
Type Checking Type Classes

Tobias Nipkow� and Christian Prehofer��

TU M�unchenyy

Abstract

We study the type inference problem for a system with
type classes as in the functional programming language
Haskell� Type classes are an extension of ML�style
polymorphismwith overloading� We generalize Milner�s
work on polymorphism by introducing a separate con�
text constraining the type variables in a typing judge�
ment� This leads to simple type inference systems and
algorithms which closely resemble those for ML� In par�
ticular we present a new uni�cation algorithm which
is an extension of syntactic uni�cation with constraint
solving� The existence of principal types follows from
an analysis of this uni�cation algorithm�

� Introduction

The extension of Hindley�Damas�Milner polymorphism
with the notion of type classes in the functional pro�
gramming language Haskell ��� has attracted much at�
tention� Type classes permit the systematic overloading
of function names while retaining the advantages of the
Hindley�Damas�Milner system� every expression which
has a type has a most general type which can be inferred
automatically� Although many extensions to Haskell�s

�Research supported in part by ESPRIT BRA ����� Logical
Frameworks�

��Research supported by the DFG under grant Br �����	
�De�
duktive Programmentwicklung�

yyAddress� Institut f�ur Informatik� Technische Universit�at
M�unchen� Postfach �
 �� �
� W	�


 M�unchen �� Germany�
Email� fnipkow�prehoferg�informatik�tu�muenchen�de

�Appeared in Proceedings of POPL���

type system have already been proposed 	and also im�
plemented
� we believe that the essence of Haskell�s type
inference algorithm has still not been presented in all
its simplicity� The main purpose of this paper is to give
what we believe to be the simplest algorithm published
so far� a contribution for implementors� At the same
time we present a correspondingly simple type inference
system� a contribution aimed at users of the language�
The algorithm is sound and complete with respect to
the inference system� and both are very close to their
ML�counterparts� Despite this proximity� the proofs are
considerably more involved and only the main steps are
shown�

A type class in Haskell is essentially a set of types
	which all happen to provide a certain set of functions
�
The classical example is equality� In old versions of
ML� the equality function � has the polymorphic type
���� � � � bool� where the type variable � ranges
over all types� However� � should not be applied to ar�
guments of function type� To �x this problem� Standard
ML �

� introduces special type variables that range
only over types where equality is de�ned� Equality dif�
fers from other polymorphic functions not just because
of its restricted domain but also because of its mixture
of polymorphism and overloading� equality on lists is
implemented di�erently from equality on integers�

Type classes treat both issues in a systematic way�
the type variable � is restricted to elements of a certain
type class� say Eq� Then for each type � where � should
be de�ned� we have to declare that � is of class Eq by
providing an implementationof � of type � � � � bool�

To express the fact that a type � is in some class
C we introduce the judgement � � C�� The idea of
viewing Haskell as a three level system of expressions�
types and classes� where classes classify types� goes back
to Nipkow and Snelting �
��� However� in their system it
is impossible to express that a type belongs to more than
one class� To overcome this di�culty we introduce sorts

�If classes are viewed as predicates on types� this leads to the
Haskell notation C����



as �nite sets of classes� The judgement � � fC�� � � � � Cng
is a compact form of the conjunction � � C� � � � � �
� � Cn� Alternatively we may think of fC�� � � � � Cng
as a notation for C� � � � � � Cn� the intersection of the
types belonging to the classes C� to Cn� This leads to a
simple type inference system and algorithm� The former
resembles that for Mini�ML ���� the latter is very similar
to algorithm I by Milner �
��� The main di�erence is
that in both cases we also compute a set of constraints
of the form � � fC�� � � � � Cng where � is a type variable�

� Mini�Haskell

Since the aim of this paper is simplicity� we treat only
the most essential features of Haskell relating to type
classes� The resulting language is basically Mini�ML ���
plus class and instance declarations� Mini�Haskell for
short� Its syntax is shown in Figure 
� Although the
next paragraph provides a brief account of type classes�
the reader should consult the Haskell Report ��� or the
original paper on type classes �
�� for motivations and
examples�
Mini�Haskell extends ML by a restricted form of over�

loading� Each class declaration introduces a new class
name C and a new overloaded function name x� Seman�
tically C represents the set of all types which support a
function x� For instance

class Eq where eq � ���Eq��� �� bool

introduces the class Eq of all those types � which pro�
vide a function eq � � � � � bool� A class declaration
is like a module interface in that it separates declara�
tions from implementations� In order to �prove� that a
particular type� say int� is in Eq� a �witness� for the re�
quired function eq needs to be provided� This is the pur�
pose of instance declarations� In order to prove int � Eq
we instantiate eq by eq int� some existing function of
type int� int� bool�

inst int � Eq where eq � eq int

As motivated in the introduction� sorts are �nite sets
of classes� This representation is a key ingredient for the
concise treatment of type inference� Yet semantically
the sort fC�� � � � � Cng should be understood as C��� � ��
Cn� Thus fCg and C are equivalent� and the empty set
fg is the sort�set of all types� If S� is more specialized�
i�e� represents fewer types� than S�� we write S� � S��
Since sorts are interpreted as intersections� S� � S� �
S� � S� holds� Hence any two sorts S� and S� have a
greatest lower bound whose representation is their union
S� � S��
Types in Mini�Haskell are simply terms over vari�

ables and constructors of �xed arity� Note that � is

just another type constructor� i�e� �� � �� is short for
�	��� ��
� The set of free variables in a type scheme
is denoted by FV	�
� Bound variables in type schemes
range only over certain subsets of types� ���S�� ab�
breviates all instances ������ where � � S� a judgment
de�ned formally below�
Expressions are ��terms ex�

tended with let�de�nitions� A program is a sequence
of declarations followed by an expression�
A Mini�Haskell class declaration class C where x �

���C�� 	where � should contain no free variables
except �
 corresponds to the Haskell declaration
class C � where x � �� The translation in the oppo�
site direction is more involved because of the following
simplifying assumptions�


� A class declares only one function symbol� whereas
Haskell allows a set of functions� This feature is
clearly not essential� Strictly speaking� we could
have dropped class names altogether since there is
a one to one correspondence between class names
and the single function declared in that class� How�
ever this would have obscured the connection with
Haskell�

�� Classes are not ordered� It has already been ob�
served ��� that subclasses are mere syntactic sugar�
Section � discusses ways of dealing with subclasses�

A Mini�Haskell instance declaration inst t �
	S�� � � � � Sn
C where x � e expresses that t	��� � � � �n

is in class C provided the �i are of sort Si� It
corresponds to the Haskell declaration inst 	con
 �
C	t �� � � � �n
 where x � e where con is a list consist�
ing of assumptions C��i with C� 	 Si for all i � 
 � � �n�
In the sequel a list of syntactic objects s�� � � � � sn is

abbreviated by sn� For instance� ��n�Sn�� is equivalent
with ����S�� � � � � �n�Sn���

��� Classifying Types

Before we embark on type inference� the simpler prob�
lem of sort inference has to be settled� In ML and
many other languages we have the judgement e � � �
expressing that e is of type � � Similarly� we classify
types by sorts with the judgement � � C� stating that
type � is in class C� This judgement requires two kinds
of information� namely the sorts of the type variables
in � and the �functionality� of the type constructors�
The former is recorded in a sort context �� which is a
total mapping from type variables to sorts such that
Dom	�
 � f� j �� 
� fgg is �nite� Sort contexts
can be written as ����S�� � � � � �n�Sn�� The behaviour
of type constructors is speci�ed by declarations of the
form t � 	Sn
C which have exactly the same meaning as



Type classes C
Sorts S � fC�� � � � � Cng
Type variables �
Type constructors t
Types � � � j t	��� � � � � �n

Type schemes � � � j ���S��
Identi�ers x
Expressions e � x

j 	e� e�

j �x�e
j let x � e� in e�

Declarations d � class C where x � ���C��
j inst t � 	S�� � � � � Sn
C where x � e

Programs p � d� p j e

Figure 
� Syntax of Mini�Haskell types and expressions

the corresponding instance declarations� A set of such
declarations is called a signature and is denoted by ��
Given a context � and a signature �� we can infer the

sort of a type � using the judgement ��� � � � S� The
rules are shown in Figure �� Remember that the sort
fCg and the class C are equivalent�
Having seen sort inference for Mini�Haskell types we

are prepared for our main goal� type inference and type
reconstruction for Mini�Haskell programs�

� Type Inference Systems

In this section we present two type inference systems
for Mini�Haskell� We start with a set of inference rules
which de�ne the types of Mini�Haskell programs and
expressions� Then we proceed to a more restricted�
syntax�directed set of rules� which will be the basis for
the type inference algorithm�
As usual in type inference for ML�like languages� an

environment is a �nite mapping E � �x����� � � � � xn��n�
from identi�ers to types� The domain ofE is Dom	E
 �
fx�� � � � � xng� E�x��� is a new map which maps x to �
and all other xi to �i� and the free type variables in E
are FV	E
 � FV	E	x�

 � � � �� FV	E	xn

� If V is a
set of type variables the restriction of � to variables not
in V is �nV � ����� j � 	 Dom	�
 � V ��
The judgement ���� E � p � � states that the Mini�

Haskell program p is of type � under � and the assump�
tions in � and E�
For a program p� which begins with a series of class

and inst declarations� the typing rules in Figure � can
be applied backwards to build up � and E� For in�
stance� applying rule INST backwards adds the new
declaration t � 	Sn
C to � in the �rst premise� The

second and third premises compare the types of x and
e in order to type�check x � e� These assumptions in �
and E are used in the typing rules for expressions e in
Figure ��
The rules extend the classical system of Damas and

Milner ��� by the notion of sorts� which are represented
in contexts and in restricted quanti�cations of type vari�
ables� The assumption � 	 FV	�
 in �I is not really es�
sential 	for soundness
 but simpli�es the analysis later
on� Its practical signi�cance is discussed in Section ��
In contrast to the CLASS and INST rules� the sig�

nature � remains �xed in the typing derivation for an
expression�

��� Syntax�directed Type Inference

The next step towards a type checking algorithm is a
more restricted set of rules that is su�cient for type re�
construction� The application of the rules is determined
by the syntax of the expression whose type is to be com�
puted� To distinguish the syntax�directed system we use
��� ASM� etc to denote its inferences and rules�

De�nition ��� The type scheme �� � ���n�S
�
n��

� is a
generic instance of � � ��m�Sm�� under � and �� writ�
ten ��� � � 
 ��� i� there exists a substitution � such
that

�� � � ��

Dom	�
 � f�mg�

����n�S
�
n��� � ��i � Si �i � 
 � � �m��

f��ng � FV	�
 � fg�

For the syntax�directed system� the rules APP and
ABS remain unchanged� the quanti�er rules are incor�
porated into ASM and LET� as shown in Figure ��



SI

�i � 
 � � �n�
���

��� � � � Ci

��� � � � fC�� � � � � Cng

SE
��� � � � fC�� � � � � Cng

��� � � � Ci
i � 
 � � �n

TVAR
�	�
 � S

��� � � � S

TCON
t � 	Sn
C 	 �

�i � 
 � � �n�
���

��� � �i � Si

��� � t	�n
 � C

Figure �� The judgement ��� � � � S

CLASS
���� E�x����C��� � p � ��

���� E � class C where x � ���C��� p � ��

INST

���� ft � 	Sn
Cg� E � p � ��

E	x
 � ���C�� ���n�Sn���� E � e � �t	�n
����

���� E � inst t � 	Sn
C where x � e� p � ��

Figure �� The judgement ���� E � p � �

There is a straightforward correspondence between
the two systems� The syntax�directed derivations are
sound

Theorem ��� If ���� E �� e � � then ���� E � e � � �

and in a certain sense complete w�r�t� the original sys�
tem�

Theorem ��� If ���� E � e � ��n�Sn�� then

���n�Sn���� E �� e � � �

The last theorem clari�es in what sense �� works di�er�
ently from �� by applying the primed rules backwards�
the sort constraints for type variables are stored solely
in �� and not in the type scheme of e� For instance� the
LET� rule explicitly extends �� The 
 operation� used
in the ASM� rule� may introduce new type variables�
whose sorts must be recorded in �� The syntax�directed
system already has a very operational �avour� In order
to make the transition from a type inference system to
an algorithm we need one more ingredient� uni�cation�

� Uni�cation of Types with Sort

Constraints

This section deals with uni�cation in the presence of
sort constraints in the form of contexts� This problem
can in principle be reduced to order�sorted uni�cation�
as done in �
��� using the ordering coming from the in�
clusion between sorts� However� we have refrained from
doing so because it is contrary to our quest for simplic�
ity� involving order�sorted uni�cation makes the algo�
rithm appear more complicated than it actually is� In
addition� the standard theory of order�sorted uni�cation
assumes that variables are tagged and would thus need
to be reformulated anyway�

For the remainder of this paper we assume a �xed
signature �� This is simply a notational device which
avoids parameterizing judgements etc� by ��

In our setting� a substitution is a �nite mapping from
type variables to types� Substitutions are denoted by �
and �� fg is the empty substitution� De�ne Dom	�
 �
f� j �� 
� �g and Cod	�
 �

S
��Dom���FV	�	�

�

Since sort information is maintained in contexts� we
frequently work with pairs of contexts and substitutions�



ASM ���� E � x � E	x


�E
���� E � e � ���S�� ��� � � � S

���� E � e � ������

�I
����S���� E � e � � � 	 FV	�
 �FV	E


���� E � e � ���S��

APP
���� E � e� � �� � �� ���� E � e� � ��

���� E � 	e� e�
 � ��

ABS
���� E�x���� � e � ��

���� E � �x�e � �� � ��

LET
���� E � e� � �� ���� E�x���� � e� � ��

���� E � let x � e� in e� � ��

Figure �� The judgement ���� E � e � �

ASM� ��� � E	x
 
 �

���� E �� x � �

LET� ���k�Sk���� E �� e� � �� ���� E�x���k�Sk���� �� e� � �� f�kg � FV	��
 �FV	E


���� E �� let x � e� in e� � ��

Figure �� The judgement ���� E �� e � �

A substitution � obeys the sort constraints of � in the
context of ��� written �� � � � �� i� ���� � �� � ��
for all �� Because ���� � �� � �� is trivially ful�lled
if �� � fg it su�ces to require ���� � �� � �� for all
� 	 Dom	�
�
As usual� we de�ne an ordering on context�

substitution pairs�

	�� �
 � 	��� ��
 � ��� �� � �� � �� � � � �

where �� is their composition� 	��
	s
 � �	�	s

�
The set of uni�ers of �� and �� w�r�t� �� writ�

ten U	�� �����
� consists of the following context�
substitution pairs�

U	�� �����
 � f	��� �
 j ��� � ��� � �� � � � �g

A uni�er 	��� ��
 	 U	�� �����
 is most general if
	��� ��
 � 	��� ��
 for all 	��� ��
 	 U	�� �����
� We
say that uni�cation modulo � is unitary if for all � and
����� the set U	�� �����
 is empty or contains a most
general uni�er�
A signature � is called coregular if for all type con�

structors t and all classes C the set

D	t� C
 � fSn j t�	Sn
C 	 �g

is either empty or contains a greatest element w�r�t� the
component�wise ordering of the Sn� If � is coregular let

Dom	t� C
 return the greatest element of D	t� C
 or fail
if D	t� C
 is empty�
Sorted uni�cation can be expressed as unsorted uni�

�cation plus constraint solving� Given a coregular sig�
nature �� this has the following simple form�

unify	�� �����
 �
let � � mgu	�����


�c �
S
��Dom��� constrain	�����


in 	�c � 	�nDom	�

� �


where mgu computes an unsorted mgu 	in particu�
lar we assume that � is idempotent and that Dom	�
 �
Cod	�
 � FV	�����

 or fails if none exists�
A context � is more general than ��� written � � ���

if �� � ��� for all �� The union of two sort contexts is
de�ned by

�� � �� � �� � ��� � ��� j � 	 Dom	��
 �Dom	��
�

and constrain	�� S
 computes the most general context
� such that ��� � � � S�

constrain	�� S
 � ���S�

constrain	t	�n
� S
 �
�

C�S

constr	�n�Dom	t� C





constr	�n� Sn
 �
�

i�����n

constrain	�i� Si


Thus unify fails if mgu fails or if some Dom	t� C

used in constrain does not exist� Soundness and com�
pleteness of constrain are captured by the following
lemmas�

Lemma ��� constrain	�� S
�� � � � S or

constrain	�� S
 fails�

Proof by induction on the structure of � � �

Lemma ��� constrain	��� S
 � � � constrain	�� S
�

Proof by comparing the calling trees of
constrain	��� S
 and constrain	�� S
� using Lemma ��

at the leaves of the constrain	�� S
 tree� �

Lemma ��� If ��� � � � S then constrain	�� S
 is

de�ned and more general than ��

Proof by induction on the structure of � � �

Theorem ��� If � is coregular� unify computes a

most general uni�er�

Proof To show soundness� let unify	�� �����
 ter�
minate with result 	��� ��
� It follows directly that
���� � ����� It remains to be seen that �� � ��� � ��
for all �� If � 
	 Dom	��
� then �� � ��� and the
claim follows trivially� If � 	 Dom	��
 then � � �c �S
��Dom����

constrain	��	��	
 � constrain	������

and the claim follows from Lemma ��
�
To show completeness let 	��� ��
 	 U	�� �����
�

i�e� ���� � ���� and �� � �� � �� Since �� and ��
have an unsorted uni�er ��� mgu	�����
 is de�ned and
yields a substitution �� such that �� � ��� for some
�� De�nedness of unify	�� �����
 also requires de�
�nedness of constrain	������
� since �� � ��� � ���
Lemma ��� implies de�nedness of constrain	������

which easily yields de�nedness of constrain	������
�
Thus unify	�� �����
 terminates with a result 	��� ��
�
It remains to be shown that �� � � � ��� If 	 	

Dom	��
 then ��	 � fg and hence �� � �	 � ��	 holds
trivially� Now assume 	 
	 Dom	��
� Thus ��	 � �c	 �
�	� From�� � �� � � it follows that �� � �	 � �	� Prov�
ing �� � � � �c is more involved� From Lemma ��� it fol�
lows that constrain	������
 � � � constrain	������

for any � and hence

S
��Dom����

constrain	������
 �

� �
S
��Dom����

constrain	������
� i�e�S
��Dom����

constrain	������
 � � � �c 	�
� Since �� �

��� � ��� Lemma ��� implies �� � constrain	������

and hence �� �

S
��Dom����

constrain	������
� Thus

�� � � � �c follows from 	�
 by monotonicity� �

Theorem ��� Uni�cation modulo � is unitary i� � is

coregular�

Proof The �if� direction is a consequence of Theo�
rem ���� For the �only if� direction let � not be coreg�
ular� Let � denote the component�wise ordering of sort
tuples Sn� Thus there are two declarations t � 	Sn
C and
t � 	Tn
C� Sn 
� Tn� and Sn 
� Tn� such that there is no
third declaration t � 	Un
C� and Sn� Tn � Un� Hence the
uni�cation problem 	�	�C�� t	�n
�	
 does not have a
most general uni�er� Two maximal ones are 	��n�Sn�� �

and 	��n�Tn�� �
 where � � f	 � t	�n
g� �

Thus we have a precise characterization of those signa�
tures where principal types exist�

� Principal Types and Algorithm

I

The above syntax�directed rule system is non�
deterministic� since rule ASM� can choose any instance
of the type of the identi�er x� To obtain a determinis�
tic algorithm� we re�ne the syntax directed system such
that it keeps types as general as possible� The result is
algorithm I in Figure �� In this section we assume that
� is coregular � otherwise unify is not well�de�ned�
Algorithm I follows the same pattern as Milner�s orig�

inal algorithm of the same name �
��� the type of an
expression e is computed by traversing e in a top�down
manner� I returns a quadruple 	V��� �� � 
� where �� is
the type of e under the context �� The parameter V
contains all �used� variables� i�e� variables that occur in
� or in � or in E� Thus a type variable � 
	 V is a �new�
variable� Observe the di�erent let�constructs� the one
on the left hand side is in the object language� the ones
on the right are part of the type inference algorithm�
For an environment E and a substitution �� de�ne

�E � �x � �	E	x

 j x 	 Dom	E
�� We say E is closed if
FV	E
 � fg� The free variables of a substitution � are
de�ned as FV	�
 � fFV	��
�f�g j � 	 Dom	�
g� Let
�� denote the empty context�

Theorem ��� �Correctness of I� If

I	V��� �� E� e
 � 	V ����� ��� � 
 and Dom	�
 � FV	�
 �
FV	E
 � V then ����� ��E �� e � ��� �

Proof by induction on the structure of e� using a num�
ber of auxiliary lemmas� �

A type reconstruction algorithm should compute
most general types� usually called principal types� if
they exist�

De�nition ��� Let E be a closed environment� The
type scheme � is a principal type of an expression e
w�r�t� � and E if ����� E � e � � and if ����� E � e � ��

implies ���� � � 
 ���



I	V��� �� E�e
 � case e of

x � let ��n�Sn�� � E	x

	i 
	 V �i � 
 � � �n�

in 	V � f	ng���	n�Sn�� �� �	n��n�� 

�x�e � let � 
	 V

	V ����� ��� � 
 � I	V � f�g��� �� E�x���� e

in 	V ����� ��� �� � 


	e� e�
 � let 	V����� ��� ��
 � I	V��� �� E� e�

	V����� ��� ��
 � I	V����� ��� E� e�


� 
	 V�
	��� ��
 � unify	��� ���� � ���� � �


in 	V� � f�g���� ����� �

let x � e� in e� � let 	V����� ��� ��
 � I	V��� �� E� e�


f�ng � FV	����
� FV	��E

in I	V����nf�ng� ��� E�x � ��n����n������� e�


Figure �� Algorithm I

The following lemma is crucial for establishing the
principal type theorem�

Lemma ��� If ����� E� �� e � � � where E� � ���E and

�� � �� � � then there exist V and ��� such that

Dom	�
 � FV	�
 � FV	E
 � V�
I	V��� �� E� e
 � 	V����� ��� ��
�
E� � �����E�
� � � ��������
�� � ��� � ���

Proof by induction on the structure of e� using a num�
ber of auxiliary lemmas� �

Theorem ��� If ����� E �� e � � � and E is closed

then I	fg� ��� fg�E� e
 � 	V��� �� � 
 and ��n���n��� is a

principal type of e w�r�t� � and E� where �n � FV	�� 
�

Proof follows from Lemma ���� �

We may restrict our attention to closed environments
because CLASS and INST declarations cannot intro�
duce free variables into an environmentE� type schemes
in CLASS declarations must be closed�
Algorithm I relies on unify which has only been

de�ned for coregular signatures� Hence it remains to
be seen if Mini�Haskell�s CLASS and INST declara�
tions yield coregular signatures� In fact they do if re�
stricted by the following context condition which is the
result of translating the restrictions actually adopted in
Haskell ��� Sec� ������ to Mini�Haskell�

For every class C and type constructor t there
is at most one instance declaration inst t �
	Sn
C�

The more complex restrictions for Haskell collapse to
this single requirement because of the absence of sub�
classes�
One can easily see that a signature is coregular if it is

derived from a set of instance declarations which meet
the above restriction� The converse does not hold� the
following declarations violate the above restriction

class C where c � ���C���
inst int � 	
C where c � 
�
inst int � 	
C where c � ��

although they give rise to the coregular signature fint �
	
Cg�� The reason is that although coregularity su�ces
for the existence of principal types� it does not preclude
semantic ambiguities� the expression c� 
 is de�nitely
of type int but may evaluate to either � or �� depending
on which instance is chosen for c� Hence the above addi�
tional restriction which rules out situations like these�

� Haskell � Mini�Haskell 	 Sub�

classes

Compared to standard Haskell� the main missing type
class feature of Mini�Haskell is the notion of subclasses�
Subclasses are clearly bene�cial as far as methodical as�
pects are concerned� However� for semantics and type
reconstruction� subclasses are syntactic sugar and can
be eliminated� We present two methods for handling
subclasses� Subclasses can be integrated into our type
inference system by slightly changing some de�nitions�

�It is easy to give similar examples where the INST declara	
tions not only di�er in the function �or constant� provided�



As an alternative� we give a method for eliminating sub�
classes� We assume the restrictions on instance decla�
rations adopted in actual Haskell� which are the reason
why the latter method is particularly simple�
Assume a set of Haskell classes C with an ordering

�� If C � D� we say that C is a subclass of D and
D is a superclass of C� To accommodate subclasses�
we extend the Mini�Haskell judgement that de�nes sort
membership of types� ��� � � � S to the judgement
��� �H � � S� The rules SI� SE� TVAR� and TCON are
the same for the Haskell�judgement �H � we only have
one additional rule for the subclass ordering�

SUB
��� �H � � C C � D

��� �H � � D

��� Integrating Subclasses

Our uni�cation and type inference algorithms easily ac�
commodate subclasses� We give a brief sketch of the
necessary extensions� In essence� only the uni�cation
algorithm is a�ected by the integration of subclasses�
The key idea is to rede�ne the ordering on sorts�

S � S� � �C� 	 S��C 	 S� C � C�

As above� the ordering � extends in the component�
wise way to sequences of sorts Sn� Then for a type
constructor t and a class C� the de�nition of D	t� C
 is
generalized to

D	t� C
 � fSn j �D � C�t � 	Sn
D 	 �g

Coregularity is de�ned as above� D	t� C
 must be empty
or have a maximal element for all t and C� Similar to
above� it can be shown that coregularity is necessary
and su�cient for unitary uni�cation and hence princi�
pal types� The restrictions adopted in Haskell imply
coregularity also in the presence of subclasses and are
also motivated by semantic reasons� as discussed in Sec�
tion ��

��� Eliminating Subclasses

The idea behind translating Haskell type classes into
Mini�Haskell is to replace Haskell classes by the set of
their super sorts� Let C� � fC� j C � C�g and cor�
respondingly S� �

S
C�S C�� Then a Haskell�like class

declaration

class C � S where x � ���C���n�Sn��

states that C is a subclass of all C� 	 S� Assume
that the subclass ordering � has been built up from
the CLASS declarations� Then the above CLASS dec�
laration translates into the Mini�Haskell declaration

class C where x � ���C���n�Sn���

A Haskell instance declaration

inst t � 	Sn
C where x � e

simply translates into

inst t � 	Sn�
C where x � e

In the last translation it is not necessary to expand
C into several declarations� one for each element of C��
since Haskell requires that if t	� � �
 is declared as an
instance for C� then it also has to be an instance of
all super classes of C� Another consequence of this re�
striction is that the rule SUB for type classi�cation is
redundant in the case of Haskell�
Assume a Mini�Haskell class signature � that also

includes an ordering � on classes� For this Haskell�like
signature� let �� denote the pure Mini�Haskell signa�
ture obtained by translating all instance declarations in
� with the above rule� De�ne further �� � �� � 	��
� j
� 	 Dom	�
�� We show the correctness of the transla�
tion with the following theorem�

Theorem 	�� Let � be a Mini�Haskell signature with

an ordering on classes� Then ��� �H � � C i� ����� �
� � C��

It should be noted that this translation loses some
information about the class ordering� The di�erence to
the former method emerges when Mini�Haskell is trans�
lated into a functional language without classes� e�g�
ML�
For instance� assume the class ordering Ord � Eq�

Then a type � of sort Ord would be translated into a
type of sort fOrd�Eqg by the latter method� This is
equivalent in the sense that an object of type � still
provides the same functions� The particular instances
of these functions cannot be computed at compile time
and are usually carried around at run time in the form
of dictionaries 	of functions
� Now we can see the dis�
advantage of the latter method� an object of type � re�
quires two dictionaries instead of only one� In contrast�
after integrating subclasses� the two sorts fOrd�Eqg
and Ord are equivalent 	since fOrd�Eqg � Ord and
Ord � fOrd�Eqg
 and only one dictionary has to be
used for either one�


 Related Work

The structure of algorithm I is very close to that of
Milner�s algorithm of the same name �
��� Apart from
the fact that our version of I is purely applicative 	hence
we carry the substitution and the set of used variables
around explicitly
� the main di�erence is that we also
have to maintain a set of constraints �� In fact� this



is the only real di�erence to Milner�s algorithm� It is
interesting to note that Milner�s �rst formulation of type
inference uses a purely functional algorithmW which is
non�incremental� i�e� does not take a given substitution
� and produce an extended one ��� but computes the
result substitution from scratch� Whereas he considers
I merely a more e�cient re�nement� in our case there
is a very strong simplicity argument in favour of the
incremental version� when typing an application 	e� e�

it is far simpler to type e� under the constraints due
to e� than compute two separate constraints �� and ��
and having to merge them afterwards�

Probably the �rst combination of ML�style polymor�
phism and parametric overloading 	as opposed to �nite
overloading as in Hope ���
 was presented by Kaes ����
His language is in fact very close to our Mini�Haskell� ex�
cept that he does not introduce classes explicitly� More
importantly� he does not use contexts to record infor�
mation about type variables but tags the type variables
directly�

The original version of type classes as presented by
Wadler and Blott �
�� was signi�cantly more powerful
than what went into Haskell� the reason being that the
original system was undecidable� as shown later by Vol�
pano and Smith �
��� The relationship to Haskell proper
is discussed in Section ��

Nipkow and Snelting �
�� realized that type inference
for type classes can be formulated as an extension of
ordinary ML�style type inference with order�sorted uni�
�cation� i�e� simply by changing the algebra of types
and the corresponding uni�cation algorithm� Although
this was an interesting theoretical insight� it only lead
to a simple algorithm for a restricted version of Haskell
where each type variable is constrained by exactly one
class� In addition it was not possible to identify ambigu�
ous typings like ���C���� E � e � int because there was
no notion of contexts and type variables were tagged
with their sort� Both problems have been eliminated in
the present paper�

An interesting extension of Haskell using the notion
of �predicated types� was designed and implemented by
Mark Jones ���� The main di�erence is that he allows
arbitrary predicates P 	��� � � � � �n
 over types as opposed
to our membership constraints � � S�

Independently of our own work Chen� Hudak and
Odersky ��� developed an extension of type classes us�
ing similar techniques and arriving at a similar type
reconstruction algorithm� Since their type system is
more general� they use di�erent and more involved for�
malisms� in particular for uni�cation� In contrast� we
reduce uni�cation to its essence by splitting it into stan�
dard uni�cation plus constraint solving� This enables
us to give a su�cient and necessary criterion for uni�
tary uni�cation� which is required for principal types�

As discussed in Section �� the restrictions in Haskell
easily archive unitary uni�cation� An example where
unitary uni�cation is more di�cult is the integration
of subclasses 	see Sec� ��

� where Dom	t� C
 is de�ned
di�erently�
Kaes ��� presents an extension of Hindley�Milner

polymorphismwith overloading� subtypes and recursive
types� Due to the overall complexity of the resulting
system� the simplicity of the pure system for overload�
ing is lost�

� Ambiguity

Wewould like to conclude this paper with a discussion of
the ambiguity problem which a�ects most type systems
with overloading� It is caused by the fact that although
a program may have a unique type� it�s semantics is not
well�de�ned� According to our rules� the program

class C where f � ���C��� int�
class D where c � ���D���
	f c


has type int in any context containing an assumption
� � fC�Dg� Yet the program has no semantics because
there are no instances of f and c at all� If there were
multiple instances of both C and D� it would be impos�
sible to determine which one to use in the expression
	f c
�
Motivated by such examples� a typing ���� E � e � �

is usually de�ned to be ambiguous if there is a type vari�
able in � which does not occur free in � or E� However�
the only formal proof of a relationship between such
ambiguous types and ill�de�ned semantics that we are
aware of is due to Blott �
�� Since we have not provided a
semantics for our language� we have not introduced am�
biguity formally� Nevertheless there is one place in our
inference system where we anticipate a particular treat�
ment of ambiguity� In rule �I� the proviso � 	 FV	�

is intended to propagate ambiguity problems� with this
restriction� the expression let x � 	f c
 in � 	preceded
by classes C and D as declared above
 has type int only
in a context containing an assumption � � fC�Dg� If the
proviso is dropped� the expression also has type int in
the empty context� thus disguising the local ambiguity�
The reason is that x can be given the ambiguous type
���fC�Dg�int� but since x does not occur in �� this does
not matter� Although in a lazy language x need not be
evaluated and hence the semantics of the whole let is
indeed unambiguous� we would argue that for pragmatic
reasons it advisable to �ag ambiguities whenever they
arise�
From this discussion it is obvious that a semantics and

a coherence proof for the type system w�r�t� a semantics
are urgently needed�



References

��� S� Blott� An approach to overloading with polymor�

phism� PhD thesis� Dept� of Computing Science� Uni�
versity of Glasgow� �����

��� R� Burstall� D� MacQueen� and D� Sannella� Hope� an
experimental applicative language� In Proc� ���� LISP

Conference� pages �	
���	� ��
��

�	� K� Chen� P� Hudak� and M� Odersky� Parametric type
classes� In Proc� ACM Conf� Lisp and Functional Pro�

gramming� ����� To appear�

��� D� Cl�ement� J� Despeyroux� T� Despeyroux� and
G� Kahn� A simple applicative language� Mini�ML� In
Proc� ACM Conf� Lisp and Functional Programming�
pages �	���� ��

�

��� L� Damas and R� Milner� Principal type schemes for
functional programs� In Proc� �th ACM Symp� Princi�

ples of Programming Languages� pages �������� ��
��

�
� P� Hudak� S� P� Jones� and P� Wadler� Report on the
programming language Haskell� A non�strict� purely
functional language� ACM SIGPLAN Notices� ������
May ����� Version ����

��� M� P� Jones� A theory of quali�ed types� In B� Krieg�
Br�uckner� editor� Proc� European Symposium on Pro�

gramming� pages �
��	�
� LNCS �
�� �����

�
� S� Kaes� Parametric overloading in polymorphic pro�
gramming languages� In Proc� �nd European Sympo�

sium on Programming� pages �	������ LNCS 	��� ��

�

��� S� Kaes� Type inference in the presence of overloading�
subtyping and recursive types� In Proc� ACM Conf�

Lisp and Functional Programming� ����� To appear�

���� R� Milner� A theory of type polymorphism in program�
ming� J� Comp� Sys� Sci�� ���	�
�	��� ���
�

���� R� Milner� M� Tofte� and R� Harper� The De�nition of

Standard ML� MIT Press� �����

���� T� Nipkow and G� Snelting� Type classes and overload�
ing resolution via order�sorted uni�cation� In Proc� �th

ACM Conf� Functional Programming Languages and

Computer Architecture� pages ����� LNCS ��	� �����

��	� D� M� Volpano and G� S� Smith� On the complexity
of ML typability with overloading� In Proc� �th ACM

Conf� Functional Programming Languages and Com�

puter Architecture� pages ����
� LNCS ��	� �����

���� P� Wadler and S� Blott� How to make ad�hoc polymor�
phism less ad hoc� In Proc� �	th ACM Symp� Principles

of Programming Languages� pages 
���
� ��
��


