
J� Functional Programming � ���� ������ January ���� c� ���� Cambridge University Press �

Type Reconstruction for Type Classes�

Tobias Nipkow� and Christian Prehofer�

TU M�unchen�

Abstract

We study the type inference problem for a system with type classes as in the functional
programming language Haskell� Type classes are an extension of ML�style polymorphism
with overloading� We generalize Milner�s work on polymorphism by introducing a sepa�
rate context constraining the type variables in a typing judgement� This leads to simple
type inference systems and algorithms which closely resemble those for ML� In particu�
lar we present a new uni�cation algorithm which is an extension of syntactic uni�cation
with constraint solving� The existence of principal types follows from an analysis of this
uni�cation algorithm�

� Introduction

The extension of Hindley�Damas�Milner polymorphism with the notion of type

classes in the functional programming language Haskell �HJW��� has attracted

much attention� Type classes permit the systematic overloading of function names

while retaining the advantages of the Hindley�Damas�Milner system� every typable

expression has a most general type which can be inferred automatically� Although

many extensions to Haskell�s type system have already been proposed �and also

implemented�	 we believe that the essence of Haskell�s type inference algorithm has

still not been presented in all its simplicity� The main purpose of this paper is to

give a particularly simple algorithm	 a contribution for implementors� At the same

time we present a correspondingly simple type inference system	 a contribution

aimed at users of the language� Finally we give rigorous proofs of the soundness

and completeness of the algorithm with respect to the inference system� Although

both the algorithm and the inference system resemble their ML
counterparts very

closely	 the proofs are considerably more involved�

A type class in Haskell is essentially a set of types �which all happen to provide

a certain set of functions�� The classical example is equality� In the pre
standard

versions of ML	 the equality function � has the polymorphic type ����� �� bool	

� This is an extended version of �NP���
� Research supported by ESPRIT BRA �	
�� TYPES�
� Research supported by the Deutsche Forschungsgemeinschaft �DFG� under grant Br
��
�	� Deduktive Programmentwicklung�

� Address� Institut f�ur Informatik� Technische Universit�at M�unchen� ����� M�unchen�
Germany� Email� fnipkow�prehoferg�informatik�tu�muenchen�de

� Tobias Nipkow and Christian Prehofer

where the type variable � ranges over all types� However	 � should not be applied to

arguments of function type� To �x this problem	 Standard ML �MTH�
� introduces

special type variables that range only over types where equality is de�ned� Equality

di�ers from other polymorphic functions not just because of its restricted domain

but also because of its mixture of polymorphism and overloading� equality on lists

is implemented di�erently from equality on integers�

Type classes treat both issues in a systematic way� the type variable� is restricted

to elements of a certain type class	 say Eq	 the class of all �equality types�� Then

for each type � where � should be de�ned	 we have to declare that � is of class Eq

by providing an implementation of � of type � � � � bool�

To express the fact that a type � is in some class C we introduce the judgement

� � C�� The idea of viewing Haskell as a three level system of expressions	 types

and classes	 where classes classify types	 goes back to Nipkow and Snelting �NS����

However	 in their system it is impossible to express that a type belongs to more than

one class� To overcome this di�culty we introduce sorts as �nite sets of classes� The

judgement � � fC�� � � � � Cng is a compact form of the conjunction � � C� � � � �� � �

Cn� Alternatively we may think of fC�� � � � � Cng as a notation for C� � � � � � Cn	

the intersection of the types belonging to the classes C� to Cn� This leads to a

simple type inference system and algorithm� The former resembles that for Mini

ML �CDDK���	 the latter is very similar to algorithm I by Milner �Mil���� The

main di�erence is that in both cases we also compute a set of constraints of the

form � � fC�� � � � � Cng where � is a type variable�

� Mini�Haskell

Since the aim of this paper is simplicity	 we treat only the most essential fea

tures of Haskell relating to type classes� The resulting language is basically Mini

ML �CDDK��� plus class and instance declarations	 Mini�Haskell for short� Its

syntax is shown in Figure �� Although the next paragraph provides a brief account

of type classes	 the reader should consult the Haskell Report �HJW��� or the orig

inal paper on type classes �WB��� for motivations and examples� Note that we do

not follow the concrete names of classes etc� of Haskell in our examples�

Mini
Haskell extends ML by a restricted form of overloading� Ignoring subclasses

for a moment	 each class declaration introduces a new class C and a new overloaded

function name x� Semantically	 C represents the set of all types which support a

function x� For instance

class � � Eq where eq � �� �� bool

introduces the class Eq of all those types � which provide a function eq � � � � �

bool� A class declaration is like a module interface� it separates declarations from

implementations� In order to �prove� that a particular type	 say int	 is in Eq	 a

�witness� for the required function eq needs to be provided� This is the purpose of

� If classes are viewed as predicates on types� this leads to the Haskell notation C����

Type Reconstruction for Type Classes �

Type classes C
Sorts S � fC�� � � � � Cng
Type variables �
Type constructors t
Types � � � j t���� � � � � �n�
Type schemes � � � j ���S��
Identi�ers x
Expressions e � x

j �e� e��
j �x�e
j let x � e� in e�

Declarations d � class � � C � S where x � �
j inst t � �S�� � � � � Sn�C where x � e

Programs p � d� p j e

Fig� �� Syntax of Mini�Haskell types and expressions

instance declarations� In order to prove int � Eq we instantiate eq by eq int	 some

existing function of type int� int� bool�

inst int � Eq where eq � eq int

In general we can instantiate classes not just by ground types but also by type con

structors� For example we may wish to express that a type list�� � admits equality

provided � does�

inst list � �Eq�Eq where eq � � � �

The declaration list � �Eq�Eq expresses that list maps types of class Eq to types

of class Eq� The implementation of eq on lists is intentionally left blank� due to

the absence of pattern matching and recursion in our language	 the required code

would be a nest of conditionals wrapped up in a �xpoint combinator�

Classes can be arranged in hierarchies� The general class declaration

class � � C � S where x � �

introduces the new class C as a subclass of all classes in S	 which must have been

de�ned already� Type � is in C only if it is in the intersection of all the classes in

S and provides a function x of type �� For example the class Ord of ordered types

can be de�ned as a subclass of Eq which provides an additional function le�

class � � Ord � Eq where le � �� �� bool

Subclasses are mere syntactic sugar �CHO���� In the above example Ord could be

de�ned without reference to Eq as a completely separate class� The only di�erence

is that without subclasses the judgement � � Ord has to be expanded to become

� � Eq � � � Ord	 i�e� � � fEq�Ordg� However	 it is almost easier to deal with

subclasses directly than to eliminate them	 as done in �NP���� To demonstrate this	

and because subclasses are part of Haskell	 we have included them in Mini
Haskell�

� Tobias Nipkow and Christian Prehofer

��� Sorts and Types

As motivated in the introduction	 sorts are �nite sets of classes� This representation

is a key ingredient for the concise treatment of type inference� Yet semantically

the sort fC�� � � � � Cng should be understood as C� � � � ��Cn� Thus fCg and C are

equivalent	 and the empty set fg is the sort�set of all types� If S� is more specialized	

i�e� represents fewer types than S�	 we write S� � S�� Given a partial order � on

classes	 the induced quasi
order � on sorts is de�ned by

S� � S� � �C� � S���C� � S�� C� � C�

It follows directly that S� 	 S� implies S� � S�� In the context of a non
trivial

ordering � on classes	 the reverse implication does not hold� for example fOrdg �

fEqg although fOrdg
	 fEqg� It is easy to see that any two sorts S� and S� possess

an in�mum whose representation is their union S� � S��

Because � is in general only a quasi
order �i�e� it is not antisymmetric�	 it gives

rise to an equivalence

S� � S� � S� � S� � S� � S��

Sorts which are equivalent modulo �	 for example fOrdg and fOrd�Eqg	 represent

the same set of types� Although it would be mathematically more elegant to work

with equivalence classes �S��	 we prefer to stay closer to an implementation and

work with sorts directly� Nevertheless it should be kept in mind that an implemen

tation is free to choose an arbitrary representative from an equivalence class �S��	

for example the one with fewest elements�

Types in Mini
Haskell are simply terms over variables and constructors of �xed

arity� Note that � is just another type constructor	 i�e� �� � �� is short for

����� ���� The set of free variables in a type scheme is denoted by FV���� Bound

variables in type schemes range only over certain subsets of types� ���S�� abbrevi

ates all instances f�
� �g� where � � S	 a judgment de�ned formally below�

In the sequel a list of syntactic objects s�� � � � � sn is abbreviated by sn� For in

stance	 ��n�Sn�� is equivalent with ����S�� � � � � �n�Sn��� Orderings extend to lists

in the componentwise manner� Sn � Tn � �i� Si � Ti�

��� Declarations and Programs

As shown in Figure �	 expressions are �
terms extended with let
de�nitions� A

program is a sequence of declarations followed by an expression�

A Mini
Haskell class declaration class � � C � fC�� � � � � Cmg where x � �

corresponds to the Haskell declaration class �C��� � � � � Cm��� C� where x �� � 	

where � is the body of �� Note that � must contain no free variables except �� The

translation in the opposite direction is more involved because a Haskell class can

declare any number of functions� This feature is clearly not essential and could	 for

instance	 be modeled by representing a set of functions by a single tuple of functions�

Strictly speaking	 we could have dropped class names altogether since there is a one

to one correspondence between class names and the single function declared in that

Type Reconstruction for Type Classes �

class� This would have lead us to the language of Stefan Kaes �Kae��� but would

have obscured the connection with Haskell�

A Mini
Haskell instance declaration inst t � �S�� � � � � Sn�C where x � e expresses

that t���� � � � �n� is in class C provided the �i are of sort Si� It corresponds to the

Haskell declaration inst �con� � C�t �� � � � �n� where x � e where con is a list

consisting of assumptions C��i with C� � Si for all i � � � � �n�

��� Classifying Types

Before we embark on type inference	 the simpler problem of sort inference has to be

settled� In ML and many other languages we have the judgement e � � 	 expressing

that e is of type � � Similarly	 we classify types by sorts with the judgement � � S	

stating that type � is in sort S� This judgement depends on

� the sorts of the type variables in � � This is recorded in a sort context �	

which is a total mapping from type variables to sorts such that Dom��� �

f� j ��
� fgg is �nite� Sort contexts can be written as ����S�� � � � � �n�Sn��

� the �functionality� of the type constructors� The behaviour of type construc

tors is speci�ed by declarations of the form t � �Sn�C which are lifted directly

from instance declarations� In the sequel � always denotes a set of such dec

larations�

� the subclass ordering ��

The pair ��� is called a �type� signature and is denoted by �	 i�e� ��� and �

are used interchangeably�

Given � and � we can infer the sort of a type � using the judgement ��� � � � S�

The rules are shown in Figure �� Remember that the sort fCg and the class C are

equivalent�

The ordering � extends easily from sorts to contexts�

� � �� � ��� �� � ���

We say that �� is more general than �� It is easy to show that � is monotonic

w�r�t� this ordering� ���� � � � S implies ��� � � � S� In the sequel this fact is often

used implicitly�

Because every two sorts possess an in�mum	 every type � has a most speci�c

sort S	 i�e� ��� � � � S and if ��� � � � S� then S � S�� The computation of this

most speci�c sort is straightforward and shall not concern us here because it is not

relevant for our purposes�

Having seen sort inference for Mini
Haskell types we are prepared for our main

goal	 type inference and type reconstruction for Mini
Haskell programs�

� Type Inference Systems

In this section we present two type inference systems for Mini
Haskell� We start

with a set of inference rules which de�ne the types of Mini
Haskell programs and

� Tobias Nipkow and Christian Prehofer

�i � � � � � n�
���

��� � � � Ci

��� � � � fC�� � � � � Cng

��� � � � fC�� � � � � Cng

��� � � � Ci

i � � � � � n

���� � S

��� � � � S

�i � � � � � n�
���

t � �Sn�C � � ��� � �i � Si

��� � t��n� � C

��� � � � C� C� � C�

��� � � � C�

Fig� �� The judgement ��� � � � S

CLASS
�� ��� f�C�D� j D � Sg����� E�x����C��� � p � ��

������ E � �class � � C � S where x � �� p� � ��

INST

� � ft � �Sn�Cg����� E � p � ��

E�x� � ���C�� ���n�Sn������ E � e � f� �� t��n�g�

������ E � �inst t � �Sn�C where x � e� p� � ��

Fig� �� The judgement ������ E � p � �

expressions� Then we proceed to a more restricted	 syntax
directed set of rules	

which will be the basis for the type inference algorithm�

As usual in type inference for ML
like languages	 an environment is a �nite

mapping E � �x����� � � � � xn��n� from identi�ers to types� The domain of E is

Dom�E� � fx�� � � � � xng� E�x��� is a new map which maps x to � and all other xi
to �i� The free type variables in E are FV�E� � FV�E�x��� � � � � � FV�E�xn���

If V is a set of type variables the restriction of � to variables not in V is �nV �

����� j � � Dom��� � V ��

A substitution is a �nite mapping from type variables to types	 written as

f��
� ��� � � �g� Substitutions are denoted by � and �� fg is the empty substitution�

De�ne Dom��� � f� j ��
� �g	 Cod��� �
S
��Dom���FV������ and FV��� �

Dom��� � Cod����

There are two judgements which are de�ned in Figures � and �� ������ E � p � �

and ������ E � e � � express that program p and expression e are of type � in the

context of �	 �	 � and E�

The rules for ������ E � p � �	 when applied backwards	 simply traverse the

Type Reconstruction for Type Classes �

declarations	 building up �	 � and E� Class declarations extend E and �	 instance

declarations extend �� Notice that it is necessary to take the transitive closure

��� f�C�D� j D � Sg�� of � and the new subclass relations in rule CLASS�

Rule INST also type
checks the instantiation of x by e	 making sure that e is of

type f�
� t��n�g�	 where � is the generic type of x and f�
� t��n�g is a type

substitution with new type variables �n�

Note that there are two context conditions for declaration sequences we have

chosen not to formalize�

�� class � � C � S must be preceded by a declaration for each superclass in S	

but not by another declaration class � � C�

�� inst t � �Sn�C must be preceded	 for each superclass D of C	 by a declaration

inst t � �Tn�D such that Sn � Tn	 but not by another declaration inst t�� � ��C�

These conditions are the result of translating the restrictions actually adopted in

Haskell �HJW��	 ������ to Mini
Haskell� Enforcing them is simple enough and has

thus been ignored in this paper� Nevertheless we assume in the sequel that all

declarations	 and hence � and �	 meet the above conditions�

ASM ���� E � x � E�x�

�E
���� E � e � ���S�� ��� � � � S

���� E � e � f� �� �g�

�I
������S�� E � e � � � � FV����FV�E�

���� E � e � ���S��

APP
���� E � e� � �� � �� ���� E � e� � ��

���� E � �e� e�� � ��

ABS
���� E�x���� � e � ��

���� E � �x�e � �� � ��

LET
���� E � e� � �� ���� E�x���� � e� � ��

���� E � let x � e� in e� � ��

Fig� 	� The judgement ���� E � e � �

The rules for ���� E � e � � extend the classical system of Damas and Mil

ner �DM��� by the notion of sorts	 which are represented via �	 �	 and restricted

quanti�cation in type schemes� The assumption � � FV��� in �I is not really essen

tial �for soundness�� Its practical signi�cance is discussed in Section �� In contrast

to the CLASS and INST rules	 � remains �xed�

��� Syntax�directed Type Inference

The next step towards a type reconstruction algorithm is a more restricted set of

rules� The application of these rules is determined by the syntax of the expression

� Tobias Nipkow and Christian Prehofer

whose type is to be computed� To distinguish the syntax
directed system we use �

instead of � and prime the names of its rules	 e�g� ASM��

De�nition ���

The type scheme �� � ���n�S
�
n
�� � is a generic instance of � � ��m�Sm�� under �

and �	 written ��� � � � ��	 i� there exists a substitution � such that

�� � � ��

Dom��� � f�mg�

������n�S
�
n� � ��i � Si �i � � � � �m��

f��
n
g � FV��� � fg�

With this relation on types we can now de�ne the most general or principal type

of an expression� We say E is closed if FV�E� � fg�

De�nition ���

The type scheme � is a principal type of an expression e w�r�t� � and a closed

environment E	 if �� ��� E � e � � and for every �� with �� ��� E � e � ��	 the type

scheme �� must be a generic instance of �	 i�e� �� �� � � � ���

For the syntax
directed system	 the rules APP and ABS remain unchanged	 the

quanti�er rules are incorporated into ASM and LET	 as shown in Figure ��

ASM�
��� � E�x� � �

���� E � x � �

LET�
�����k�Sk ��E � e� � �� ���� E�x���k�Sk���� � e� � ��

���� E � let x � e� in e� � ��
where f�kg � FV�����FV�E�

Fig�
� The judgement ���� E � e � �

There is a straightforward correspondence between the two systems� The syntax

directed derivations are sound

Theorem ���

If ���� E � e � � then ���� E � e � � �

and in a certain sense complete w�r�t� the original system�

Theorem ���

If ���� E � e � ��n�Sn�� then �����n�Sn�� E � e � � �

The proof of the last theorem is standard	 as for instance in �CDDK��	 App� A����

Theorem ��� clari�es in what sense � works di�erently from �� by applying the

primed rules backwards	 the sort constraints for type variables are stored solely in

�	 and not in the type scheme of e� For instance	 the LET� rule explicitly extends ��

The � operation	 used in the ASM� rule	 may introduce new type variables	 whose

sorts must be constrained in ��

Type Reconstruction for Type Classes �

The syntax
directed system already has a very operational �avour� In order to

make the transition from a type inference system to an algorithmwe need one more

ingredient� uni�cation�

� Uni�cation of Types with Sort Constraints

This section deals with uni�cation in the presence of sort constraints in the form

of contexts� This problem can in principle be reduced to order
sorted uni�cation	

as done in �NS��� w�r�t� �� However	 we have refrained from doing so because it

is contrary to our quest for simplicity� involving order
sorted uni�cation makes the

algorithm appear more complicated than it actually is� In addition	 the standard

theory of order
sorted uni�cation would need to be reformulated anyway� it assumes

that variables are tagged with their sort	 rather than using contexts�

For the remainder of this paper we assume a �xed signature � � ������ This is

simply a notational device which avoids excessive parameterization�

Since sort information is maintained in contexts	 we frequently work with pairs

of contexts and substitutions� A substitution � obeys the sort constraints of �

in the context of ��	 written �� � � � �	 i� ���� � �� � �� for all �� Because

���� � �� � �� is trivially ful�lled if �� � fg it su�ces to require ���� � �� � ��

for all � � Dom���� For instance	 let Eq and list be de�ned as in the examples in

Section �� Then we have ���Eq� � f�
� list���g � ���Eq��

We de�ne an ordering on context
substitution pairs�

��� �� � ���� ��� � ��� �� � �� � �� � � � �

where �� is de�ned as the composition� �����s� � ����s���

The set of uni�ers of �� and �� w�r�t� �	 written U��� ������	 consists of the

following context
substitution pairs�

U��� ������ � f���� �� j ��� � ��� � �� � � � �g

A uni�er ���� ��� � U��� ������ is most general if ���� ��� � ���� ��� for all

���� ��� � U��� ������� We say that uni�cation modulo � is unitary if for all �

and ����� the set U��� ������ is empty or contains a most general uni�er�

A signature � is called coregular if for all type constructors t and all classes C

the set

D�t� C� � fSn j �D � C� �t � �Sn�D� � �g

is either empty or contains a greatest element w�r�t��� If � is coregular letDom�t� C�

return the greatest element of D�t� C� or fail if D�t� C� is empty� For instance	

Dom�list� Eq� � Eq but Dom�list� Ord� fails�

Sorted uni�cation can be expressed as unsorted uni�cation plus constraint solv

ing� Given a coregular signature �	 this has the following simple form�

unify��� ������ �

let � � mgu�������

�c � Constrain�����

in ��c � ��nDom����� ��

�
 Tobias Nipkow and Christian Prehofer

where

� mgu computes an unsorted mgu �in particular we assume that � is idempotent

and that Dom��� � Cod��� � FV�������� or fails if none exists	
� the union of two sort contexts is de�ned by

�� � �� � �� � ��� � ��� j � � Dom���� � Dom�����

� Constrain����� computes the most general context �c such that �c � � � ��

Constrain����� �
�

��Dom���

constrain�������

� constrain��� S� computes the most general context � such that ��� � � � S�

constrain��� S� � ���S�

constrain�t��n�� S� �
�
C�S

constrains��n�Dom�t� C��

constrains��n� Sn� �
�

i�����n

constrain��i� Si�

Thus unify fails if mgu fails or if some Dom�t� C� used in Constrain does not exist�

By induction on the �rst argument of constrain it can be shown that

constrain�t��n�� S� � constrains��n�
�
C�S

Dom�t� C��

which provides an alternative de�nition of constrain which is also useful in the

proofs below� To see how constrain works	 assume Eq and list again as in the exam

ples in Section �� Then constrain�list���� Eq� � constrains���Dom�list� Eq�� �

���Eq��

Soundness and completeness of Constrain are captured by the following lemmas

which assume coregularity of � and are proved by induction on the structure of � �

Lemma ���
If constrain��� S� is de�ned then �� constrain��� S� � � � S�

Lemma ���
If constrain���� S� is de�ned then constrain��� S� is de�ned as well and furthermore

constrain���� S� � � � constrain��� S� holds�

Lemma ���
If ��� � � � S then constrain��� S� is de�ned and more general than ��

Finally	 the main theorems�

Theorem ���

If � is coregular	 unify computes a most general uni�er�

Proof To show soundness	 let unify��� ������ terminate with result ���� ���� It

follows directly that ���� � ����� It remains to be seen that �� � ��� � �� for all

�� If � 	� Dom����	 then �� � ��� and the claim follows trivially� If � � Dom����

then �� � �c � Constrain������ � constrain�������� and the claim follows from

Lemma ����

Type Reconstruction for Type Classes ��

To show completeness let ���� ��� � U��� ������	 i�e� ���� � ���� and �� � �� � ��

Since �� and �� have an unsorted uni�er ��	 mgu������� is de�ned and yields

a substitution �� such that �� � ��� for some �� De�nedness of unify��� ������

also requires de�nedness of constrain��������� since �� � ��� � ��	 Lemma ���

implies de�nedness of constrain�������� and Lemma ��� yields de�nedness of

constrain��������� Thus unify��� ������ terminates with a result ���� ����

It remains to be shown that �� � � � ��� If � � Dom���� then ��� � fg and hence

�� � �� � ��� holds trivially� Now assume � 	� Dom����� Thus ��� � �c� � ���

From �� � �� � � it follows that �� � �� � ��� Proving �� � � � �c is more involved�

From Lemma ��� it follows that constrain�������� � � � constrain�������� for

any �� Since �� � ��� � ��	 Lemma ��� implies �� � constrain�������� and thus

by monotonicity �� � � � constrain��������� This in turn easily yields �� � � �

Constrain������	 i�e� �� � � � �c� �

Theorem ���

Uni�cation modulo � is unitary i� � is coregular�

Proof The �if� direction is a consequence of Theorem ���� For the �only if� di

rection let � not be coregular� Thus there are classes C�D � E and declarations

t � �Sn�C and t � �Tn�D	 Sn
� Tn	 and Tn
� Sn	 such that there is no third

declaration t � �Un�E�	 E� � E	 and Sn� Tn � Un� Hence the uni�cation prob

lem ����E�� t��n���� does not have a most general uni�er� Two maximal ones are

���n�Sn�� �� and ���n�Tn�� �� where � � f� � t��n�g� �

Thus we have a precise characterization of those signatures where principal types

exist�

It remains to be seen if Mini
Haskell�s CLASS and INST declarations yield coreg

ular signatures� In fact they do if restricted by the unformalized context conditions

set out in Section �� The latter context conditions imply that every � and � de

rived from valid class and instance declarations has the following strong property�

D�t� C� is either the singleton fSng	 where t�Sn�C is the unique declaration for t

with result C	 or empty	 if there is no such declaration� Therefore Dom�t� C� can

be computed using � alone	 without reference to �� This leads to the observation

that type uni�cation	 and hence	 as we shall see in the next section	 type inference	

can ignore the subclass hierarchy completely�

It should be pointed out that ignoring the subclass hierarchy means giving up a

degree of freedom a�orded by the equivalence � on sorts de�ned in Section �� For

example unify��� � fEqg� � � fOrdg�� � � �� returns ��� � fEq�Ordg�� f�
� �g��

Taking � into account	 we could just as well return ��� � fOrdg�� f�
� �g�� In

order to show that the subsequent developments do not depend on which of these

uni�ers is computed	 we assume in the sequel that unify is an arbitrary function

which	 provided � is coregular	 returns a most general uni�er� if U��� ������
� fg

then

� unify��� ������ � U��� ������ and

� ���� �� � unify��� ������ for all ���� �� � U��� �������

This implies a number of simple properties�

�� Tobias Nipkow and Christian Prehofer

Fact ���

If unify��� ������ � ���� �� then

� � is a most general uni�er of �� and ��	

� Dom���� � FV��� � Dom��� � FV���� � FV����	

� Dom���� �Dom��� � fg�

The second fact states that unify does not introduce new variables	 and the last

expresses that �� does not constrain variables instantiated by �� It is easy to see that

the �� is determined only up to �� Hence the uni�cation algorithm could always

ensure that �� is �minimized� by removing redundant elements from each sort�

Finally one may wonder if the fact that coregularity is strictly weaker than

Haskell�s context conditions means the latter could be relaxed� We believe that

there are no non
trivial relaxations but do not want to enlarge on this subject be

cause it requires going beyond the type system to take semantics and pragmatics

into account�

� Algorithm W

The syntax
directed rule system in Figure � is non
deterministic	 since rule ASM�

can choose any instance of the type of x� To obtain a deterministic algorithm	 we

re�ne the syntax directed system such that it keeps types as general as possible�

The result is algorithmW in Figure �� In this section we assume that � is coregular

� otherwise unify is not well
de�ned�

W�V��� E� e� � case e of

x 	 let ��n�Sn�� � E�x�
�i �� V �i � � � � � n�

in �V � � f�ng����n�Sn�� fg� f�n �� �ng��
�x�e 	 let � �� V

�V ����� ��� �� � W�V � f�g��� E�x���� e�
in �V ����� ��� �� ��

�e� e�� 	 let �V����� ��� ��� � W�V��� E� e��
�V����� ��� ��� � W�V����� ��E� e��

� �� V�
���� ��� � unify���� ������ � ���� � ��

in �V� � f�g���� ������� ��
let x � e� in e� 	 let �V����� ��� ��� � W�V��� E� e��

f�ng � FV�������FV���E�
�V����� ��� ��� � W�V����nf�ng�

���E��x � ��n����n������� e��
in �V����� ����� ���

Fig� �� Algorithm W

AlgorithmW follows the same pattern as Milner�s original algorithm of the same

name �Mil���� the type of an expression e is computed by traversing e in a top
down

manner� W�V��� E� e� returns a quadruple �V ����� �� � �	 where �� is the type of e

Type Reconstruction for Type Classes ��

in the context of �� and �E� The top level call is W �fg� ��� E� e�	 where E is closed�

Observe the di�erent let
constructs� the one on the left hand side is in the object

language	 the ones on the right are part of the type inference algorithm�

The parameter V contains all �used� variables	 i�e� variables that occur in � or

in E� Thus a type variable � 	� V is a �new� variable� For our algorithm to be truly

functional	 a linear ordering on variables may be used	 such that the �next� new

variable � 	� V can be computed deterministically� We will assume in general that

W is invoked with V�� and E such that FV�E� �Dom��� � V �

Algorithm W is not meant to be implemented directly but merely serves as a

mathematically tractable stepping stone towards an e�cient implementation� Its

principal weakness is the fact that substitutions are computed from scratch and

composed later on� This problem is addressed and solved with algorithm I in the

next section� In contrast to substitutions	 contexts are computed incrementally	 i�e�

the result context �� is an extension of the input context ��

A formal analysis of W requires some more notation� For an environment E and

a substitution �	 de�ne �E � �x � ��E�x�� j x � Dom�E��� Two substitutions

are equal on a set of variables W 	 written as � �W ��	 if �� � ��� for all

� � W � The restriction of a substitution to a set of variables W is de�ned

as �jW� � �� if � � W and �jW� � � otherwise� Given a list of syntactic objects

Cn we write FV�Cn� instead of FV�C�� � � � �� FV�Cn��

We �rst show that the algorithm is invariant under �
conversion� The free vari

ables of an expression e	 i�e� FV�e�	 and the application of a substitution to e are

de�ned as usually in �
calculus�

Lemma ���

If W�V��� E�x�� �� e� � �V ����� ��� � �� and y 	� Dom�E� then W�V��� E�y�� �� fx
�

yge� � �V ����� ��� � ���

Proof by induction on e� �

With this lemma	 we can easily show the desired theorem for �
conversion�

Theorem ���

Let e be �x�e� or let y � e� in e�� If W�V��� E� e� is de�ned	 y 	� Dom�E�	

and y 	� FV�e�	 then W�V��� E� e�� � W�V��� E� e�	 where e� is �y�fx
� yge� or

let y � e� in fx
� yge� respectively�

Proof by induction	 using Lemma ���� �

The following correctness and completeness results for W do not depend on the

particular uni�cation algorithm	 as discussed towards the end of Section ��

Theorem ��� 	Correctness of W

If W�V��� E� e� � �V ����� �� � � then ����� �E � e � �� �

Before we can prove the correctness theorem	 we need to supply a series of lem

mas� The following lemma shows the basic relations between the variables of the

objects used by W� The �rst item states that all used variables are recorded in V ��

Next	 all new variables occuring in the computed objects are in V � but not in V 	

�� Tobias Nipkow and Christian Prehofer

i�e� there is no �reuse� of names� The third item states that if some type variables

of the computed type are not new	 they must have been in the environment E�

The last item requires the computed context to be free of assumptions about old

variables �which are in Dom�����	 i�e� no �litter��

Lemma ���
Assume W�V��� E� e� � �V ����� ��� � � and FV�E� �Dom��� � V � Then

�� V � V � and Dom���� � FV���� E� � � � V �

�� �Dom���� � FV���� � ��� �Dom��� � FV�E�� � V � � V �
�� FV���� � �� V � FV�E�
�� Dom���� �Dom���� � fg

Proof The �rst claim follows easily since all new variables are recorded in V � and

since the uni�cation algorithm does not introduce new variables �see Fact ����� For

the same reason and since all variables in Dom�����FV���� � � are either new or in

Dom��� � FV�E�	 we obtain the second claim from FV�E� �Dom��� � V �

The remaining two items are shown by induction on the term structure�

x � trivial since all �i are new variables	 i�e� �i 	� V �
�x�e � by induction hypothesis and since � is a new variable�
�e� e�� � We �rst show

�FV���� � f�g� � V � FV�E��

Since the uni�cation algorithm does not introduce new variables	 it follows

that FV���� � FV������ ��� ��� � f�g� Because � 	� V 	 it su�ces to show

FV������ ��� ��� � V � FV�E�� ���

The induction hypothesis for e� yields FV���� ��� � V� � FV���E�� Using

FV���E� � FV�E� ��� and V � V� we obtain FV���� ��� � V � FV�E� ����

By induction hypothesis for e�	 i�e� FV���� ����V � FV�E�	 we easily get ����

Next we show that Dom���� � Dom�������� � fg� We obtain Dom���� �

Dom���� � fg from the induction hypothesis� Then from Dom���� � V�
and Dom���� � FV���E� � fg �idempotence of ��� we obtain Dom���� �

Dom���� � fg	 as Dom���� � �Dom���� � FV���E�� � V� � V� �item � of

Lemma ����� Next	 from Dom���� � Dom���� � fg �induction hypothesis�

and since Dom������ � Dom���� � Dom����	 Dom���� � Dom������ � fg

follows� Then Dom�����Dom�������� � fg follows from the properties of the

uni�cation algorithm	 i�e� it may not constrain variables from Dom���� �see

Fact �����
let x � e� in e�� We �rst show

FV������ ��� � V � FV�E��

The induction hypothesis for e� yields

FV���� ��� � V� � FV���E�x � ��n����n�������

Since FV���n����n������ � FV���E�	 we get

FV���� ��� � V� � FV���E��

Type Reconstruction for Type Classes ��

Then the rest of the proof proceeds as for �e� e���

The proof of Dom���� � Dom������ � fg also works as in the �e� e�� case�

the only di�erence �apart from the additional ��� is that we have Dom�����

f�ng � fg	 which only simpli�es the proof� �

The next lemma shows that the relation � � � � �� enjoys a kind of transitivity

property w�r�t� substitutions�

Lemma ���

If �� � �� � �� and �� � �� � � then �� � ���� � �

Proof We have to show �� � Dom������ � ����� � ��� Consider the derivation of

�� � ��� � �� �by premise�� It is easy to construct a derivation of �� � ����� � ��	

since �� � FV�������� � ��� � ��� and �� � � � �� �as ��� � � follows from the

idempotence of ���� �

The fact that W specializes contexts is shown in the next result�

Lemma ���

If W�V��� E� e� � �V ����� ��� � � then �� � �� � ��

Proof by induction on the structure of e�

x� ���n�Sn� � fg � � trivial�

�x�e� Since the induction hypothesis holds for any E	 including E�x���	 �� � �� � �

follows directly�

�e� e��� By induction hypothesis we get �� � �� � � and �� � �� � �� and by

transitivity �Lemma ���� and by correctness of the uni�cation algorithm we

get �� � ������ � ��

let x � e� in e�� By induction hypothesis we get

�� � �� � � ���

�� � �� � ��nf�ng ���

Now we show

��nf�ng � �� � � ���

That is	 we have to show ��nf�ng � ��� � �� for all � � Dom���� First

we prove FV����Dom����� � f�ng � fg� From Lemma ���	 item �	 it follows

that FV������ � Dom��� � FV�E�� Idempotence of �� yields FV������ �

FV����Dom����� � FV���E�� Simple set theory yields FV����Dom����� �

�FV������ �FV���E�� � fg as claimed above� Now ��� follows�

Combining ��� and ��� by transitivity �Lemma ���� yields �� � ���� � � �

The next lemma states that � is preserved under instantiation assuming a context

that obeys the constraints�

Lemma ���

If ���� E � e � � and �� � �� � �	 then ����� ��E � e � ��� �

�� Tobias Nipkow and Christian Prehofer

Proof simple by adding proofs of the form �� � ��� � �� in the proof tree of

���� E � e � � to obtain a proof of ����� ��E � e � ��� � �

At last we are able to prove the correctness theorem�

Proof of Theorem ��� by induction on the structure of e� We have the following

cases�

x� Correctness follows easily from

ASM� �����n�Sn� � E�x� � f�n
� �ng�

�����n�Sn�� E � x � f�n
� �ng�

�x�e� By induction hypothesis we get ����� ���E��x����� � e � �� � Then ABS ap

plies�

ABS
���� ���E��x����� � e � ��� �

���� ��E � �x�e � ���� �� �

�e� e��� We get

����� ��E � e� � ����

����� ����E � e� � ����

from the induction hypotheses for e� and e�� The correctness of the uni�cation

algorithm yields �� � �� � �� and then with �� � �� � �� �from Lemma ����

and Lemma ��� we obtain �� � ���� � ���

From Lemma ��� we now get the two premises for the APP rule	 since

�������� � ������ � ���� Furthermore	 ����� � �	 since � is a new vari

able �i�e� � 	� V� and Dom���� �Dom���� � V� by Lemma �����

APP
����� ������E � e� � �������� ����� ������E � e� � ������

����� ������E � �e� e�� � �
��

let x � e� in e� � Using ��� � ��nf�ng	 Sn � ���n	 and E� � E�x � ��n�Sn������

the induction hypotheses are

�������n�Sn�� ��E � e� � ���� ���

����� ����E
�
� e� � ���� ���

Notice that FV���E�� � f�ng � fg� To apply LET�	 we show

������n�Sn�� ����E � e� � ������ ���

As we get �� � �� � ��� from Lemma ��� and FV���� � f�ng � fg from

Lemma ��� �recall that f�ng � V� and f�ng � FV���E
�� � fg�	 we obtain

����n�Sn� � �� � �
�
���n�Sn��

Then ��� follows from Lemma ��� and ����

As Dom�����FV���� � fg is a consequence of Lemma��� �as above	 Dom����

� V� and Dom���� � FV���E
�� � fg as �� is idempotent�	 we obtain

����� ����E
�
� e� � ������ ���

Type Reconstruction for Type Classes ��

Now LET� applies to

��� ��� f�ng � FV������� FV���E�

����� ����E � let x � e� in e� � ������

�

The following lemma is crucial for establishing the principal type theorem�

Lemma ��� 	Completeness of W

If ����� ��E � e � ��	 Dom��� � FV�E� � V 	 and �� � �� � � then there exists a

substitution � such that

W�V��� E� e� � �V����� ��� ����

��E � ���E�

�� � ������

�� � � � ���

Proof by induction on the structure of e� We assume w�l�o�g� a derivation for

����� ��E � e � �� that has no variable overlap with the new variables V��V used

by algorithmW�

x� We have

ASM� ���� � ��E�x� � ��

����� ��E � x � ��

Observe that we can write �E�x� � ����n�Sn�� as ��n�Sn� �
�� 	 where �� �

��jDom�����f�ng	 possibly by renaming some �n� Assuming ���� � ��E�x� �

��	 let � be the corresponding substitution as in De�nition ��� with Dom��� �

f�ng	 and �� � � ��� � Let � � �� � f�n
� ��ng� As �n are new variables	

��E � �E holds� Next	 �� � ��f�n
� �ng� � � � ��� follows easily� Finally	

�� � � � ���n�Sn� follows from �� � �� � � �by premise� and from ���� �

���i � Si� �i � �� � � � � n� �see De�nition �����
�x�e� The derivation ends with

ABS
����� ���E��x���� � � e � ���
����� ��E � �x�e � ��� � ���

As the algorithm is invariant under �
conversion �Lemma ����	 we can safely

assume that x 	� Dom�E�� To apply the induction hypotheses	 we de�ne

�� � �� � f�
� ��� g� Then ����� ���E�x���� � e � ��� and �� � �� � � are easy

to verify� By induction hypothesis there exists �� such that

W�V � f�g��� E�x���� e� � �V ����� ��� � ��� ���

���E��x���� � � ���
�E�x���� ��
�

��� � ���
�� �� ����

�� � �� � �� ����

and hence W�V��� E� �x�e� � �V ����� ��� � � � ��� Now ��E � ���
�E follows

from ��
�� Furthermore	 from ��
� we obtain ��� � ���
�� and hence ��� �

��� � ���
���� � �� from �����

�� Tobias Nipkow and Christian Prehofer

�e� e��� We assume

APP
����� ��E � e� � �

�
� � ��� ����� ��E � e� � ���

����� ��E � �e� e�� � �
�
�

Applying the induction hypothesis to e� yields �� such that

W�V��� E� e� � �V����� ��� ���� ����

��E � ����E� ����

��� � ��� � ������� ����

�� � �� � ��� ����

The induction hypothesis with e� with ��	 where �� � �� � ��	 and ��E yields

�� such that

W�V����� ��E� e�� � �V����� ��� ���� ����

��E � ������E� ����

��� � ������� ����

�� � �� � ��� ��
�

Let �� be de�ned as

��� �

��
�
��� if � � FV������ � Cod����

��� if � � �

��� otherwise

We show that �� is a uni�er of ������ � ���� � �� Notice that FV���� ��� �

FV������ � FV���E� follows from Lemma ��� and that the two substitutions

���� and �� coincide on FV���E�� combining ���� with ���� yields

���� �FV���E� �� ����

This overlap simpli�es the following proofs by case analysis	 in which the case

� � � is immaterial� First	 to show ������ � ������ � ��� 	 assume � � FV�����

Then in case � 	� FV����	 �
��� � ���� follows from ���� if � � FV������ as

FV���� ��� � FV������ � FV���E�	 and is trivial otherwise� If � � FV����	

then ������ � ������ is trivial�

To show �������� � ������	 assume � � FV������� If � � Dom����	 ���� gives

the desired result as Dom���� � FV������ � FV���E�� In case � 	� Dom����	

������ � ���� follows easily� Hence �� is the desired uni�er�

�������� � ��� � ��� � ������� � ���

We obtain �� � �� � �� from ���� and ��
� by case analysis� we have to

show ���� � ��� � ��� for all � � Dom����� First recall that Dom���� �

Dom���� � fg by Lemma ���� If � � FV������ � Cod����	 then we have

another case distinction� if � � Dom����	 then ��� � fg	 otherwise ��� � �

and from �� � �� � �� �Lemma ����	 we have ��� � ��� and the claim follows

from ����� The case � � � is trivial because ��� � fg� The remaining case	

���� � ����� � ���	 follows easily from ��
� since Dom���� �Dom���� � fg�

Type Reconstruction for Type Classes ��

Then by completeness of uni�cation	 �� is a most general uni�er computed in

unify	 and there exists �� such that �� � ����� Hence we get

W�V��� E� �e� e��� � �V� � ����� ������� ���

��E � ��������E�

�� � ���������

�� � �� � ���

where the last statement follows from the completeness of uni�cation�

let x � e� in e�� We assume �� � �� � � and	 by LET�	

�������
k
�S�
k
�� ��E � e� � �

�
� ����� ���E��x����

k
�S�
k
���� � � e� � ���

����� ��E � let x � e� in e� � ���

where f��
k
g � FV���� � � FV���E�� As the algorithm is invariant under �

conversion �Lemma ����	 we can safely assume that x 	� Dom�E��

As f��
k
g � FV���E� � fg we can w�l�o�g� rename ��

k
in the premises of the

above rule �not in ��� in order to assume that f��
k
g�Dom���� � fg� Formally	

this can be done by Lemma ���� Then we can apply the induction hypothesis

to e� with �����
k
�S�
k
� � �� � � and obtain �� such that

W�V��� E� e�� � �V����� ��� ���� ����

��E � ����E� ����

��� � ������� ����

�����
k
�S�
k
� � �� � �����n�Sn�� ����

where ��� � ��nf�ng and Sn � ���n�

From f�ng � FV������ � FV���E� we infer FV�f���ng� � FV�������� �

FV�����E� � f��
k
g� Hence �� � �� � ��� follows from ����� Notice that

����n�Sn����� � ��n�Sn� ������	 where �� � ��jDom�����f�ng	 follows from the

assumption that new variables used by W do not occur in the chosen deriva

tion	 i�e� in Cod����� Then we obtain ���� � ����n�Sn����� � ���
k
�S�
k
��� by

using ��jf�ng as the substitution in De�nition ��� and because �������
k
�S�
k
� �

���i � Si� �i � � � � �n� follows from �����

Now the problem is that the induction hypothesis cannot be applied directly

to e� with �� � �� � ��� and ��E�� � ��	 since in general ���E��x����
k
�S�
k
���� �
�

�����E��x�����n�Sn������� Thus we have to �nd a di�erent basis in order to

apply the induction hypothesis for e��

From

�������E��x����
k
�S�
k
���� � � e� � �

�
� ����

we can infer

����� ���E��x�����n�Sn������ � e� � �
�
� �

since at each application of ASM� to x in the proof of ����	 we can use the

more general �x�����n�Sn������ instead of �x����
k
�S�
k
���� ��

Then the induction hypothesis applies to e� with �� � �� � ��� and the envi

�
 Tobias Nipkow and Christian Prehofer

ronment ��E�x���n�Sn������� We get �� such that

W�V���
�
�� E� e�� � �V����� ��� ���� ����

���E��x�����n�Sn������ � �������E�x���n�Sn�������� ����

��� � ������� ����

�� � �� � ��� ��
�

Hence W�V��� E� let x � e� in e�� � �V����� ��� ���� We obtain ��� � ��������
from ��� � ������ and Dom���� � FV���� � fg �as in Theorem ����� It only

remains to show ��E � ������E	 which is a consequence of ����	 as x 	�

Dom�E�� �

Now we can �nally show the desired principal type theorem�

Theorem ��

If e has type �� under a closed environment E	 i�e� �� ��� E � e � �� and FV�E� � V�	

then W�V�� ��� fg� E� e� � �V��� �� � � and ��n���n��� is a principal type of e w�r�t�

� and E	 where f�ng � FV��� ��

Proof Assume some typing �� ��� E � e � ���m�S
�
m
�� �� We infer �� ���

m
�S�
m
�� E � e �

� � by �E and then obtain a syntax
directed derivation �� ���m�S
�
m�� E � e � � � by

Theorem ���� Then Lemma ��� applies with �� � ���
m
�S�
m
� and �� � fg� We thus

get � such that

E � �E�

� � � ����

�� � � � ��

Then ��n���n��� is a principal type of e w�r�t� E	 since ��n���n��� � ���m�S
�
m
�� �

follows from � � � ��� 	 f�ng � FV��� �	 and �� � � � �� �

� Algorithm I

As in the original work by Milner �Mil���	 we now present a more e�cient re�n

ment of algorithmW� Compared to W	 algorithm I� takes an extra argument	 the

substitution computed so far� This substitution is extended incrementally instead

of computing new subtitutions and composing them later�

The equivalence of W and I is an easy matter� A renaming is an injective sub

stitution that maps variables to variables only�

Theorem ��� 	Equivalence of W and I

Assume �� is an idempotent substitution such that ��E� � E� If W�V��� E� e� �

�V ����� ��� � �� then I�V��� ��� E�� e� � �V ������� ���� � ��� and there exists a renaming

� such that V �� � �V �	 ������� � ������	 ���� �� � ���� � and ���E � ���E�

Proof by simple induction on the structure of e� �

� Although the typography in �Mil
�� is ambiguous� Milner has con�rmed by email that
he intended it to be I� not J � it is an imperative implementation of W� Milner�s I is
imperative because he maintains a single global copy of � which is updated by side�
e�ects� In a purely functional style this requires an additional argument and result�

Type Reconstruction for Type Classes ��

I�V��� ��E� e� � case e of

x 	 let ��n�Sn�� � E�x�
�i
� V �i � � � � � n�

in �V � f�ng����n�Sn�� �� f�n �� �ng��
�x�e 	 let �
� V

�V ����� ��� �� � I�V � f�g��� ��E�x���� e�
in �V ����� ��� �� ��

�e� e�� 	 let �V����� ��� ��� � I�V��� ��E� e��
�V����� ��� ��� � I�V����� ��� E� e��

�
� V�
���� ��� � unify���� ���� � ���� � ��

in �V� � f�g��
�� ����� ��

let x � e� in e� 	 let �V����� ��� ��� � I��� ��E� e��
f�ng � FV������� FV���E�

in I�V����nf�ng� ��� E�x � ��n����n������� e��

Fig�
� Algorithm I

	 Related Work

The structure of algorithms W and I is very close to that of Milner�s algorithms

of the same name �Mil���� Apart from the fact that our version of I is purely

applicative �hence we carry the substitution and the set of used variables around

explicitly�	 the main di�erence is that we also have to maintain a set of constraints

�� In fact	 this is the only real di�erence to Milner�s algorithms�

Probably the �rst combination of ML
style polymorphism and parametric over

loading �as opposed to �nite overloading as in Hope �BMS�
�� was presented by

Kaes �Kae���� His language is in fact very close to our Mini
Haskell	 except that he

does not introduce classes explicitly� More importantly	 he does not use contexts to

record information about type variables but tags type variables directly�

The original version of type classes as presented by Wadler and Blott �WB���

was signi�cantly more powerful than what went into Haskell	 the reason being that

the original system was undecidable	 as shown later by Volpano and Smith �VS����

The relationship to Haskell proper is discussed in Section ��

Nipkow and Snelting �NS��� realized that type inference for type classes can be

formulated as an extension of ordinary ML
style type inference with order
sorted

uni�cation	 i�e� simply by changing the algebra of types and the corresponding uni

�cation algorithm� Although this was an interesting theoretical insight	 it only lead

to a simple algorithm for a restricted version of Haskell where each type variable is

constrained by exactly one class� In addition it was not possible to identify ambigu

ous typings like �� ���C�� E � e � int because there was no notion of contexts and

type variables were tagged with their sort� Both problems have been eliminated in

the present paper�

An interesting extension of Haskell using the notion of �quali�ed types� was

designed and implemented by Mark Jones �Jon��b�� The main di�erence is that he

allows arbitrary predicates P ���� � � � � �n� over types as opposed to our membership

�� Tobias Nipkow and Christian Prehofer

constraints � � S� On the other hand he does not solve constraints of the form � � S

to obtain atomic constraints of the form � � S� as is done in our function constrain�

Instead he accumulates the unsolved constraints�

Independently of our own work Chen	 Hudak and Odersky �CHO��� developed

an extension of type classes using similar techniques and arriving at a similar type

reconstruction algorithm� Since their type system is more general	 they use di�erent

and more involved formalisms	 in particular for uni�cation� In contrast	 we reduce

uni�cation to its essence by splitting it into standard uni�cation plus constraint

solving� This enables us to give a su�cient and necessary criterion for unitary

uni�cation	 which is required for principal types� As discussed in Section �	 the

restrictions in Haskell guarantee unitary uni�cation�

Kaes �Kae��� presents an extension of Hindley�Milner polymorphism with over

loading	 subtypes and recursive types� Due to the overall complexity of the resulting

system	 the simplicity of the pure system for overloading is lost�

The pragmatics of implementing type classes are discussed by Peterson and

Jones �PJ���� In particular they give hints on how to implement a truly imper

ative version of algorithm I using mutable variables� This is of signi�cant impor

tance because a na!"ve functional implementation of algorithm I	 in particular one

representing substitutions as association lists	 performs quite poorly�

 Ambiguity

We would like to conclude this paper with a discussion of the ambiguity problem

which a�ects most type systems with overloading� It is caused by the fact that

although a program may have a unique type	 its semantics is not well
de�ned�

According to our rules	 the program

class � � C where f � �� int�

class � � D where c � ��

�f c�

has type int in any context containing an assumption � � fC�Dg� Yet the program

has no semantics because there are no instances of f and c at all� If there were

multiple instances of both C and D	 it would be impossible to determine which one

to use in the expression �f c��

Motivated by such examples	 a typing ���� E � e � � is usually de�ned to be

ambiguous if there is a type variable in � which does not occur free in � or E�

Ideally one would like to have that every well
typed expression has a well
de�ned

semantics� However	 ambiguous terms may have more than one semantics	 as the

above example suggests� Fortunately	 Blott �Blo��� and Jones �Jon��a� have shown

that in type systems closely related to the one studied in this paper	 the semantics

of unambiguous terms is indeed well
de�ned�

As we have not provided a semantics for our language	 we have not introduced

ambiguity formally� Nevertheless there is one place in our inference system where

we anticipate a particular treatment of ambiguity� In rule �I	 the proviso � � FV���

is intended to propagate ambiguity problems� with this restriction	 the expression

Type Reconstruction for Type Classes ��

let x � �f c� in � �preceded by classes C and D as declared above� has type int

only in a context containing an assumption � � fC�Dg� If the proviso is dropped	

the expression also has type int in the empty context	 thus disguising the local

ambiguity� The reason is that x can be given the ambiguous type ���fC�Dg�int	

but since x does not occur in �	 this does not matter� Although in a lazy language x

need not be evaluated and hence the semantics of the whole let is indeed unambigu

ous	 we would argue that for pragmatic reasons it is advisable to �ag ambiguities

whenever they arise�

From this discussion it is obvious that a semantics and a coherence proof for the

type system w�r�t� a semantics are urgently needed�

Acknowledgements� The authors wish to thank the anonymous referees for

their critical reading and their helpful comments�

References

Stephen Blott� An approach to overloading with polymorphism� PhD thesis� Dept� of
Computing Science� University of Glasgow� �����

Rod Burstall� Dave MacQueen� and Don Sannella� Hope� an experimental applicative
language� In Proc� ���� LISP Conference� pages �����	�� �����

Dominique Cl�ement� Jo�elle Despeyroux� Thierry Despeyroux� and Gilles Kahn� A simple
applicative language� Mini�ML� In Proc� ACM Conf� Lisp and Functional Programming�
pages ����
� �����

Kung Chen� Paul Hudak� and Martin Odersky� Parametric type classes� In Proc� ACM

Conf� on LISP and Functional Programming� pages �
������ ACM Press� June �����

Luis Damas and Robin Milner� Principal type schemes for functional programs� In Proc�

�th ACM Symp� Principles of Programming Languages� pages ��
����� �����

Paul Hudak� Simon Peyton Jones� and Philip Wadler� Report on the programming lan�
guage Haskell� A non�strict� purely functional language� ACM SIGPLAN Notices� �
�
��
May ����� Version ����

Mark P� Jones� Quali�ed types� Theory and practice� D�Phil� Thesis� Programming
Research Group� Oxford University Computing Laboratory� July �����

Mark P� Jones� A theory of quali�ed types� In Bernd Krieg�Br�uckner� editor� Proc�
European Symposium on Programming� pages ��
����� LNCS
��� �����

Stefan Kaes� Parametric overloading in polymorphic programming languages� In Proc�

�nd European Symposium on Programming� pages �����		� LNCS ���� �����

Stefan Kaes� Type inference in the presence of overloading� subtyping and recursive types�
In Proc� ACM Conf� LISP and Functional Programming� pages ������	� ACM Press�
June �����

Robin Milner� A theory of type polymorphism in programming� J� Comp� Sys� Sci��
�
��	���

� ��
��

Robin Milner� Mads Tofte� and Robert Harper� The De�nition of Standard ML� MIT
Press� �����

Tobias Nipkow and Christian Prehofer� Type checking type classes� In Proc� ��th ACM

Symp� Principles of Programming Languages� pages 	���	��� ACM Press� �����

Tobias Nipkow and Gregor Snelting� Type classes and overloading resolution via order�
sorted uni�cation� In Proc� �th ACM Conf� Functional Programming Languages and

Computer Architecture� pages ���	� LNCS
��� �����

John Peterson and Mark Jones� Implementing type classes� In Proc� SIGPLAN ��	 Symp�

Programming Language Design and Implementation� pages ��
����� ACM Press� �����

�� Tobias Nipkow and Christian Prehofer

Dennis M� Volpano and Geo�rey S� Smith� On the complexity of ML typability with
overloading� In Proc� �th ACM Conf� Functional Programming Languages and Computer

Architecture� pages �
���� LNCS
��� �����
Philip Wadler and Stephen Blott� How to make ad
hoc polymorphism less ad hoc� In Proc�

��th ACM Symp� Principles of Programming Languages� pages ���
�� �����

