Formal Verification of Algorithm W:
The Monomorphic Case

Dieter Nazareth* and Tobias Nipkow

Technische Universitat Miinchen™*

Abstract. A formal verification of the soundness and completeness of
Milner’s type inference algorithm W for simply typed lambda-terms is
presented. Particular attention is paid to the notorious issue of “new”
variables. The proofs are carried out in Isabelle/HOL, the HOL instan-
tiation of the generic theorem prover Isabelle.

1 Introduction

Type systems for programming languages are usually defined by type inference
rules which inductively define the set of well-typed programs. Functional lan-
guages of the ML-tradition also come with a type inference algorithm which
computes the (most general) type of a program. The inference algorithm needs
to be sound and complete w.r.t. the rules: the rules and the algorithm must
determine the same set of type correct programs.

The idea of type inference goes back to Hindley [7]. Milner [14] gave the first
account of type inference for a simply-typed lambda-calculus with let, the core
of ML [15]. In particular, he presented a type inference algorithm W based on
unification of types. Although Milner’s original article only proves soundness of
W w.r.t. the rules, completeness has been settled in the mean time [4, 25]. This
polymorphic type system forms the basis of most modern functional languages,
usually in some extended or generalized form. Each extension of the type system
requires a corresponding modification of algorithm W, which again has to be
proved sound and complete, e.g. [9, 17, 16, 22]. However, all these proofs have
been carried out in a mathematical or informal way. We are not aware of any
completely machine checked proof.

This paper presents a formalization of the original type system restricted to
the monomorphic case. The soundness as well as the completeness property of
the type inference algorithm W is formally established within the Isabelle/HOL
system. The paper provides the complete definition of all concepts, the key lem-
mas and theorems, but no proofs. The complete development is accessible via
http://wwwd.informatik.tu-muenchen.de/ nipkow/isabelle/HOL/MiniML/.

The rest of the paper is organized as follows: after a brief introduction to Isa-
belle/HOL in Section 2, Section 3 deals with the formalization of the type level.

* Research supported by ESPRIT BRA 6453, Types.
** Institut fir Informatik, 80290 Miinchen, Germany.
http://www4.informatik.tu-muenchen.de/~{nazareth,nipkow}/

It includes theories of substitution and unification and the treatment of “new”
type variables. In Section 4 the type inference system is presented. Algorithm
W is formalized in Section 5: we briefly show how to model exception handling
in a functional style using monads and discuss the soundness and completeness
proofs of W. In Section 6 we compare our case study to related work. Section 7
concludes with some lessons learned and some future work.

2 Isabelle/HOL

Isabelle is an interactive theorem prover which can be instantiated with differ-
ent object logics. One particularly well-developed instantiation is Isabelle/HOL,
which supports Church’s formulation of Higher Order Logic and is very close
to Gordon’s HOL system [6]. In the remainder of the paper HOL is short for
Isabelle/HOL.

We present no proofs but merely definitions and theorems. Hence it suffices to
introduce HOL’s surface syntax. A detailed introduction to Isabelle and HOL can
be found elsewhere [18]. We have intentionally refrained from recasting HOL’s
ASCII syntax in ordinary mathematical symbols to give the reader a bit of an
idea what interacting with HOL looks like.

Terms and formulae The following table summarizes the correspondence be-
tween ASCII and mathematical symbols:

v hl->, => & | | |=,==|"=|:|Un|UN| <=
vV 13N = [A|lV]| = |[#|lelulUIS C

The two universal quantifiers, implications and equalities stem from the ob-
ject and meta-logic, respectively. The distinction can be ignored while read-
ing this paper. The notation [| Ay;...; A, |1 ==> A is short for the nested
implication A; = ... = A,, = A. The predicate <= is overloaded and
applies to natural numbers (<) and to sets (C).

Types follow the syntax for ML-types, except that the function arrow is =>
rather than ->. The notation [71, ...,7,] => 7 abbreviates 4 => ...=>
T, => T. A term ¢ is constrained to be of type 7 by writing t::7.

Isabelle also provides Haskell-like type classes [8], the details of which are
explained as we go along. A type variable ’a is restricted to be of class ¢ by
writing ’a::c.

Theories introduce constants with the keyword consts, non-recursive defi-
nitions with defs, and primitive recursive definitions with the keyword
primrec. For general axioms the keyword rules is used. Further constructs
are explained as we encounter them.

Although we do not present any of the proofs, we usually indicate their
complexity. If we do not state any complexity the proof is almost automatic. That
means, it is either solved by rewriting or by the “classical reasoner”, fast_tacin
Isabelle parlance [19]. The latter provides a reasonable degree of automation for
predicate calculus proofs. Note, however, that its success depends on the right
selection of lemmas supplied as parameters.

3 Types and Substitutions

This section describes the language of object-level types used in our case study.
They should not be confused with Isabelle’s built-in meta-level type system
described in the previous section. To emphasize this distinction we sometimes
call the object-level types type terms.

3.1 Types

Type terms consist only of type variables and the function space constructor.
They are expressed as an inductive data type with two constructors. Type vari-
ables are modeled by natural numbers.

datatype typ = TVar nat | "->" typ typ (infixr 70)

We do not need quantified types because our term language does not contain
let-expressions.

3.2 Substitution

A substitution is a function mapping type variables to types. In HOL, all func-
tions are total. The identity substitution is denoted by id_subst.

types subst = nat => typ
consts id_subst :: subst

defs id_subst == (%n.TVar n)

Substitutions can be extended to type terms, lists of type terms, etc. Type
classes, i.e. overloading, allow us to use the same notation in all of these cases.

classes type_struct < term

introduces a new class type_struct as a subclass of term, the predefined class
of all HOL types. Class type_struct is meant to encompass all meta-level types
which substitutions can be applied to. This is expressed by declaring

consts app_subst :: [subst, ’a::type_struct] => ’a ("$")

The purpose of app_subst is to apply substitutions to values of types in class
type_struct. $ is syntactic sugar for app_subst. Because identifiers in Isabelle
do not contain “$” we may write $s instead of $ s. The notation $s emphasizes
that we regard $ as a modifier acting on the substitution s.

So far there is no definition of app_subst, but there will be several, one for
each instance of ’a we are interested in. Hence app_subst will be overloaded.
In Haskell, app_subst is a member function of class type_struct.

Now we want to turn typ into an element of class type_struct by extending
substitutions from type variables to types in the usual fashion. This requires two
steps. First we simply tell Isabelle that typ is an element of type_struct:

arities typ :: type_struct

The general form of the arities declaration is t :: (C4,...,C,)C, where t
must be an n-ary type constructor. It expresses that (71,...,7,)t is of class C
provided each 7; is of class Cj.

Then we define the appropriate instance of app_subst by primitive recursion
over typ:

primrec app_subst typ
$ s (TVar n)

= s n
$ s (t1 -> t2) =

($ s t1) > ($ s t2)
In Haskell, both steps are combined into the instance construct.
In the same way we extend app_subst to lists:

arities 1list :: (type_struct)type_struct

Hence (7)1list is of class type_struct provided the element type 7 is. A sub-
stitution is applied to a list by mapping it over that list, where map is predefined:

defs $ s == map ($ s)

Note that $ s on the left has type a list => ’a list and on the right type
’a => ’a, where ’a: :type_struct.

In the sequel, a type structure is a type in class type_struct.

Now we can prove that the extension of the identity substitution to type
terms and list of type terms again yields identity functions:

$ id_subst
$ id_subst

(ht::typ.t)
(%ts::typ list.ts)

For the composition of substitutions the following propositions hold:

$g($ftiityp) =8 (Ux. $g(Ex))t
$g (3£ ts::typ list) = $ (Ux. $ g (f x)) ts

3.3 Free Type Variables

The set of type variables occurring in a type structure is denoted by free_tv.
Again, we overload this function by using class type_struct. The definitions
below describe the usual behaviour of the typ and list instances, respectively:

consts free_tv :: ’a::type_struct => nat set

primrec free_tv typ
free_tv (TVar m)

= {m}
free_tv (t1 -> t2) = (

free_tv tl1) Un (free_tv t2)

primrec free_tv list
free_tv [1 = {}
free_tv (x#xs) = free_tv x Un free_tv xs

Note that infix # :: [’a, ’a 1list] => ’a list is the list constructor adding
an element to the front of a list.

These definitions enable us to show some interesting properties:

[l $ s1 (t::typ) = $ s2t; n: freetv t |] ==> sl n=s2n
(!n. n: free_tv t --> sl n = s2 n) ==> § sl (t::typ) = $ s2 t
(t::typ) mem ts ==> free_tv t <= free_tv ts

The first one states that if applying two different substitutions to the same type
term yields the same result, then the substitutions coincide on the free type
variables occurring in the type term. The second one reverses this implication.
The third one states that if a type term is an element (infix mem) of some list,
then the set of free type variables of the type term is a subset of the set of free
type variables of the list. The first two propositions have also been proved for
lists of type terms.

Domain and codomain of a substitution are defined in the usual way:

consts dom, cod :: subst => nat set
defs dom s == {n. s n "= TVar n}
cod s == UN m:dom s. free_tv (s m)

The set of variables occurring either in the domain or the codomain of a
substitution is called the set of free variables of a substitution. We want to use
the identifier free_tv to denote this set. Hence, we must add type subst to class
type_struct. Type subst, however, is only an abbreviation for the composed
type nat => typ. Just like Haskell, Isabelle does not allow to add composed
types to type classes directly. Instead, we must state the propagation of class
membership for the type constructor =>. We already met this mechanism when
adding the list types to class type_struct. In the same way we define an arity
for the type constructor => which is the infix name for fun:

arities fun::(term,type_struct)type_struct

Because nat::term and typ::type_struct, this implies subst: :type_struct.
Note, however, that it also implies further types to belong to class type_struct,
for example bool => typ. This may seem a bit permissive but does no harm.
Now we can define the subst instance of free_tv:

defs free_tv s == (dom s) Un (cod s)

We do not define other possible instances of free_tv. Neither do we provide an
instance for function app_subst at type subst.

The following lemmas capture important relationships between substitution
application and free type variables:

free_tv ($ s (t::typ)) <= cod s Un free_tv t
[l v : free_tv(s n); v "=n |] ==> v : cod s
free_tv (Jn::nat. $ sl (s2 n) :: typ) <= free_tv sl Un free_tv s2

We need these propositions in the soundness and completeness proofs of the type
inference algorithm.

3.4 New Type Variables

Algorithm W needs to generate new type variables. This mechanism is rarely
formalized in the description of the algorithm. It is simply assumed that there
always exists some type variable never used before. However, to perform formal
proofs we have to completely formalize the algorithm. The obvious way of han-
dling the generation of new type variables is as follows: the set of already used
type variables is explicitly passed to WV, all new variables generated during the
execution are added to this set, and the enlarged set is returned upon successful
termination [17]. Because we use natural numbers for type variables we have a
total ordering on these variables. Instead of passing all used type variables to
W, we only pass the successor of the greatest one used up to now. Each time
algorithm WV needs a new type variable it uses the counter and increments it by
one. Predicate new_tv formalizes our notion of a new type variable. It takes a
type variable and a type structure and determines whether the given variable is
greater than any type variable occurring in the structure. Such a type variable
is called new w.r.t. the structure.

consts new_tv :: [nat,’a::type_struct] => bool

defs new_tv n ts == ! m. m:free_tv ts --> m<n

This predicate is a necessary precondition for most propositions about algorithm
W. To prove these propositions we need some theorems about new_tv. The first
one is quite simple: it states that all greater type variables are also new type
variables. This holds not only for type terms, but also for lists of type terms and
for substitutions.

[l n<=m; new_tv n (t::typ) |] ==> new_tvm t

This proposition is proved by induction on the structure of t. The next theorems
show how substitutions and new_tv interact:
[l new_tv n s; new_tv n (t::typ) |] ==> new_tv n ($ s t)
[l new_tv n (s::subst); new_tvnr |] ==> new_tvn (($§ r) o s)
new_tvns=((m. n<=m-->sm-=TVar m) &
(1'1. 1 <n-->new_tvn (s1)))

The first two theorems tell us that the new type variable property is preserved by
application and composition (o) of substitutions. The third one is more complex
to express and prove: it requires about 15 proof steps.

3.5 Unification

The goal of unification is to unify two terms, i.e. to find a substitution of terms
for variables which makes the two terms syntactically identical. A wunification
algorithm either computes a most general unifier of two terms or fails, if the two
terms are not unifiable. The first in a long line of unification algorithms is due
to Robinson [21]. Of course the correctness of type inference does not depend on
any particular implementation of unification but merely on general properties of
unification. Therefore we introduce a function mgu (most general unifier), specify

its characteristic properties, but provide no implementation. This is the only
point in the whole development where we introduce new axioms as opposed to
consistency preserving definitions. Of course we know that a function mgu which
satisfies the axioms exists. Alternatively, we could have made mgu a parameter
of all functions using it and the axioms about mgu preconditions of the theorems
about those functions. However, that is overkill because mgu is not intended as
a parameter of individual functions but of the whole development. It requires
some form of parameterized theories to express this.

Unification may fail. To model the distinction between a successful compu-
tation and a failure situation we define

datatype ’a maybe = 0k ’a | Fail

Unification either terminates normally returning 0k (s) for some substitution s,
or indicates a failure situation by returning Fail:

consts mgu :: [typ,typ] => subst maybe

A most general unifier should satisfy the following three axioms:

rules mgu tl t2 = Ok u ==> $u t1 = $u t2
[l mgu t1 t2 = 0k u; $s t1 = $s t2 |] ==> 7 r. s =8%r o u
$s t1 = $s t2 ==> 7 u. mgu t1l t2 = 0k u

The first axiom requires the result of mgu to be a unifier of the given type terms.
The second one states that the computed unifier is a most general one: each
unifier can be obtained by composing the computed one with some substitution.
The third one requires mgu to return an Ok result if the two types are unifi-
able. This prevents trivial implementations which satisfy the first two axioms by
always returning Fail.

Most general unifiers are only unique up to consistent renaming of variables.
Such a renaming may even introduce type variables not occurring in the type
terms to unify. However, because we want to keep track of used variables we
need one last axiom:

mgu t1 t2 = Ok u ==> free_tv u <= free_tv tl Un free_tv t2 (0)

This ensures that the algorithm does not introduce new type variables. We can
then show that unification preserves the new type variable property:

[l mgu t1 t2 = Ok u; new_tv n tl; new_tv n t2 |] ==> new_tv n u

4 Well-Typed Lambda Terms

Lambda terms are represented in de Bruijn notation [5] which can conveniently
be expressed as an inductive data type with three constructors for variables,
abstraction and application:

datatype expr = Var nat | Abs expr | App expr expr

The index ¢ in a subterm Var ¢ indicates that, when moving upward, 7 ab-
stractions must be traversed until the corresponding binder is found. For exam-
ple, Az.z(\y.y x) becomes Abs (App (Var 0) (Abs(App(Var 0) (Var 1)))). This
shows that

— different occurrences of the same index may represent different bound vari-
ables, and

— different occurrences of the same bound variable may be represented by
different indexes, depending on how far below the binding A they are.

Free variables are those without enough enclosing applications, e.g. Var 0 on its
OWTl.

Note that we have restricted our language to pure lambda terms without let-
construct. Because let-bound identifiers are the only source of polymorphism
in ML-like languages we do not need quantified type terms.

The datatype expr represents all untyped lambda-terms. Now we need to
define the subset of well-typed lambda-terms. To keep track of the types of
bound variables we use a context assigning type terms to variables. Because we
use de Bruijn notation this context is simply a list of type terms. The type of
variable ¢ can be found at the i-th list position. Well-typedness is a relative
notion because it depends on the context. Therefore we introduce a relation
between contexts, lambda-terms and type terms:

consts has_type :: (typ list * expr * typ)set

The proposition (a,e,t) :has_type should be read as “In context a expression
e has type t”. This allows a term to have more than one type in a given context.
The following bit of syntactic sugar (which we will not explain in detail) allows

us to read and write the more conventional a |- e :: t:
syntax "O@has_type":: [typ list,expr,typ] => bool ("_ [- _ :: _" 60)
translations a |- e :: t == (a,e,t) : has_type

Warning: the delimiter :: is now used for type annotations both in the logic

and in the object level lambda-terms (expr). The latter is easily distinguished
by its leading |-.

Relation has_type is defined inductively, i.e. by a set of inference rules.
Proposition a |- e :: t holds iff it can be derived from the inference rules.
HOL provides a package for defining inductive sets. The following text defines
has_type to be the least set closed under the given inference rules.

inductive has_type
[l n < length a |] ==> a |- Var n :: nth n a
[l ti#a |- e :: t2 |] ==> a |- Abs e :: t1 -> t2
[l al-el ::t2->tl; a |-e2 :: t2 |] ==>a |- App el e2 :: t1

Note that nth :: [nat, ’a list] => ’a selects the nth element of a list.
Modulo the fact that we use de Bruijn notation, these are the usual type

inference rules for lambda terms. The reader not familiar with this type system

is referred to [2]. Note that the simplicity of the Abs-rule is due to de Bruijn

notation: the extended context ti#a takes care of the fact that when descending
into an abstraction all references to variables bound outside shift by 1.
The following theorem shows that has_type is closed w.r.t. substitution:

al-e::t=>%sal-e:: $st

It is proved by induction on the derivation of a |- e :: t. This leads to three
subgoals (corresponding to the three inference rules given above), each of which
is proved almost automatically.

5 Type Inference

The purpose of type inference (or type reconstruction) is to find the most general
type t for a given term e in a given context a such that a |- e :: t. Inter-
preting the type inference rules as a Prolog program yields such a type inference
algorithm. Using a functional implementation language, the computation of a
most general type requires a separate algorithm which was first presented by
Milner [14] who called the algorithm W (Well-typing).

5.1 Programming with Monads

Given a context a and a term e, there may be no type t such thata |- e :: t.
In this case W should “fail” with some meaningful error message. The easiest
way of handling error messages is to use so-called impure features, like side effects
or exceptions. Wadler [23] introduced the idea that monads could be used as a
practical method for modeling such impure features in a purely functional way.
In this paper we only give a brief introduction into programming with monads.
A good presentation of this topic can be found in [24].

A monad is a data type consisting of a type constructor M and two operations
unit and bind with the following functionalities:

unit :: ’a => ’a M

bind :: [’a M, ’a => b M] => b M

A value of type ’a M represents a computation which is expected to produce a
result of type ’a. Function unit turns a value into the computation that returns
that value and does nothing else. Function bind provides a means of combining
computations. It applies a function of type ’a => ’b M to a computation of type
a M.

We already met a monad in this paper, in connection with unification, where
failure is also an issue. Together with appropriate unit and bind functions, type
constructor maybe forms a monad. Values of type ’a maybe represent computa-
tions that may raise an exception. Constructor 0k denotes the unit function. It
turns a value a into Ok a. Because we only gave an abstract requirement spec-
ification for mgu we did not explain how to propagate failures. This is the task

of the bind function defined in the following way:

consts bind :: [’a maybe, ’a => ’b maybe] => ’b maybe (infixl 60)

defs m bind f == case m of Ok r => f r | Fail => Fail
The callm bind f examines the result of the computation m: if it is a failure, it is

propagated; otherwise the function f is applied to the value of the computation.
In most cases f is expressed as a A-term:

m bind (%x.c)

This can be read as follows: perform computation m, bind the resulting value
to variable x, and then perform computation c. In an imperative language this
would be expressed in the following way:

X :=m; C
The powerful translation mechanism of Isabelle allows us to use exactly this
notation for the bind function:

syntax "@bind" :: [pttrns,’a maybe,’b maybe] => ’b ("_ := _; _" 0)

translations P := E; F == E bind (}P.F)

Now we can define algorithm W in an imperative style without using any impure
feature.
Warning: do not confuse the monad “;” with the separator for hypotheses.

5.2 Algorithm W

If W succeeds, it returns a substitution s and a type t such that $s a |- e::t.
At certain points W requires new type variables. As already explained in Section
3.4, we handle the generation of new type variables by passing the successor of
the greatest type variable used up to now. Thus, we need an additional result
component for this counter. Altogether, W has the following type:

consts W :: [expr, typ list, nat] => (subst * typ * nat)maybe

W is recursively defined on the term structure. Because the type inference rules
given in Section 4 are syntax-directed, each case of function W corresponds to
exactly one rule.

primrec W expr
W (Var i) an = (if i < length a then Ok(id_subst, nth i a, n)
else Fail)
W (Abs e) an = ((s,t,m) := W e ((TVar n)#a) (Suc n);
Ok(s, (s n) > t, m))

W (App el e2) an = ((s1,tl,ml) := W el a n;

(s2,t2,m2) We2 ($s1 a) mi;

u := mgu ($s2 t1) (t2 -> (TVar m2));
0k($u o $s2 o s1, $u (TVar m2), Suc m2))

A call W e a n fails if a contains no entry for some free variable in e, or if a
call of the unification algorithm mgu fails. The failure propagation is invisibly
handled by our mixfix bind notation.

10

The main goal of this case study was to formally show the correctness of
algorithm W. Correctness is defined as soundness and completeness w.r.t. the
type inference rules. We start with soundness of W:

Wean=0k(s,t,m) ==> $§s a |- e :: t

This proposition is shown by induction on the structure of e. The proof can be
performed directly, without any additional auxiliary proposition. However, both
the Abs and App case require explicit instantiation of variables. Therefore the
user needs to be familiar with the details of the proof. An automatic proof which
synthesizes these instantiations seems unlikely.

5.3 Completeness of W

The proof of completeness of WW w.r.t. the type inference rules is more complex.
We have to prove some auxiliary lemmas first. All these lemmas deal with the
problem of new type variables. In mathematical proofs about type inference al-
gorithms this problem is simply ignored. The first lemma states that the counter
for new type variables is never decreased:

Wean =0k (s,t,m) ==> n<=m

It is proved by induction on the structure of e and in turn helps us to prove the
following lemma:

[| new_tvna; We an=0k (s,t,m) |[] ==> new_tvms & new_tvmt

It says that the resulting type variable is new w.r.t. the computed substitution
as well as the computed type term. This fact ensures that we can safely use the
returned type variable as new type variable in subsequent computations. Again
we use induction on the structure of e. The most difficult part of the proof is
case App el e2. It takes about 30 proof steps; the degree of automation is quite
low.

Now we can prove a proposition that seems to be quite obvious. Roughly
speaking, it says that type variables free in either the computed substitution or
the computed type term did not materialize out of the blue: they either occur
in the given context or were taken from the set of new type variables. Formally,
the proposition is expressed as follows:

[l Wean=0k (s,t,m); v : free_tv s | v : free_tv t; v<n |]
==> v : free_tv a

The proof is performed by induction on the structure of term e. The complexity
of this proof is roughly the same as the complexity of the last proof.

With the help of these propositions we are able to show completeness of W
w.r.t. the type inference rules: if a closed term e has type t’ then VV terminates
sucessfully and returns a type which is more general than t?,i.e. t’ is an instance
of that type.

[J1-e::t>==>7st. (?m. We [] n=0k(s,t,m)) &
(?r. t2 =$r t))

11

This proposition needs to be generalized considerably before it is amenable to
induction:

[l $s> a |- e :: t’; new_tvn a |]

=>7st. (?m. We an=0k (s,t,m)) &

(?r. $s> a=9$r ($s a) & t’ = $r t))

This theorem is the most difficult one to prove. Although the proof plan in [16]
is quite detailed, translating it into Isabelle turned out to be hard work. The
proof starts with an induction on the structure of term e. Again, case App el e2
causes most of the problems. Proving this case requires about 90 proof steps.
Isabelle is used mainly to keep track of the proof and to avoid foolish mistakes.

Let us have a brief look at the App case: the main problem is to show suc-
cessful termination. The algorithm may fail during unification of $s2 t1 and
t2 -> (TVar m2). Hence, we have to prove that these terms are indeed unifi-
able, i.e. that there exists a substitution u such that

$u ($s2 t1) = $u (t2 -> (TVar m2)).

In our proof we use the witness u given in [16], which differs slightly from the
one used in much of the published literature (for example [9, 17]). We establish
that this witness is indeed a unifier for the above type terms.

5.4 Algorithm 7

Milner [14] also presents a more efficient refinement of algorithm W called Z,
where substitutions are extended incrementally instead of computing new sub-
stitutions and composing them later. We have also formalized T !

consts I :: [expr, typ list, nat, subst] => (subst * typ * nat)maybe
primrec I expr

I (Var i) an s
I (Abs e) an s

(if i < length a then Ok(s,nth i a,n) else Fail)
((s,t,m) := 1 e ((TVar n)#a) (Suc n) s;
Ok(s, TVar n -> t, m))
I (App el €2) an s =
((s1,t1,ml) I el an s;
(s2,t2,m2) := 1 e2 a ml si;
u := mgu ($s2 t1) ($s2 t2 -> TVar m2);
0k($u o s2, TVar m2, Suc m2))

and shown that it correctly implements W:

[| new.tvma; newtvms; Ieams

= 0k(s’,t,n) |]
== ?7r. We ($s a) m = Ok(r, $s’ t, n) & s

> = ($r o s)

[| new.tvma; newtvms; Ieams = Fail |]
==> We ($s a) m = Fail

For lack of space, the details cannot be presented here.

! Ideally, mgu should take the substitution s2 as a separate argument. For simplicity
we have applied s2 explicitly to the two type arguments of mgu.

12

6 Comparison

The literature contains many accounts of type systems and type inference al-
gorithms for lambda-terms which boil down to the rules and algorithm we
used [14, 3, 4, 2, 25, 1]. However, ours seems to be the first formal verifica-
tion of W. There are three key differences between the existing literature and
our formal proof:

1. We do not treat let. This is a regrettable omission but is justified by the
complexity of the formal proof for the let-free system.

2. We treat the issue of “new” variables, which is almost universally ignored
(an exception is [17]). Ironically, it is this very issue which really complicates
the proof for us.

3. In the literature, completeness of W is always proved under the assumption
that the unification algorithm returns idempotent substitutions. In contrast,
we require axiom (0) (see the end of Section 3.5), which turns out to be
weaker than idempotence.

We would like to concentrate on the last point for a moment, employing the
usual mathematical notation from unification theory [10].

A substitution o is idempotent if coo = o. Axiom (0) requires V(o) C V (s, t)
for the mgu o of two terms s and ¢, where V(o) = dom(c) U cod(c) and V (s, 1)
is the set of variables in s and ¢.

Theorem 1. Let o be a most general unifier of s and t. If o is idempotent, then
V(o) CVi(s,t).

Proof. Tt is known that V(o1) = V(o2) holds for any two idempotent mgus of
s =t [11, Prop. 4.11]. If s and ¢ are unifiable, there exists an idempotent mgu
oo such that V(og) C V(s,t) (use any of the standard unification algorithms).
Thus the claim follows for every idempotent mgu o.

Idempotence is strictly stronger than the variable condition as the following
example [11] shows: 0 = {z — f(z),y — z} is a most general unifier of z = f(y)
which satisfies the variable condition but is not idempotent.

Thus we have verified VW under weaker assumptions than usual. However,
this is merely a theoretical curiosity: practical unification algorithms do return
idempotent substitutions. In fact, it is hard to imagine a unification algorithm
computing o in the example above.

The only other published formal verification of a type checking algorithm
we are aware of is by Pollack [20]. His object-language (a subset of “Pure Type
Systems”) is much more powerful than ours but his terms already contain types.
Hence he does not need a separate theory of substitutions and unification to sup-
port type inference. On the other hand his proofs involve a substantial amount of
lambda-calculus theory, and he also faces the issue of new (term) variables [13].
A final difference is that he does not verify an explicit algorithm but performs a
constructive proof which embodies the algorithm.

13

7

Conclusion and Future Work

The results of this case study can be summarized as follows:

Specification: Isabelle/HOL offers a mature specification environment with a

flexible syntax (mixfix) and type system (classes).

Proof: Isabelle/HOL provides some automation on the predicate calculus level,

but not nearly enough for our case study. Especially reasoning by transi-
tivity and monotonicity needs to be improved. Decidable subtheories (e.g.
fragments of nat and set) and better predicate calculus support would help,
but they need to be interleaved with user interactions for providing key in-
stantiations.

: The proof has confirmed our suspicion that the issue of “new” variables is

nontrivial. Although it is true that the formalization of this aspect has not
given us any deeper insight into the algorithm, it has helped us to elucidate
some finer points like the non-requirement of idempotence. It also helps to
avoid mistakes. Although we are not aware of any incorrect published proofs
of W, they do occur in closely related areas: for example, the completeness
statement and proof of SLD-resolution in [12] are incorrect because they
ignore the “new” variable issue.

Despite all this, the proof has left us with the feeling that there should be a
simpler way to treat variables and substitution. However, this is only brought
to a head by the requirement for complete formalization and is a sentiment
known to most people who have worked with substitutions.

The most important next step is to extend the object-language with a let-

construct and polymorphic types. Although we do not expect any major new
problems, it is likely to be a substantial piece of work.

Acknowledgements We thank Thomas Stauner for his help with the Isabelle
proofs, Franz Baader for an email discussion on the intricacies of mgus, and two
anonymous referees for their constructive comments.

References

1.

2.

L. Cardelli. Basic polymorphic typechecking. Sci. Comp. Programming, 8:147—
172, 1987.

D. Clément, J. Despeyroux, T. Despeyroux, and G. Kahn. A simple applicative
language: Mini-ML. In Proc. ACM Conf. Lisp and Functional Programming, pages
13-27, 1986.

L. Damas and R. Milner. Principal type schemes for functional programs. In Proc.
9th ACM Symp. Principles of Programming Languages, pages 207-212, 1982.

L. M. M. Damas. Type Assignment in Programming Languages. PhD thesis, De-
partment of Computer Science, University of Edinburgh, 1985.

N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae, 34:381-392, 1972.

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. M. Gordon and T. Melham. Introduction to HOL: a theorem-proving environment

for higher-order logic. Cambridge University Press, 1993.

. J. R. Hindley. The principal type-scheme of an object in combinatory logic. Trans.

Amer. Math. Soc., 146:29-60, 1969.

. P. Hudak, S. Peyton Jones, and P. Wadler. Report on the programming language

Haskell: A non-strict, purely functional language. ACM SIGPLAN Notices, 27(5),
May 1992. Version 1.2.

. M. P. Jones. Qualified Types: Theory and Practice. Technical Monograph PRG-

106, Oxford University Computing Laboratory, Programming Research Group,
July 1992.

J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A rule-
based survey of unification. In J.-L. Lassez and G. Plotkin, editors, Computational
Logic: Essays in Honor of Alan Robinson, pages 257-321. MIT Press, 1991.

J.-L. Lassez, M. Maher, and K. Mariott. Unification revisited. In J. Minker, edi-
tor, Foundations of Deductive Databases and Logic Programming, pages b87—-625.
Morgan Kaufman, 1987.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

J. McKinna and R. Pollack. Pure type systems formalized. In M. Bezem and
J. Groote, editors, Typed Lambda Calculi and Applications, volume 664 of Lect.
Notes in Comp. Sci., pages 289-305. Springer-Verlag, 1993.

R. Milner. A Theory of Type Polymorphism in Programming. Journal of Com-
puter and System Sciences, 17:348-375, 1978.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press,
1990.

D. Nazareth. A Polymorphic Sort System for Axiomatic Specification Languages.
PhD thesis, Technische Universitdt Miinchen, 1995. Technical Report TUM-19515.
T. Nipkow and C. Prehofer. Type reconstruction for type classes. J. Functional
Programming, 5(2):201-224, 1995.

L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lect. Notes in
Comp. Sci. Springer-Verlag, 1994.

L. C. Paulson. Generic automatic proof tools. Technical Report 396, University
of Cambridge, Computer Laboratory, 1996.

R. Pollack. A verified typechecker. In M. Dezani-Ciancaglini and G. Plotkin, edi-
tors, Typed Lambda Calculi and Applications, volume 902 of Lect. Notes in Comp.
Sci. Springer-Verlag, 1995.

J. Robinson. A machine-oriented logic based on the resolution principle. J. ACM,
12:23-41, 1965.

M. Tofte. Type inference for polymorphic references. Information and Computa-
tion, 89:1-34, 1990.

P. Wadler. Comprehending monads. In Conference on Lisp and Functional Pro-
gramming, pages 61-78, June 1990.

P. Wadler. The essence of functional programming. In Proc. 19th ACM Symp.
Principles of Programming Languages, 1992.

M. Wand. A simple algorithm and proof for type inference. Fundementa Infor-
maticae, 10:115-122, 1987.

This article was processed using the IATEX macro package with LLNCS style

15

