new�tv n �� s t�

�� new�tv n �s��subst�� new�tv n r �� ��
 new�tv n ��� r� o s�

new�tv n s � ���m� n �� m ��
 s m � TVar m� �

�� l� l � n ��
 new�tv n �s l� ��

The �rst two theorems tell us that the new type variable property is preserved by
application and composition �o� of substitutions� The third one is more complex
to express and prove� it requires about 	� proof steps�

��� Uni�cation

The goal of uni�cation is to unify two terms� i�e� to �nd a substitution of terms
for variables which makes the two terms syntactically identical� A uni�cation

algorithm either computes a most general uni�er of two terms or fails� if the two
terms are not uni�able� The �rst in a long line of uni�cation algorithms is due
to Robinson ��	�� Of course the correctness of type inference does not depend on
any particular implementation of uni�cation but merely on general properties of
uni�cation� Therefore we introduce a functionmgu �most general uni�er�� specify
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its characteristic properties� but provide no implementation� This is the only
point in the whole development where we introduce new axioms as opposed to
consistency preserving de�nitions� Of course we know that a function mgu which
satis�es the axioms exists� Alternatively� we could have made mgu a parameter
of all functions using it and the axioms about mgu preconditions of the theorems
about those functions� However� that is overkill because mgu is not intended as
a parameter of individual functions but of the whole development� It requires
some form of parameterized theories to express this�

Uni�cation may fail� To model the distinction between a successful compu�
tation and a failure situation we de�ne

datatype �a maybe � Ok �a � Fail

Uni�cation either terminates normally returning Ok�s� for some substitution s�
or indicates a failure situation by returning Fail�

consts mgu �� �typ�typ� �
 subst maybe

A most general uni�er should satisfy the following three axioms�

rules mgu t� t� � Ok u ��
 �u t� � �u t�

�� mgu t� t� � Ok u� �s t� � �s t� �� ��
 � r� s � �r o u

�s t� � �s t� ��
 � u� mgu t� t� � Ok u

The �rst axiom requires the result of mgu to be a uni�er of the given type terms�
The second one states that the computed uni�er is a most general one� each
uni�er can be obtained by composing the computed one with some substitution�
The third one requires mgu to return an Ok result if the two types are uni��
able� This prevents trivial implementations which satisfy the �rst two axioms by
always returning Fail�

Most general uni�ers are only unique up to consistent renaming of variables�
Such a renaming may even introduce type variables not occurring in the type
terms to unify� However� because we want to keep track of used variables we
need one last axiom�

mgu t� t� � Ok u ��
 free�tv u �� free�tv t� Un free�tv t� ���

This ensures that the algorithm does not introduce new type variables� We can
then show that uni�cation preserves the new type variable property�

�� mgu t� t� � Ok u� new�tv n t�� new�tv n t� �� ��
 new�tv n u

� Well�Typed Lambda Terms

Lambda terms are represented in de Bruijn notation ��� which can conveniently
be expressed as an inductive data type with three constructors for variables�
abstraction and application�

datatype expr � Var nat � Abs expr � App expr expr
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The index i in a subterm Var i indicates that� when moving upward� i ab�
stractions must be traversed until the corresponding binder is found� For exam�
ple� �x�x��y�y x� becomes Abs�App�Var ���Abs�App�Var ���Var ������ This
shows that

� di�erent occurrences of the same index may represent di�erent bound vari�
ables� and

� di�erent occurrences of the same bound variable may be represented by
di�erent indexes� depending on how far below the binding � they are�

Free variables are those without enough enclosing applications� e�g� Var � on its
own�

Note that we have restricted our language to pure lambda terms without let�
construct� Because let�bound identi�ers are the only source of polymorphism
in ML�like languages we do not need quanti�ed type terms�

The datatype expr represents all untyped lambda�terms� Now we need to
de�ne the subset of well�typed lambda�terms� To keep track of the types of
bound variables we use a context assigning type terms to variables� Because we
use de Bruijn notation this context is simply a list of type terms� The type of
variable i can be found at the i�th list position� Well�typedness is a relative
notion because it depends on the context� Therefore we introduce a relation
between contexts� lambda�terms and type terms�

consts has�type �� �typ list � expr � typ�set

The proposition �a�e�t��has type should be read as �In context a expression
e has type t�� This allows a term to have more than one type in a given context�
The following bit of syntactic sugar �which we will not explain in detail� allows
us to read and write the more conventional a �� e �� t�

syntax 	 has�type	�� �typ list�expr�typ� �
 bool �	� �� � �� �	 !
�

translations a �� e �� t �� �a�e�t� � has�type

Warning � the delimiter �� is now used for type annotations both in the logic
and in the object level lambda�terms �expr�� The latter is easily distinguished
by its leading ���

Relation has type is de�ned inductively� i�e� by a set of inference rules�
Proposition a �� e �� t holds i� it can be derived from the inference rules�
HOL provides a package for de�ning inductive sets� The following text de�nes
has type to be the least set closed under the given inference rules�

inductive has�type

�� n � length a �� ��
 a �� Var n �� nth n a

�� t��a �� e �� t� �� ��
 a �� Abs e �� t� �
 t�

�� a �� e� �� t� �
 t�� a �� e� �� t� �� ��
 a �� App e� e� �� t�

Note that nth �� �nat� �a list� 
	 �a selects the nth element of a list�
Modulo the fact that we use de Bruijn notation� these are the usual type

inference rules for lambda terms� The reader not familiar with this type system
is referred to ���� Note that the simplicity of the Abs�rule is due to de Bruijn
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notation� the extended context t��a takes care of the fact that when descending
into an abstraction all references to variables bound outside shift by 	�

The following theorem shows that has type is closed w�r�t� substitution�

a �� e �� t ��
 � s a �� e �� � s t

It is proved by induction on the derivation of a �� e �� t� This leads to three
subgoals �corresponding to the three inference rules given above�� each of which
is proved almost automatically�

� Type Inference

The purpose of type inference �or type reconstruction� is to �nd the most general
type t for a given term e in a given context a such that a �� e �� t� Inter�
preting the type inference rules as a Prolog program yields such a type inference
algorithm� Using a functional implementation language� the computation of a
most general type requires a separate algorithm which was �rst presented by
Milner �	
� who called the algorithm W �Well�typing��

��� Programming with Monads

Given a context a and a term e� there may be no type t such that a �� e �� t�
In this case W should �fail� with some meaningful error message� The easiest
way of handling error messages is to use so�called impure features� like side e�ects
or exceptions� Wadler ���� introduced the idea that monads could be used as a
practical method for modeling such impure features in a purely functional way�
In this paper we only give a brief introduction into programming with monads�
A good presentation of this topic can be found in ��
��

A monad is a data type consisting of a type constructor M and two operations
unit and bind with the following functionalities�

unit �� �a �
 �a M

bind �� ��a M� �a �
 �b M� �
 �b M

A value of type �a M represents a computation which is expected to produce a
result of type �a� Function unit turns a value into the computation that returns
that value and does nothing else� Function bind provides a means of combining
computations� It applies a function of type �a 
	 �b M to a computation of type
�a M�

We already met a monad in this paper� in connection with uni�cation� where
failure is also an issue� Together with appropriate unit and bind functions� type
constructor maybe forms a monad� Values of type �a maybe represent computa�
tions that may raise an exception� Constructor Ok denotes the unit function� It
turns a value a into Ok a� Because we only gave an abstract requirement spec�
i�cation for mgu we did not explain how to propagate failures� This is the task
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of the bind function de�ned in the following way�

consts bind �� ��a maybe� �a �
 �b maybe� �
 �b maybe �infixl !
�

defs m bind f �� case m of Ok r �
 f r � Fail �
 Fail

The call m bind f examines the result of the computation m� if it is a failure� it is
propagated� otherwise the function f is applied to the value of the computation�
In most cases f is expressed as a ��term�

m bind ��x�c�

This can be read as follows� perform computation m� bind the resulting value
to variable x� and then perform computation c� In an imperative language this
would be expressed in the following way�

x �� m� c

The powerful translation mechanism of Isabelle allows us to use exactly this
notation for the bind function�

syntax 	 bind	 �� �pttrns��a maybe��b maybe� �
 �b �	� �� �� �	 
�

translations P �� E� F �� E bind ��P�F�

Now we can de�ne algorithmW in an imperative style without using any impure
feature�

Warning � do not confuse the monad ��� with the separator for hypotheses�

��� Algorithm W

IfW succeeds� it returns a substitution s and a type t such that �s a �� e��t�
At certain pointsW requires new type variables� As already explained in Section
��
� we handle the generation of new type variables by passing the successor of
the greatest type variable used up to now� Thus� we need an additional result
component for this counter� Altogether� W has the following type�

consts W �� �expr� typ list� nat� �
 �subst � typ � nat�maybe

W is recursively de�ned on the term structure� Because the type inference rules
given in Section 
 are syntax�directed� each case of function W corresponds to
exactly one rule�

primrec W expr

W �Var i� a n � �if i � length a then Ok�id�subst� nth i a� n�

else Fail�

W �Abs e� a n � � �s�t�m� �� W e ��TVar n��a� �Suc n��

Ok�s� �s n� �
 t� m� �

W �App e� e�� a n � � �s��t��m�� �� W e� a n�

�s��t��m�� �� W e� ��s� a� m��

u �� mgu ��s� t�� �t� �
 �TVar m����

Ok��u o �s� o s�� �u �TVar m��� Suc m�� �

A call W e a n fails if a contains no entry for some free variable in e� or if a
call of the uni�cation algorithm mgu fails� The failure propagation is invisibly
handled by our mix�x bind notation�
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The main goal of this case study was to formally show the correctness of
algorithm W � Correctness is de�ned as soundness and completeness w�r�t� the
type inference rules� We start with soundness of W �

W e a n � Ok�s�t�m� ��
 �s a �� e �� t

This proposition is shown by induction on the structure of e� The proof can be
performed directly� without any additional auxiliary proposition� However� both
the Abs and App case require explicit instantiation of variables� Therefore the
user needs to be familiar with the details of the proof� An automatic proof which
synthesizes these instantiations seems unlikely�

��� Completeness of W

The proof of completeness of W w�r�t� the type inference rules is more complex�
We have to prove some auxiliary lemmas �rst� All these lemmas deal with the
problem of new type variables� In mathematical proofs about type inference al�
gorithms this problem is simply ignored� The �rst lemma states that the counter
for new type variables is never decreased�

W e a n � Ok �s�t�m� ��
 n��m

It is proved by induction on the structure of e and in turn helps us to prove the
following lemma�

�� new�tv n a� W e a n � Ok �s�t�m� �� ��
 new�tv m s � new�tv m t

It says that the resulting type variable is new w�r�t� the computed substitution
as well as the computed type term� This fact ensures that we can safely use the
returned type variable as new type variable in subsequent computations� Again
we use induction on the structure of e� The most di�cult part of the proof is
case App e� e�� It takes about �� proof steps� the degree of automation is quite
low�

Now we can prove a proposition that seems to be quite obvious� Roughly
speaking� it says that type variables free in either the computed substitution or
the computed type term did not materialize out of the blue� they either occur
in the given context or were taken from the set of new type variables� Formally�
the proposition is expressed as follows�

�� W e a n � Ok �s�t�m�� v � free�tv s � v � free�tv t� v�n ��

��
 v � free�tv a

The proof is performed by induction on the structure of term e� The complexity
of this proof is roughly the same as the complexity of the last proof�

With the help of these propositions we are able to show completeness of W
w�r�t� the type inference rules� if a closed term e has type t� then W terminates
sucessfully and returns a type which is more general than t�� i�e� t� is an instance
of that type�

�� �� e �� t� ��
 � s t� �� m� W e �� n � Ok�s�t�m�� �

�� r� t� � �r t��

		



This proposition needs to be generalized considerably before it is amenable to
induction�

�� �s� a �� e �� t�� new�tv n a ��

��
 � s t� �� m� W e a n � Ok �s�t�m�� �

�� r� �s� a � �r ��s a� � t� � �r t��

This theorem is the most di�cult one to prove� Although the proof plan in �	��
is quite detailed� translating it into Isabelle turned out to be hard work� The
proof starts with an induction on the structure of term e� Again� case App e� e�

causes most of the problems� Proving this case requires about �� proof steps�
Isabelle is used mainly to keep track of the proof and to avoid foolish mistakes�

Let us have a brief look at the App case� the main problem is to show suc�
cessful termination� The algorithm may fail during uni�cation of �s� t� and
t� �	 �TVar m��� Hence� we have to prove that these terms are indeed uni��
able� i�e� that there exists a substitution u such that

�u ��s� t�� � �u �t� �
 �TVar m����

In our proof we use the witness u given in �	��� which di�ers slightly from the
one used in much of the published literature �for example ��� 	���� We establish
that this witness is indeed a uni�er for the above type terms�

��� Algorithm I

Milner �	
� also presents a more e�cient re�nement of algorithm W called I�
where substitutions are extended incrementally instead of computing new sub�
stitutions and composing them later� We have also formalized I �

consts I �� �expr� typ list� nat� subst� �
 �subst � typ � nat�maybe

primrec I expr

I �Var i� a n s � �if i � length a then Ok�s�nth i a�n� else Fail�

I �Abs e� a n s � � �s�t�m� �� I e ��TVar n��a� �Suc n� s�

Ok�s� TVar n �
 t� m� �

I �App e� e�� a n s �

� �s��t��m�� �� I e� a n s�

�s��t��m�� �� I e� a m� s��

u �� mgu ��s� t�� ��s� t� �
 TVar m���

Ok��u o s�� TVar m�� Suc m�� �

and shown that it correctly implements W �

�� new�tv m a� new�tv m s� I e a m s � Ok�s��t�n� ��

��
 � r� W e ��s a� m � Ok�r� �s� t� n� � s� � ��r o s�

�� new�tv m a� new�tv m s� I e a m s � Fail ��

��
 W e ��s a� m � Fail

For lack of space� the details cannot be presented here�

� Ideally� mgu should take the substitution s� as a separate argument� For simplicity
we have applied s� explicitly to the two type arguments of mgu�

	�



� Comparison

The literature contains many accounts of type systems and type inference al�
gorithms for lambda�terms which boil down to the rules and algorithm we
used �	
� �� 
� �� ��� 	�� However� ours seems to be the �rst formal veri�ca�
tion of W � There are three key di�erences between the existing literature and
our formal proof�

	� We do not treat let� This is a regrettable omission but is justi�ed by the
complexity of the formal proof for the let�free system�

�� We treat the issue of �new� variables� which is almost universally ignored
�an exception is �	���� Ironically� it is this very issue which really complicates
the proof for us�

�� In the literature� completeness of W is always proved under the assumption
that the uni�cation algorithm returns idempotent substitutions� In contrast�
we require axiom ��� �see the end of Section ����� which turns out to be
weaker than idempotence�

We would like to concentrate on the last point for a moment� employing the
usual mathematical notation from uni�cation theory �	���

A substitution � is idempotent if �
� � �� Axiom ��� requires V ��� 	 V �s� t�
for the mgu � of two terms s and t� where V ��� � dom��� � cod��� and V �s� t�
is the set of variables in s and t�

Theorem�� Let � be a most general uni�er of s and t� If � is idempotent� then

V ��� 	 V �s� t��

Proof� It is known that V ���� � V ���� holds for any two idempotent mgus of
s � t �		� Prop� 
�		�� If s and t are uni�able� there exists an idempotent mgu
�� such that V ���� 	 V �s� t� �use any of the standard uni�cation algorithms��
Thus the claim follows for every idempotent mgu ��

Idempotence is strictly stronger than the variable condition as the following
example �		� shows� � � fx �� f�x�� y �� xg is a most general uni�er of x � f�y�
which satis�es the variable condition but is not idempotent�

Thus we have veri�ed W under weaker assumptions than usual� However�
this is merely a theoretical curiosity� practical uni�cation algorithms do return
idempotent substitutions� In fact� it is hard to imagine a uni�cation algorithm
computing � in the example above�

The only other published formal veri�cation of a type checking algorithm
we are aware of is by Pollack ����� His object�language �a subset of �Pure Type
Systems�� is much more powerful than ours but his terms already contain types�
Hence he does not need a separate theory of substitutions and uni�cation to sup�
port type inference� On the other hand his proofs involve a substantial amount of
lambda�calculus theory� and he also faces the issue of new �term� variables �	���
A �nal di�erence is that he does not verify an explicit algorithm but performs a
constructive proof which embodies the algorithm�

	�



� Conclusion and Future Work

The results of this case study can be summarized as follows�

Speci�cation� Isabelle�HOL o�ers a mature speci�cation environment with a
�exible syntax �mix�x� and type system �classes��

Proof� Isabelle�HOL provides some automation on the predicate calculus level�
but not nearly enough for our case study� Especially reasoning by transi�
tivity and monotonicity needs to be improved� Decidable subtheories �e�g�
fragments of nat and set� and better predicate calculus support would help�
but they need to be interleaved with user interactions for providing key in�
stantiations�

W� The proof has con�rmed our suspicion that the issue of �new� variables is
nontrivial� Although it is true that the formalization of this aspect has not
given us any deeper insight into the algorithm� it has helped us to elucidate
some �ner points like the non�requirement of idempotence� It also helps to
avoid mistakes� Although we are not aware of any incorrect published proofs
of W � they do occur in closely related areas� for example� the completeness
statement and proof of SLD�resolution in �	�� are incorrect because they
ignore the �new� variable issue�
Despite all this� the proof has left us with the feeling that there should be a
simpler way to treat variables and substitution� However� this is only brought
to a head by the requirement for complete formalization and is a sentiment
known to most people who have worked with substitutions�

The most important next step is to extend the object�language with a let�
construct and polymorphic types� Although we do not expect any major new
problems� it is likely to be a substantial piece of work�
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