
This is a preprint version of chapter four of

�incollection�Oheimb�Nipkow�Java�LNCS�

author � �Oheimb� David von and Nipkow� Tobias��

title � �Machine�checking the �J�ava Specification�

Proving Type�Safety��

booktitle � �Formal Syntax and Semantics of �J�ava��

editor � �Jim Alves�Foss��

url � �http���isabelle�in�tum�de�Bali�doc�Springer	
�html��

publisher � �Springer��

series � �LNCS��

volume � ���
���

pages � ���	�����

year � ��			�

�



Machine�checking the Java Speci�cation�

Proving Type�Safety�

David von Oheimb�� and Tobias Nipkow

Fakult�at f�ur Informatik� Technische Universit�at M�unchen
http���www�in�tum�de��oheimb

http���www�in�tum�de��nipkow

Abstract� In this article we present Bali� the formalization of a large
�hitherto sequential� sublanguage of Java� We give its abstract syntax�
type system� well�formedness conditions� and an operational evaluation
semantics� Based on these de�nitions� we can express soundness of the
type system� an important design goal claimed to be reached by the
designers of Java� and prove that Bali is indeed type�safe�

All de�nitions and proofs have been done formally in the theorem prover
Isabelle�HOL� Thus this article demonstrates that machine�checking the
design of non�trivial programming languages has become a reality�

� Introduction

Bali is a large subset of Java �GJS���� This article presents its formalization
and the proof of a key property� namely the soundness of its type system �
speci�ed and veri�ed in the theorem prover Isabelle�HOL �Pau�	��

On the face of it� this article is mostly about Bali� its abstract syntax� type
system� well
formedness conditions� and operational semantics� formalized as a
hierarchy of Isabelle theories� and the structure of the machine
checked proof of
type soundness and its implications� Although these technicalities do indeed take
up much of the space� there is a meta
theme running through the article� which
we consider even more important� the technology for producing machine
checked
programming language designs has arrived�

We emphasize that by �machine
checked
 we do not just mean that it has
passed some type checker� but that some non
trivial properties of the language
have been established with the help of a �semi
automatic� theorem prover� The
latter process is still not a piece of cake� but it has become more than just
feasible� Therefore any programming language intended for serious applications
should strive for such a machine
checked design� The bene�ts are not just greater
reliability� but also greater maintainability because the theorem prover keeps
track of the impact that changes have on already established properties�

� This is a completely revised and extended version of �NO	
��
�� Research supported by DFG SPP Deduktion�



Note that the type
safety of Java is not su�cient to guarantee secure execu

tion of bytecode programs on the Java Virtual Machine� because the bytecode
might be tampered with� produced by a faulty compiler� or not be related to
any Java source program at all� This was the main reason for introducing the
Bytecode Veri�er in the JVM� which checks the integrity� in particular type

correctness� of any bytecode before execution� Of course similar security prob

lems arise for any other high
level languages as well� Nevertheless� the investiga

tion of type
safety at source level is worthwhile� it checks whether the language
design is sound� which means that at least all the necessary conditions express

ible at that level are ful�lled� In particular static typing loses much of its raison
d��etre if the language is not type
safe�

��� Related work

The history of type soundness proofs goes back to the subject reduction theo

rem for typed �
calculus but starts in earnest with Milner
s slogan �Well
typed
expressions do not go wrong
 �Mil��� in the context of ML� Milner uses a de

notational semantics� in contrast to most of the later work� including ours� The
question of type
safety came to prominence with the discovery of its failure in
Ei�el �Coo���� Ever since� many designers of programming languages �especially
OO ones� have been at pains to prove type
safety of their languages �see� for
example� the series of papers by Bruce et al� �Bru���BCM����BvGS�����

Directly related to our work is that by Drossopoulou and Eisenbach �DE���
who prove �on paper� type
safety of a subset of Java very similar to Bali�
Although we were familiar with an earlier version �DE��� of their work and
have certainly pro�ted from it� our work is not a formalization of theirs in
Isabelle�HOL but di�ers in many respects from it� for example in the repre

sentation of programs and the use of an evaluation �aka �big
step�� semantics
instead of a transition �aka �small
step�� semantics� Simultaneously with our
work� Syme �Sym��� formalized the paper �DE��� as far as possible� uncovering
two signi�cant mistakes� both in connection with the use of transition semantics�
Syme uses his own theorem prover DECLARE� also based on higher
order logic�

There are two other e�orts to formalize aspects of Java in a theorem prover�
Dean �Dea��� studies the interaction of static typing with dynamic linking� His
simple PVS speci�cation addresses only the linking aspect and requires a formal

ization of Java �such as our work provides� to turn his lemmas about linking into
theorems about the type
safety of dynamically linked programs� Cohen �Coh���
has formalized the semantics of large parts of the Java Virtual Machine� essen

tially by writing an interpreter in Common Lisp� He used ACL�� the latest ver

sion of the Boyer
Moore theorem prover �BM���� No proofs have been reported
yet�
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� Overview

Bali includes the features of Java that we believe to be important for an inves

tigation of the semantics of a practical imperative object
oriented language�

� class and interface declarations with instance �elds and methods�
� subinterface� subclass� and implementation relations

with inheritance� overriding� and hiding�
� method calls with static overloading and dynamic binding�
� some primitive types� objects �including arrays��
� exception throwing and handling�

This portion of Java is very similar to that covered by �DE��� and �Sym����
We do not consider Java packages and separate compilation� For the moment�

we also leave out several features of Java like class variables and static methods�
constructors and �nalizers� the visibility of names� and concurrency� but we aim
to include at least part of them in later stages of our project� Some constructs
are simpli�ed without limiting the expressiveness of the language �see x	����

In developing the formalization of Bali and investigating its properties� we
aim to meet the following design goals�

� faithfulness to the o�cial language speci�cation�
� succinctness and simplicity�
� maintainability and extendibility�
� adequacy for the theorem prover�

It might be interesting to keep these goals in mind while reading x	 on the
formalization of Bali and x� on our proofs and check how far we have reached
them� We comment on our experience in pursuing these goals in x��

� The basics of Isabelle�HOL

Before we present the formalization of Bali� we brie�y introduce the underlying
theorem proving system Isabelle�HOL�

Isabelle�HOL is the instantiation of the generic interactive theorem prover
Isabelle �Pau�	� with Church
s version of Higher
Order Logic and is very close
to Gordon
s HOL system �GM���� In this article HOL is short for Isabelle�HOL�

The appearance of formulas is standard� e�g� ���
 is the �right
associative�
in�x implication symbol� Predicates are functions with Boolean result� Function
application is written in curried style� For descriptions we apply Hilbert
s choice
operator �� where �x� P x denotes some value x satisfying P� or an arbitrary value
if no such x exists�

Logical constants are declared by giving their name and type� separated by
���
� Primitive recursive function de�nitions are written as usual� Non
recursive
de�nitions are written with �

def
�
�

Types follow the syntax of ML� except that the function arrow is ��
� Type
abbreviations are introduced simply as equations� A free datatype is de�ned by
listing its constructors together with their argument types� separated by �j
�
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There are the basic types bool and int� as well as the polymorphic type ���set
of homogeneous sets for any type �� Occasionally we apply the in�x �image


operator lifting a function over a set� de�ned as f�S
def
� fy� �x�S� y � f xg�

The product type �� � comes with the projection functions fst and snd�
Tuples are pairs nested to the right� e�g� �a�b�c� � �a��b�c���

As the list type ���list is de�ned via its constructors �� denoting the empty
list and the in�x �cons
 operator ��
� it can be introduced by the datatype
declaration

���list � �� j �����list

The concatenation operator on lists is written as the in�x symbol ��
� There
is a functional map �� �� � �� � ���list � ���list applying a function to all
elements of a list� as well as a conversion function set �� ���list � ���set�

We frequently use the datatype

���option � None j Some �

It has an unpacking function the �� ���option � � such that the �Some x� � x

and the None � arbitrary� where arbitrary is an unknown value de�ned as �x�False�
There is a simple function mapping o�s �� ���option � ���set converting an op

tional value to a set� with the characteristic equations o�s �Some x� � fxg and
o�s None � fg�

Most of the HOL text shown in this article is directly taken from the input
�les� However� it has been massaged by hand to hide Isabelle idiosyncrasies� in

crease readability� and adapt the layout� Minor typos may have been introduced
in the process�

We adopt the following typographic conventions� Java keywords like catch

appear in typewriter font� the names of logical constants like c�eld appear in
sans serif� while type names like state and meta
variables like v appear in italics�

� The formalization of Bali

This section presents all aspects of our formalization of Bali��
As far as Bali is a subset of Java� it strictly adheres to the Java language

speci�cation �GJS���� with several generalizations�

� we allow the result type of a method overriding another method to widen to
the result type of the other method instead of requiring it to be identical�

� if a class or an interface inherits more than one method with the same
signature� the methods need not have identical return types�

� no check of result types in dynamic method lookup�
� the type of an assignment is determined by the right
hand side� which can

be more speci�c than the left
hand side�

� The Isabelle sources are available from the Bali project page
http���www�in�tum�de��isabelle�bali�

	



We found several issues concerning exceptions not speci�ed in �GJS��� and
therefore de�ne a reasonable behavior that seems to be consistent with current
implementations�

� given a Null reference� the throw statement raises a NullPointer exception�

� each system exception thrown yields a fresh exception object�

� if there is not enough memory even to allocate an OutOfMemory error� pro

gram execution simply halts� �Our experiments showed erratic behavior of
some implementation in this case� ranging from sudden termination without
executing finally blocks� over hangup� to repeated invocation of a single
exception handler��

To illustrate our approach� we use the following �arti�cial� example�

class Base �

boolean vee�

Base foo�Base x� �

return x�

�

�

class Ext extends Base�

int vee�

Ext foo�Base x� �

��Ext�x��vee���

return null�

�

�

Base e�

e�new Ext���

try �e�foo�null�� �

catch �NullPointerException x� �throw x��

This program fragment consists of two simple but complete class declarations
and a block of statements that might occur in any method that has access to
these declarations� It contains the following features of Bali�

� class declarations with inheritance� hiding of �elds� and overriding of meth

ods �with re�ned result type��

� return expressions� parameter access�

� sequential composition� expression statements� �eld assignment� type cast�
local accesses� literal values� exception propagation�

� local assignment� instance creation�

� try � catch statement� method call �with dynamic binding�� throw statement

�



��� Abstract syntax

First� we describe how we represent the syntax of Bali and which abstractions
we have introduced thereby�

Programs A Bali program is a pair of lists of interface and class declarations�

prog � �idecl�list � �cdecl�list

Throughout the article� the symbol �� 
 denotes a Bali program� as we use
programs as part of the static type context de�ned in x	���

Each declaration is a pair of a name and the de�ned entity� Some names� like
those of prede�ned classes �including those of system exceptions xname�� have
a prede�ned meaning and are therefore handled extra� We do not specify the
structure of names further� but use the opaque HOL types tname�� mname� and
ename� for user
de�ned type names� method names� and �expression names�
�i�e� �eld and variable identi�ers��

xname � Throwable

j NullPointer j OutOfMemory j ClassCast
j NegArrSize j IndOutBound j ArrStore

tname � Object name of the top of the class hierarchy
j SXcpt xname name of a system exception
j TName tname� other class or interface name

ename � this special name for this pointer
j EName ename� expression name

An interface �iface� contains lists of superinterface names and method decla

rations� A class speci�es the names of an optional superclass and implemented
interfaces� and lists of �eld and method declarations�

iface � �tname�list� �sig �mhead�list
idecl � tname� iface

class � �tname�option � �tname�list� �fdecl�list � �mdecl�list
cdecl � tname� class

A �eld declaration �fdecl� simply gives the �eld type �ty� see x	���� A method
declaration �sig �mhead for interfaces or mdecl for classes� consists of a �sig

nature� �GJS��� ��	��� �i�e� the method name and the list of parameter types�
excluding the result type� followed by mhead� consisting of the list of param

eter names and the result type� and �if it appears within a class� the method
body �mbody�� The latter consists of the list of local variables� a statement stmt

as body� and a return expression expr �see below�� As in �DE���� the separate
return expression saves us from dealing with return statements occurring in ar

bitrary positions within the method body� Such statements may be replaced by
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assignments to a suitable result variable followed by a control transfer to the end
of the method body� using the result variable as return expression� We provide a
dummy result type and value for void methods� For simplicity� up to now each
method has exactly one parameter� multiple parameters can be simulated by a
single parameter object with multiple �elds�

�eld � ty �eld type
fdecl � ename � �eld

sig � mname � ty method name and parameter type
mhead � ename � ty parameter name and result type
lvar � ename � ty local variable name and type
mbody � �lvar�list� stmt� expr local vars� block� and return expression
methd � mhead �mbody method �of a class�
mdecl � sig �methd

In the abstract syntax given above� the formalization of our example program
fragment looks like this�

BaseC
def
� �Base� �Some Object�

���
��vee� PrimT boolean���
���foo�Class Base���x�Class Base�� ����Skip�x�����

ExtC
def
� �Ext� �Some Base�

���
��vee� PrimT int���
���foo�Class Base���x�Class Ext�� ����

Expr�fClassT Extg�Class Ext�x�vee��Lit �Intg ����
Lit Null�����

classes
def
� �ObjectC�

SXcptC Throwable�

SXcptC NullPointer� SXcptC OutOfMemory� SXcptC ClassCast�

SXcptC NegArrSize� SXcptC IndOutBound� SXcptC ArrStore�

BaseC� ExtC�

tprg
def
� ����classes�

test
def
� Expr�e��new Ext��

try Expr�e�foo�fClass BasegLit Null��
catch��SXcpt NullPointer� x� �throw x�

where Base stands for TName Base � Ext for TName Ext � and similarly for
vee� x� and e� The constants Base � Ext � etc� are all distinct� The sequence of
statements test could have been embedded in tprg� which we have left out for
simplicity�
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Representation of lookup tables The representation of declarations as lists
gives an implicit �niteness constraint� which turns out to be necessary for the
well
foundedness of the subclass and subinterface relation� The list represen

tation also enables an explicit check whether the declared entities are named
uniquely� implemented with the function unique given below� This function does
not check for duplicate de�nitions� which is harmless�

unique �� ��� ��list � bool

unique t
def
� ��x��y���set t� ��x��y���set t� x� � x� �� y� � y�

For the lookup of declared entities� we transform declaration lists into ab

stract tables� They are realized in HOL as �partial� functions mapping names
to values�

�����table � � � ���option

The empty table� pointwise update� extension of one table by another� the func

tion converting a declaration list into a table� and an auxiliary predicate relating
entries of two tables� are de�ned easily�

empty �� �����table
� �� � �� �����table � � � � � �����table
� �� �����table � �����table � �����table

table of �� �����list � �����table
hiding

entails �� �����table � �����table � �� � � � bool� � bool

empty
def
� �k� None

t�x��y�
def
� �k� if k � x then Some y else t k

s � t
def
� �k� case t k of None � s k j Some x � Some x

table of �� � empty

table of ��k�x��t� � �table of t��k��x�

t hiding s entails R
def
� �k x y� t k � Some x �� s k � Some y �� R x y

For the union of tables� we also need the type of non
unique tables�

�����tables � � � ���set

together with a union operator and straightforward variants of two of the notions
de�ned above�

�� �� �����tables � �����tables � �����tables
Un tables �� ������tables�set � �����tables
hidings

entails �� �����tables � �����tables � �� � � � bool� � bool
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Un tables ts
def
� �k�

S
t�ts� t k

s �� t
def
� �k� if t k � fg then s k else t k

t hidings s entails R
def
� �k� �x�t k� �y�s k� R x y

A simple application of type table is the translation of programs to tables
indexed by interface and class names�

iface �� prog � �tname� iface�table
def
� table of 	 fst

class �� prog � �tname� class�table
def
� table of 	 snd

More interesting are the following functions that traverse the type hierarchy
of a program� collecting the methods and �elds into a table �the types tname

and ref ty are de�ned in x	����

imethds �� prog � tname � �sig� ref ty �mhead�tables
cmethd �� prog � tname � �sig� ref ty �methd�table
�elds �� prog � tname � ��ename � ref ty�� �eld �list

Note that imethds collects a non
unique table of method declarations allowing
for inheritance of more than one method with the same signature�

As Syme �Sym��� points out� a naive recursive de�nition of these functions is
not possible in HOL because the class hierarchy might be cyclic� which is ruled
out for well
formed programs �see x	��� only� This leads to partial functions�
which HOL does not support directly� Syme de�nes these functions as relations
instead� In contrast� we have chosen to de�ne them as proper functions� based on
Slind
s work on well
founded recursion �Sli���� We do not give their de�nitions�
but only the recursion equations� which we derive as easy consequences�

wf prog � 
 iface � I � Some �is�ms� ��
imethds � I � Un tables ���J� imethds � J�� set is� ��

�o�s 	 table of �map ���s�mh�� �s�IfaceT I�mh�� ms��

wf prog � 
 class � C � Some �sc�si�fs�ms� ��
cmethd � C � �case sc of None � empty j Some D � cmethd � D� �

table of �map ���s�m�� �s��ClassT C�m��� ms�

wf prog � 
 class � C � Some �sc�si�fs�ms� ��
�elds � C � map ���fn�ft�� ��fn�ClassT C��ft�� fs �

�case sc of None � �� j Some D � �elds � D�

The structure of the three equations is the same� the tables are constructed
recursively from the corresponding tables of the superinterfaces or the superclass
�if any�� which models inheritance� augmented� with overriding� by the newly
declared items� All declared items receive an extra label� namely their de�ning
interface or class�
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In our example� we obtain

�elds tprg Base � ���vee� ClassT Base�� PrimT boolean��
�elds tprg Ext � ���vee� ClassT Ext �� PrimT int��

��vee� ClassT Base�� PrimT boolean��
cmethd tprg Base � empty��foo� Class Base� ��

�ClassT Base� �x� Class Base�� ���� Skip� x���
cmethd tprg Ext � empty��foo� Class Base� ��

�ClassT Ext � �x� Class Ext �� ����
Expr�fClassT Extg�Class Ext�x�vee��Lit �Intg ����
Lit Null���

Terms We de�ne statements �appearing in method bodies�� expressions �ap

pearing in statements�� and values �appearing in expressions� as recursive data

types�

Statements are reduced to their bare essentials� We do not formalize syntactic
variants of conditionals and loops� Neither do we consider jumps like the break
statement�

For a more modular description� we divide the try catch finally

statement into a try catch statement and a finally statement� which
might be used in any context� Our version of the try catch statement has
exactly one catch clause� Multiple catch clauses can be simulated with cascaded
if else statements applying the instanceof operator�

stmt � Skip

j Expr expr
j stmt� stmt

j if �expr� stmt else stmt

j while�expr� stmt

j throw�expr�
j try stmt catch�tname ename� stmt

j stmt finally stmt

Skip denotes the empty statement� The �expression statement� Expr is a con

version from expressions to statements causing evaluation for side e�ects only�
Assignments and method calls� which are expressions because they yield a value�
can be turned into statements this way� In contrast to Java� for simplicity we
allow this conversion to be applied to any kind of expression�

Concerning expressions� our formalization leaves out the standard unary and
binary operators as their typing and semantics is straightforward� The this

expression is modeled as a special non
assignable local variable named this�
The super construct can be simulated with a this expression that is cast to
the superclass of the current class� Creation of multi
dimensional arrays can
be simulated with nested array creation� while access and assignment to multi

dimensional arrays is nested anyway�
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It might be reasonable to introduce the general notion of variables �i�e� left

hand sides of assignments� in order to factor out common behavior of local
variables� class instance variables� and array components� But we have chosen
not to do so because the semantic treatment of these three variants of variables
di�ers considerably� This decision leads to some redundancy between access and
assignment� especially in the semantics for arrays�

expr � new tname class instance creation
j new ty�expr� array creation
j �ty�expr type cast
j expr instanceof ref ty type comparison operator
j Lit val literal
j ename local�parameter access
j ename��expr local�parameter assignment
j fref tygexpr�ename �eld access
j fref tygexpr�ename��expr �eld assignment
j expr�expr� array access
j expr�expr���expr array assignment
j expr�mname�ftygexpr� method call

The terms in braces f� � � g above are called type annotations� Strictly speaking�
they are not part of the input language but serve as auxiliary information �com

puted by the type checker� that is crucial for the static binding of �elds and
the resolution of method overloading� Distinguishing between the actual input
language and the augmented language would lead to a considerable amount of
redundancy� We avoid this by assuming that the annotations are added before

hand by a kind of preprocessor� The correctness of the annotations is checked
by the typing rules �see x	����

The de�nition of values is straightforward� It relies on the standard HOL
types of Boolean values �bool� and integers �int�� whereas the type loc of locations�
i�e� abstract non
null addresses of objects� is not further speci�ed�

val � Unit dummy result of void methods
j Bool bool
j Intg int

j Null
j Addr loc

The de�nitions below give some simple destructor functions for val with their
characteristic properties�

the Bool �� val � bool

the Intg �� val � int

the Addr �� val � loc

the Bool �Bool b� � b

the Intg �Intg i� � i

the Addr �Addr a� � a
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��� Type system

This section de�nes types� various ordering relations between types� and the
typing rules for statements and expressions�

Types We formalize Bali types as values of datatype ty� dividing them into
primitive and reference types�

prim ty � void

j boolean
j int

ref ty � NullT

j IfaceT tname

j ClassT tname

j ArrayT ty

ty � PrimT prim ty

j RefT ref ty

void is used as a dummy type for methods without result� In the sequel NT
stands for RefT NullT� Iface I for RefT�IfaceT I�� Class C for RefT�ClassT C��
and T�� for RefT�ArrayT T��

An interface or class type is considered as a proper type only if there is a
corresponding declaration for its type name in the current program� which is
checked by the following predicates�

is iface �� prog � tname � bool

is class �� prog � tname � bool

is type �� prog � ty � bool

is iface � tn
def
� iface � tn �� None

is class � tn
def
� class � tn �� None

is type � �PrimT � � True

is type � NT � True

is type � �Iface I� � is iface � I

is type � �Class C� � is class � C

is type � �T��� � is type � T

For all types� a default value is de�ned via

default val �� ty � val

default val �PrimT void � � Unit

default val �PrimT boolean� � Bool False

default val �PrimT int � � Intg �

default val �RefT r � � Null
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Type relations The relations between types depend on the interface and class
hierarchy of a given program � � and are therefore expressed with reference to � �
The direct subinterface � � 
�

i
�� subclass � � 
�

c �� and implementation
� � �� � relations are of type prog � tname� tname � bool and are de�ned
as follows�

� � I
�
i
J

def
� is iface � I 
 is iface � J 
 J � set �fst�the�iface � I���

� �C
�
c D

def
� is class � C 
 is class � D 
 Some D � fst�the�class � C��

� �C�� I
def
� is class � C 
 is iface � I 
 I � set �fst�snd�the�class � C����

The transitive �but not re�exive� closures � 
i and � 
c can be
de�ned inductively�

� � I
�
i
K

� � I
i K

� � I
i J� � � J
iK

� � I
i K

� � C
�
c E

� �C
c E

� �C
c D� � �D
cE

� �C
c E

There is also a kind of transitive closure of � �� de�ned as

� �C�� J

� �C�J

� �C�� I� � � I
i J

� �C�J

� � C
�
c D� � �D�J

� � C�J

The key relation is widening� � � S�T� where S and T are of type ty� means
that S is a syntactic subtype of T� i�e� in any expression context �especially
assignments and method invocations� expecting a value of type T� a value of
type S may occur� Note that this does not necessarily mean that type S behaves
like type T� but only that it has a syntactically compatible set of �elds and
methods� The widening relation is de�ned inductively as given below� Note that
some rules carry the additional premise that Object is a proper class� which will
be ensured for well
formed programs�

is type � T

� � T�T

is type � �RefT R�

� �NT � RefT R

� � I
i J

� � Iface I � Iface J

is iface � I� is class � Object

� � Iface I � Class Object

� �C
c D

� � Class C � Class D

� �C� I

� � Class C � Iface I

� � RefT S � RefT T

� � �RefT S��� � �RefT T���

is type � T� is class � Object

� � T�� � Class Object

To allow for type casting we also have the casting relation� where � � S��T

means that a value of type S may be cast to type T�

� � S�T

� � S��T

� �C
c D

� � Class D �� Class C

is class � C� is iface � I

� � Class C �� Iface I

� � RefT S �� RefT T

� � �RefT S��� �� �RefT T���

is class � Object� is type � T

� � Class Object ��T��

��



is iface � J� �� � I
i J�
imethds � I hidings imethds � J entails

���m���pn��rT��� �m���pn��rT���� � � rT��rT��

� � Iface I �� Iface J

is iface � I� is class � C

� � Iface I �� Class C

Typing rules Now we come to type
checking itself� which is expressed as a set
of constraints on the types of expressions� relative to a type environment�

An environment consists of a global part� namely a program � � and a local
part �written ��
�� namely the types of the local variables including the current
class� i�e� the type of this�

lenv � �ename� ty� table
env � prog � lenv

prg �� env � prog
def
� ��� ���� �

lcl �� env � lenv
def
� ��� ���� �

The well
typedness of statements and the typing of expressions are de�ned
inductively relative to an environment� The typing of expressions is unique� as
can be shown easily by rule induction�

� ��� �� env � stmt � bool

� �� �� env � expr � ty � bool

The type
checking rules for most statements are standard�

E � Skip ���

E � e��T

E � Expr e���

E � c���� � E � c����

E � c�� c����

E � e��PrimT boolean� E � c���� � E � c����

E � if�e� c� else c����

E � e��PrimT boolean� E � c���

E � while�e� c���

E � c���� � E � c����

E � c� finally c�

Note the use of the widening relation in the following two rules to ensure
that a value thrown or caught as an exception is indeed a exception object�

E � e��Class tn� prg E � Class tn�Class �SXcpt Throwable�

E � throw e���

�� ��� � c���� � � � Class tn�Class �SXcpt Throwable��
� vn � None� �� ���vn��Class tn�� � c����

�� ��� � try c� catch�tn vn� c����

The try catch statement is the only one that involves a change of the type
environment� namely to include typing information for the exception parameter�
The name of this parameter is required to be new in the local environment�

�	



The typing rules for the �rst few of the expressions are straightforward�
except for the confusing direction of the casting relation in the type cast rule�

is class �prg E� C

E � new C��Class C

is type �prg E� T� E � i��PrimT int

E � new T�i���T��

E � e��T� prg E �T��T
�

E � �T ��e��T �

typeof ��a� None� x � Some T

E � Lit x��T

E � e��RefT T� prg E � RefT T�� RefT T �

E � e instanceof T ���PrimT boolean

The rule for Lit prohibits addresses as literal values� which is implemented by
supplying �a� None as the �dynamic type� argument in the call of the function

typeof �� �loc � ty option� � val � ty option

typeof dt Unit � Some �PrimT void�
typeof dt �Bool b� � Some �PrimT boolean�
typeof dt �Intg i� � Some �PrimT int�
typeof dt Null � Some �RefT NullT�
typeof dt �Addr a� � dt a

This function is reused below with a more interesting value for the parameter
dt� namely a function to compute the dynamic type of a reference�

The typings of all three assignment variants are quite similar� except that for
local variables additionally an assignment to this is forbidden� In any case� as a
generalization to the Java speci�cation� the type of the assignment is determined
by the right
hand �as opposed to the left
hand� side�

lcl E vn � Some T� is type �prg E� T

E � vn��T

E � vn��T� E � v��T �� prg E � T ��T� vn �� this

E � vn��v��T �

E � e��Class C� c�eld �prg E� C fn � Some �fd�fT�

E � ffdge�fn��fT

E � ffdge�fn��T� E � v��T �� prg E � T ��T

E � ffdge�fn��v��T �

E � a��T��� E � i��PrimT int

E � a�i���T

E � a�i���T� E � v��T �� prg E �T ��T

E � a�i���v��T �

E � e��RefT T� E � p��pT�
max spec �prg E� T �mn�pT� � f��md��pn�rT���pT ��g

E � e�mn�fpT �gp���rT

��



The function c�eld �� prog � tname � �ename � ref ty� �eld�table � de�ned as

c�eld � C
def
� table of ��map ����n�d��t�� �n��d�t���� ��elds � C��� is a variant of

�elds� It implements a �eld lookup that is based on the �eld name alone in
contrast to a combination of �eld name and de�ning class� Thus in the above
typing rule for �eld access� equal �eld names hide each other� while at run
time
all �elds are accessible� using the de�ning class as an additional search key�

The type annotations f� � � g in the above rules for �eld access and method call
are used to implement static binding for �elds and to resolve overloaded method
names statically� Technically speaking� the typing rules serve as constraints on
these annotations during type
checking� but one can also think of the annotations
being �lled with schematic variables that are instantiated with their correct
values in the type
checking process� as is demonstrated in the example overleaf�
The value of each annotation is uniquely determined by the value of a function
in the premise of the �eld access and method call rule�

A �eld access ffdge�fn is annotated with the de�ning class of the �eld found
when searching the class hierarchy for the name fn �using c�eld�� starting from
the static type Class C of e� The annotation ffdg will be used at run
time to
access the �eld via the pair �fn�fd��

A method call e�mn�fpT �gp� is type
correct only if the function max spec

determining the set of �maximally speci�c� �GJS��� �������� methods for refer

ence type T �as de�ned below� yields exactly one method entry� In this case�
the method call is annotated by pT �� which is the argument type of the most
speci�c method mn applicable according to the static types T of e and pT of p�
Thus any static overloading of the method name mn has been resolved and the
dynamic method lookup at run
time will be based on the signature �mn�pT ���

max spec �� prog � ref ty � sig ���ref ty�mhead� � ty� set

appl methds �� prog � ref ty � sig ���ref ty �mhead� � ty� set

mheads �� prog � ref ty � sig � �ref ty �mhead� set

more spec �� prog � �ref ty�mhead� � ty � �ref ty�mhead� � ty � bool

max spec � T sig
def
� fm j m �appl methds � T sig 


��m��appl methds � T sig�

more spec � m� m �� m� � m�g

appl methds � T �mn� pT�
def
� f�m�pT �� j m � mheads � T �mn� pT �� 


� � pT�pT �g
mheads � NullT � �sig� fg
mheads � �IfaceT I� � imethds � I

mheads � �ClassT C� � o�s 	 option map ���d��h�b����d�h�� 	 cmethd � C

mheads � �ArrayT T� � �sig� fg

more spec � ��md�mh��pT� ��md��mh���pT ��
def
� � � RefT md�RefT md� 


� � pT�pT �

where

option map �� �� � �� � �� option � � option�

option map f
def
� �y� case y of None � None j Some x � Some �f x�
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��� Well�formedness

A program must satisfy a number of well
formedness conditions concerning
global properties of all declarations� The conditions are expressed as predicates
on �eld� method� interface� class� and whole program declarations�

wf fdecl �� prog � fdecl � bool

wf mhead �� prog � sig �mhead � bool

wf mdecl �� prog � tname � mdecl � bool

wf idecl �� prog � idecl � bool

wf cdecl �� prog � cdecl � bool

wf prog �� prog � bool

A �eld declaration is well
formed i� its type exists�

wf fdecl � �fn�ft�
def
� is type � ft

A method declaration is well
formed only if its argument and result types
are de�ned and the name of the parameter is not this� Additionally� if the
declaration appears in a class� the names of the local variables must be unique
and may not contain the special name this nor hide the parameter� all types
of the local variables must exist� the method body has to be well
typed �in
the static context of its parameter type and the current class�� and its result
expression must have a type that widens to the result type�

wf mhead � ��mn�pT���pn�rT��
def
� is type � pT 
 is type � rT 
 pn �� this

wf mdecl � C ��mn�pT���pn�rT��lvars�blk�res�
def
�

let ltab � table of lvars� E � �� �ltab�this��Class C��pn��pT��
in wf mhead � ��mn�pT���pn�rT�� 


unique lvars 
 ltab this � None 
 ltab pn � None 

���vn�T��set lvars� is type � T� 

E � blk��� 
 �T� E � res��T 
 � �T� rT

Even more complex conditions are required for well
formed interface and class
declarations� The name of a well
formed interface declaration is not a class name�
All superinterfaces exist and are not subinterfaces at the same time� All methods
newly declared in the interface are named uniquely and are well
formed� Further

more� any method overriding a set of methods de�ned in some superinterfaces
has a result type that widens to all their result types�

wf idecl � �I��is�ms��
def
� � is class � I 


��J�set is� is iface � J 
 � � � J
i I� 

unique ms 
 ��m�set ms� wf mhead � m 

let mtab � Un tables ���J� imethds � J�� set is� in
�o�s 	 table of ms� hidings mtab entails

���pn�rT� �m��pn��rT ���� � � rT�rT ��

��



Similarly� the name of a well
formed class declaration is not an interface
name� All implemented interfaces exist� and for any method of such an interface�
the class provides an implementing method with a possibly narrower return type�
All �elds and methods newly declared in the class are named uniquely and are
well
formed� If the class is not Object� it refers to an existing superclass� which
is not a subclass of the current class� Furthermore� any method overriding a
method of the superclass has a compatible result type�

wf cdecl � �C��sc�si�fs�ms��
def
� � is iface � C 


��I�set si� is iface � I 

�s� ��m���pn��rT��� � imethds � I s�

�m� pn� rT� b� cmethd � C s � Some �m���pn��rT���b� 

� � rT��rT�� 


unique fs 
 ��f �set fs� wf fdecl � f � 

unique ms 
 ��m�set ms� wf mdecl � C m� 

�case sc of None � C � Object

j Some D � is class � D 
 � � �D
cC 

table of ms hiding cmethd � D entails

����pn��rT���b� �m���pn��rT���b
���� � � rT��rT��

Finally� all interfaces and classes declared in a well
formed program are
named uniquely and are in turn well
formed� For uniformity� this includes the
prede�ned class declarations of Object and the ��at� hierarchy of system excep

tions�

ObjectC
def
� �Object � �None � ��� ��� ����

SXcptC xn
def
� let sc � if xn�Throwable then Object else SXcpt Throwable in

�SXcpt xn� �Some sc� ��� ��� ����

wf prog �
def
� let is � set �fst � �� cs � set �snd � �

in ObjectC � cs 
 �xn� SXcptC xn � cs 

unique �fst � � 
 �i�is� wf idecl � i� 

unique �snd � � 
 �c�cs� wf cdecl � c�

Our example program tprg is well
formed� Here is a heavily abstracted deriva

tion tree of our proof of this fact�

wf mdecl tprg Base ��foo� Class Base��
�x� Class Base�� ��� Skip� x� ��tprg � Object
c Base�

wf cdecl tprg BaseC

wf mdecl tprg Ext ��foo� Class Base��
�x� Class Ext�� ��� Expr �fClassT Extg�Class Ext�

x�vee��Lit �Intg ���� Lit Null� ��tprg �Base
c Ext�

wf cdecl tprg BaseC

wf cdecl tprg BaseC wf cdecl tprg ExtC Base �� Ext

wf tprg tprg

��



��� Operational semantics

We formalize the semantics of Java in operational style with evaluation rules�
This is the natural choice since the language speci�cation itself is given in an
operational evaluation
oriented style� which allows for a direct formalization and
its straightforward validation� Furthermore� a denotational semantics would re

quire much more di�cult mathematical tools� and an axiomatic semantics would
be problematic to validate and to use for reasoning on the language as a whole�
We prefer an evaluation semantics to a transition semantics in order to obtain
a concise description� because we consider a transition semantics less readable
and rather low
level� which in particular holds for a formulation as an Abstract
State Machine �ASM� like in �BS����

In this section� we describe the notions of a state and its components and
give the evaluation rules for statements and expressions�

State A state consists of an optional exception �of type xcpt�� a heap� and a
current invocation frame� which is the values of the local variables �including
method and exception parameters and the this pointer��
state � �xcpt�option � st

st � heap � locals

heap �� st � heap
def
� ��h�l�� h

locals �� st � locals
def
� ��h�l�� l

Remember that tuples associative to the right� so if for some state � we have an
equation like � � �x� ���� then x is the �optional� exception component alone�
while the second projection �� of the state has �tuple� type st� i�e� represents a
�small� state excluding the exception entry�

An exception is a reference to an instance of some exception class� which is a
subclass of Throwable� Normally� when an exception is thrown� a fresh exception
object is allocated and its location returned to represent the exception� But in the
case of system exceptions� we defer their allocation �and just record their names�
until an enclosing catch block references it� This helps to avoid the subtleties
of �conditional� side e�ects on the heap and out
of
memory conditions� Thus we
model exceptions as follows�

xcpt � XcptLoc loc

j SysXcpt xname

A heap maps locations to objects� while local variables map names to values�

heap � �loc � obj�table
locals � �ename� val�table

In our model there is no need to explicitly maintain a stack of invocation frames
containing local variables and return addresses for method calls� In this way we
also abstract over the �niteness of stack space� On the other hand� we explicitly
model the possibility of memory allocation on the heap to fail if there is no free
location �i�e� some a with �heap �� a � None� available� Memory allocation is
loosely� yet deterministically� de�ned by the function

��



new Addr �� heap � �loc � �xcpt�option�option

new Addr h
def
� �y� � y � None 
 ��a� h a �� None�� �

��a x� y � Some �a�x� 
 h a � None 

�x � None � x � Some �SysXcpt OutOfMemory���

This function fails� i�e� returns None� i� there is no free location on the heap�
and otherwise gives an unused location� At the latest when there is only one free
address left� it returns an OutOfMemory exception� In this way it is guaranteed
that when an OutOfMemory exception is thrown for the �rst time� there is a
free location on the heap to allocate it� Note that we do not consider garbage
collection�

An object is either a class instance� modeled as a pair of its class name and a
table mapping pairs of a �eld name and the de�ning class to values� or an array�
modeled as a pair of its component type and a table mapping integers to values�

�elds � �ename � ref ty� val�table
components � �int � val�table
obj � Obj tname �elds

j Arr ty components

the Obj �� �obj�option � tname� �elds

the Arr �� �obj�option � ty� components

obj ty �� obj � ty

the Obj �Some �Obj C fs�� � �C�fs�
the Arr �Some �Arr T cs�� � �T�cs�
obj ty �Obj C fs� � Class C

obj ty �Arr T cs� � T��

Using obj ty we de�ne the predicate � �� � v �ts T� meaning that in the con

text of � and state �� the value v is assignable to a variable of type T� This
proposition� which is computed at run
time for type casts and array assignments�
is a weaker version of the notion of conformance introduced in x����

� � �ts �� prog � st � val � ty � bool

� �� � v �ts T
def
� ��pt� T � PrimT pt� � v � Null �
� � obj ty �the �heap � �the Addr v����T

There is a number of auxiliary functions for constructing and updating the
state� namely�

lupd� �� � �� ename � val � st � st

hupd� �� � �� loc � obj � st � st

x case �� xcpt option � st � st � state

lupd�v ��x � �h�l�
def
� �h�l�v��x��

hupd�a��obj� �h�l�
def
� �h�a��obj��l�

x case x �� �
def
� �x� if x � None �� else ��

��



init vars �� �� � ty�list � ���val�table
init Obj �� prog � tname � obj

init Arr �� ty � int � obj

init vars
def
� table of 	 map ���n�T�� �n�default val T��

init Obj � C
def
� Obj C �init vars ��elds � C��

init Arr T i
def
� Arr T ��j� if �� j 
 j�i then Some �default val T�

else None�
raise if �� bool � xname � �xcpt�option � �xcpt�option
np �� val � �xcpt�option � �xcpt�option

raise if c xn xo
def
� if c 
 �xo � None� then Some �SysXcpt xn� else xo

np v
def
� raise if �v � Null� NullPointer

The de�nition of raise if deserves a comment� raise if c xn xo either propagates
an already thrown exception xo or raises the system exception xn if c is true�
As an application� np v checks for a null pointer access through the value v and
throws a NullPointer exception in this case� but any other exception that has
already occurred takes precedence�

Evaluation rule format Internally� the evaluation rules are given as mutu

ally inductive sets of tuples� These sets de�ne relations� which we present as
predicates of the following form�

� � � � �c� �� �� prog � state � stmt � state � bool

means that the execution of statement c transforms state � into ���
� � � � �e�v� �� �� prog � state � expr � val � state � bool

means that expression e evaluates to v� transforming � into ���

Although de�ned as relations �for technical reasons�� the semantics given below
can be shown to be functional� i�e� deterministic�

Strictly speaking it is not necessary to include an exception in the start state
of a computation� Similarly� an expression needs only return either a value or
an exception� but not both� However� the symmetry achieved by our slightly
redundant model simpli�es the rules considerably� In particular� we can avoid
case distinctions on whether exceptions occur in intermediate states� which would
cause the rules to be split� Suppose for example that � � � �c� �� had the
signature prog � st � stmt � state � bool� i�e� all rules assume that there is
no exception in the start state� Then the rule�s� for sequential composition would
look like

� � �� �c� � �None����� � � �� �c�� ��

� � �� �c�� c�� ��

� � �� �c� � �Some xs����

� � �� �c�� c�� �Some xs����

��



As a consequence of the design decisions just mentioned� there is exactly one
rule for each syntactic construct� Additionally there are general rules de�ning
that exceptions simply propagate when a series of statements is executed or a
series of expressions is evaluated�

� � �Some xc��� �c� �Some xc���

� � �Some xc��� �e�arbitrary� �Some xc���

All other rules can assume that in their concerning initial state no exception has
been thrown� For such states� we de�ne the abbreviation Norm �� which stands
for �None����

Execution of statements The rules for the statements not explicitly involving
exceptions are obvious�

� � Norm � �Skip� Norm �

� �Norm �� �c� � ��� � � �� �c�� ��

� �Norm �� �c�� c�� ��

� �Norm �� �e�v� ��

� �Norm �� �Expr e� ��

� �Norm �� �e�v� ���
� � �� �if the Bool v then c� else c�� ��

� �Norm �� �if�e� c� else c�� ��

� �Norm �� �if�e� �c� while�e� c� else Skip� ��

� � Norm �� �while�e� c� ��

If no other exceptions have occurred while evaluating its argument and test

ing for a null reference �using np�� the throw statement copies the evaluated
location into the exception component of the state�

� �Norm �� �e�a
�� �x������ x�

� � np a� x��
x�

����if x�
��None then �Some �XcptLoc �the Addr a���� else x�

��

� �Norm �� �throw e� �x�
������

For the semantics of the try catch statement we have to distinguish
whether some exception is thrown and then caught by the catch clause or not�
In the �rst case� i�e� there is an exception of appropriate dynamic type to be
handled� the catch clause is executed with its exception parameter set to the
caught exception� In the second case the catch clause is skipped� Because of
technical limitations of the inductive de�nition package of Isabelle�HOL� even
in this case we have to provide an occurrence of the execution relation� which in
e�ect simply sets �� to �x�

����
���

� �Norm �� �c�� ��� � � �� �salloc� �x�
����

���
case x�

� of None � ��
�� � �x�

����
�� 
 c�

� � Skip
j Some xc � let a � Addr �the XcptLoc xc� in

if � ���
� � a �ts Class tn

then ��
�� � Norm �lupd�vn��a���

�� 
 c�
� � c�

else ��
�� � �x�

����
�� 
 c�

� � Skip�
� � ��

�� �c�
�� ��

� � Norm �� ��try c� catch�tn vn� c��� ��

��



On the one hand� the exception parameter of the catch clause must repre

sent the exception thrown in the try block by a reference to its exception ob

ject� As on the other hand we defer the allocation of system exceptions when
evaluating expressions� we have to ensure that even for such exceptions a suit

able exception object is allocated on the heap of ��

�� replacing the SysXcpt

entry by an XcptLoc entry in x�
�� This is achieved by the auxiliary relation

� � � �salloc� �� �� prog � state � state � bool� If no system exception has
been thrown� the relation behaves like the identity on the state� and otherwise
allocates an exception object and modi�es the state accordingly� Note that this
allocation step is impossible � and therefore program execution halts � if there
is no free address left�

� �Norm � �salloc� Norm �

� � �Some �XcptLoc a���� �salloc� �Some �XcptLoc a����

new Addr �heap �� � Some �a�x��
xobj � init Obj � �SXcpt �if x � None then xn else OutOfMemory��

� � �Some �SysXcpt xn���� �salloc� �Some �XcptLoc a��hupd�a��xobj���

The finally statement is similar to the sequential composition� but executes
its second clause regardless whether an exception has been thrown in its �rst
clause or not� If an exception occurs in either clause� it is �re
�raised after the
statement� and if both parts throw an exception� the �rst one takes precedence�

� �Norm �� �c� � �x������
� �Norm �� �c� � �x������

x�
� � �if x� �� None 
 x� � None then x� else x��

� �Norm �� ��c� finally c��� �x�
�����

Evaluation of expressions In contrast to the statement rules� almost all eval

uation rules for expressions deserve some comments�

Creating a new class instance means picking a free address a and updating
the heap at that address with an object� the �elds of which are initialized with
default values according to their types� Note that the rule is not applicable �
and therefore execution halts � if new Addr fails�

new Addr �heap �� � Some �a�x�

� �Norm � �new C�Addr a� x case x �hupd�a��init Obj � C��� �

The same applies for the creation of a new array� where additionally an
exception is raised if the length of the array is negative�

� � Norm �� �e�i
�� �x������ i � the Intg i��

new Addr �heap ��� � Some �a�x��
x�

� � raise if �i��� NegArrSize �if x� � None then x else x��

� �Norm �� �new T�e��Addr a� x case x�
� �hupd�a��init Arr T i���� ��

�	



A type cast merely returns its argument value� but raises an exception if the
dynamic type happens to be unsuitable�

� �Norm �� �e�v� �x������
x�

� � raise if�� � ��� � v �ts T� ClassCast x�

� �Norm �� ��T�e�v� �x�
�����

The type comparison operator checks if the type of its argument is assignable
to the given reference type�

� �Norm �� �e�v� ���
b � �v��Null 
 � �snd �� � v �ts RefT T�

� �Norm �� �e instanceof T�Bool b� ��

The result of a literal expression is simply the given value�

� �Norm � �Lit v�v� Norm �

An access to a local variable �or the this pointer� reads from the local state
component�

� �Norm � �vn�the �locals � vn�� Norm �

An assignment to a local variable updates the state� unless the evaluation of
the subexpression raises an exception�

� � Norm �� �e�v� �x�����
��

� � �if x � None then lupd�vn ��v� �� else ���

� � Norm �� �vn��e�v� �x���
��

A �eld access reads from a �eld of the given object� taking into account
the type annotation which yields the de�ning class of the �eld as determined
statically� It also checks for null pointer access�

� �Norm �� �e�a
�� �x������

v � the �snd �the Obj �heap �� �the Addr a���� �fn�T��

� �Norm �� �fTge�fn�v� �np a� x�����

A �eld assignment acts accordingly�

� � Norm �� �e��a
�� �x������ a � the Addr a��

� � �np a� x����� �e��v � �x������
�c�fs� � the Obj �heap �� a�� obj � Obj c �fs��fn�T���v��

� � Norm �� ��fTge��fn��e���v� x case x� �hupd�a��obj���� ��

An array access reads a component from the given array� but raises an ex

ception if the index is invalid�

� �Norm �� �e��a
�� ��� � � �� �e��i

�� �x������
vo � snd �the Arr �heap �� �the Addr a���� �the Intg i���

x�
� � raise if �vo � None� IndOutBound �np a� x��

� � Norm �� �e��e���the vo� �x�
�����

��



Similarly� an array assignment updates the appropriate component� but �rst
has to check the type of the value to be assigned� Note one subtle di�erence to
�eld assignment� null pointer access is checked after evaluating the right
hand
side� whereas in �eld assignment the check occurs immediately after calculating
the reference�

� �Norm �� �e��a
�� ��� a � the Addr a��

� � �� �e��i
�� ��� i � the Intg i��

� � �� �e��v � �x������
�T�cs� � the Arr �heap �� a�� obj � Arr T �cs�i��v���

x�
� � raise if �� � ��� � v �ts T� ArrStore �

raise if �cs i � None� IndOutBound �np a� x���

� �Norm �� ��e��e����e���v� x case x�
� �hupd�a��obj���� ��

The most complex rule is the one for method invocation� after evaluating
e to the target location a� and p to the parameter value pv� the block blk and
the result expression res of method mn with argument type T are extracted
from the program � �using the dynamic type dynT of the object stored at a���
For simplicity� we require local variables to be initialized with default values�
as the expensive rules for �de�nite assignment� �GJS��� Ch� ��� merely enable
the run
time optimization that variables need not be initialized before being
explicitly assigned to� After executing blk and res in the new invocation frame
built from the local variables� the parameter pv and a� as the value of this� the
old invocation frame is restored and the result value v returned�

� �Norm �� �e�a
�� ���

� � �� �p�pv� �x������
dynT � fst �the Obj �heap �� �the Addr a�����

�md��pn�rT��lvars�blk�res� � the �cmethd � dynT �mn�pT���
� � �np a� x���heap ���init vars lvars�this��a���pn��pv��� �blk� ���

� � �� �res�v � �x�����

� �Norm �� ��e�mn�fpTgp���v� �x���heap ���locals ����

Note that all rules are de�ned carefully in order to be applicable even in not
type
correct situations� For example� in any context where a value v is expected
to be an address� we do not use a premise like v � Addr a as this will disable the
rule if v happens to be� for example� a null pointer or a Boolean value� Instead�
we use an expression like a � the Addr v� which will yield an arbitrary value if
v is not an address� yet will leave the rule applicable� In such cases we could
not prove anything useful about a� but during the type soundness proof itself
it emerges that for well
formed programs �and statically well
typed statements
and expressions� such situations cannot occur� A �defensive� evaluation throw

ing some arti�cial exception in case of type mismatches� which would require
additional overhead� is therefore not necessary�
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� The proof of type soundness

In this section we discuss our type soundness theorem together with its cru

cial lemmas� As we spent almost half of the proof e�ort deriving properties
of the type relations and the structure of well
formed programs� we dedicate to
them subsections of their own before introducing helpful notions concerning type
soundness� the main theorem itself� and interesting corollaries�

It is not surprising that many of them are similar to those given by Drosso

poulou and Eisenbach �DE��� since the necessity of certain lemmas emerges quite
naturally� On the other hand� the proof principles we use are sometimes rather
di�erent from those outlined in their earlier paper �DE���� some of which were
inadequate�

��� Lemmas on the type relations

There are two non
trivial lemmas concerning the type relations of Bali� namely
the well
foundedness wf of the converse subinterface and subclass relations

wf prog � �� wf ���J �I �� � � I 
i J �

 wf ���D�C�� � �C
c D�

and the frequently used transitivity of the widening relation�

wf prog � 
 � � S�U 
 � �U�T �� � � S�T

The two relations are well
founded because they are �nite and acyclic� where
the former is a consequence of representing class and interface declarations as
lists� and the latter follows from the irre�exivity of the relations� which in turn
follows from the well
formedness of the classes and interfaces implied by the
well
formedness of the whole program�

The well
foundedness facts are necessary for deriving the recursion equations
for the functions that traverse the type hierarchy of a program �see x	��� and
also give rise to induction principles for the �direct� subinterface and subclass
relations� e�g� the rule

wf prog � � P Object�
�C D� C �� Object 
 � � C
�

c D 
 � � � 
 P D �� P C

�E� is class � E �� P E

means that for a well
formed program� if some property hold for class Object
and is preserved by the direct subclass relation� it holds for all classes�

Most lemmas� as well as auxiliary properties for deriving them� typically rely
on several well
formedness conditions and are usually proved by rule induction
on the type relation involved� or by applying the induction principles just men

tioned� For example� the transitivity of � � is proved by rule induction on
the widening relation� It requires a well
formed program because it uses the
properties that every class widens to Object and that Object has neither a
superclass nor a superinterface�

��



��� Lemmas on �elds and methods

For the type
safety of �eld accesses and method calls� characteristic lemmas
concerning the �eld lookup and method lookup are required� They are used to
relate the �static� types of �elds and methods� as determined at compile
time�
to the actual �dynamic� types that occur at run
time�

For example� �elds correctly referred to at compile
time must be found at run

time� More formally� if a �eld access fTge�fn� where e is of type Class C� statically
refers to a �eld of type fT de�ned in the reference type T� then within an instance
of some class C �� which may be a subclass of C� the �eld can be �dynamically�
referred to using the same name and its de�ning class� In particular� there is no
dynamic binding for �elds� This fact requires the following lemma�

wf prog � 
 c�eld � C fn � Some �T�fT� 
 � � Class C ��Class C ��
table of ��elds � C �� �fn�T� � Some fT

Concerning method calls� a similar requirement preventing �method not un

derstood
 errors can be formalized� if a method call of the form e�mn�fpTgp�
with E � e��RefT T refers to a method that is statically available for the reference
e� the dynamic lookup of the object pointed at by e should yield a method with
a compatible result type� The lemma that helps to establish this behavior reads
as follows� for a well
formed program� a reference type T� and any class type T�

that widens to T� if T �statically� supports a method with a given signature�
then the �dynamic� type T� supports a method with the same signature and
whose result type widens to the result type of the �rst method�

wf prog � 
 �m���pn��rT��� � mheads � T sig 
 � � Class T��RefT T ��
�m� pn� rT� b� cmethd � T� sig � Some �m���pn��rT���b� 
 � � rT��rT�

The proofs of these lemmas are lengthy and require many auxiliary theorems
that are proved by induction on the direct subclass relation� by case splitting on
the right
hand argument of the widening relation and by rule induction on the
subinterface� subclass� and implementation relation�

��� Type soundness

Finally� we state and prove the type soundness theorem� We motivate how we
express type soundness� comment on the proof of the main theorem� and discuss
it consequences�

Goal Type soundness is a relation between the type system and the semantics
of a language meaning that all values produced during any program execution
respect their static types� This can be formulated as a preservation property�
For all state transformations caused by executing a statement or evaluating an
expression� if in the original state the contents of all variables �conform� to their
respective types� this holds also for any �nal state� Additionally� if an expression
yields some result� this value �conforms� to the type of the expression� Of course�
we can only expect all this to hold if we assume a well
formed program and well

typed statements and expressions�

��



It remains to specify what we mean exactly by �conforms
� which is inspired
by �DE���� Relative to a given program � and a state �� a value v conforms
to a type T� written � �� � v��T� i� the dynamic type of v widens to T� Via
two auxiliary conformance concepts� this can be lifted to the notion of a whole
state � conforming to an environment E� The proposition � ���E means that
the value of any accessible variable within the state is compatible with its static
type� Formally� these four concepts

� � � ��� �� prog � st � val � ty � bool

of a value conforming to a type�
� � � � ��� � �� prog � st � ���val�table � ���ty�table � bool

of all values in a table conforming to their respective types�
� � � ��� � �� prog � st � obj � bool

of all components of an object conforming to their respective types� and
� ��� �� state � env � bool

of a state conforming to an environment

are de�ned as follows�

� �� � v ��� T
def
� let dyn ty � option map obj ty 	 heap �

in �T �� typeof dyn ty v � Some T � 
 � � T ��T

� �� � vs� ��� �Ts
def
� �n T� Ts n � Some T ��

��v� vs n � Some v 
 � �� � v ���T�
� �� �Obj C fs ��� � � � �� � fs� ��� �table of ��elds � C

� �� � Arr T cs ��� � � � �� � cs� ��� �option map ��i� T� 	 cs

�x��� ��� �� ���
def
� � �� � locals �� ��� �� 


��a obj� heap � a � Some obj �� � �� � obj ��� �� 

��a� x � Some�XcptLoc a� �� � �� � Addr a ���Class�SXcpt Throwable��

The expression �option map obj ty 	 heap �� a calculates the dynamic type of
the object �if any� at address a on the heap� Note that the conformance relation is
de�ned such that it does not take into account inaccessible variables� i�e� values
that occur in the state but not in the corresponding component of the static
environment� Among others� this frees us from explicitly deallocating exception
parameters after a catch clause�

With the help of the notions just introduced� we can express the propositions
we aim to prove as follows� In the context of a well
formed program� the execution
of a well
typed statement transforms a state conforming to the environment into
another state that again conforms to the environment�

E � �� ��� 
 wf prog � 
 E � s��� 
 � ���E 
 � � � �s� �� �� �� ���E

Analogously� the evaluation of a well
typed expression preserves the conformance
of the state to the environment where� unless an exception has occurred� the value
of the expression conforms to its static type�

E � �� ��� 
 wf prog � 
 E � e��T 
 � ���E 
 � � � �e�v� �x����� ��
�x����� ���E 
 �x� � None �� � ��� � v ���T�

The validity of these two formulas will result as trivial corollaries from the
main theorem� given next�

��



Main theorem and proof To prove the intended type soundness theorems
given above� we utilize rule induction on the derivation on the execution of
statements and the evaluation of expressions� As these depend on each other� we
must deal with statements and expressions simultaneously� In addition� in order
to obtain a suitable induction hypothesis� we have to strengthen the propositions
by adding the auxiliary �heap extension� predicate � �de�ned below� and
introducing universal quanti�cations explicitly at several positions� As a result�
the main theorem looks quite formidable� yet we attempt to cast it into words�

wf prog � ��
�� � �x��� �c � �x����� ��

��� �x��� ��� �� ��� ��
�� ��� � c��� ��
�x����� ��� �� ��� 
 ����



�� � �x��� �e�v� �x����� ��

��� �x��� ��� �� ��� ��
�T� �� ��� � e��T ��

�x����� ��� �� ��� 
 ���� 
 �x� � None �� � ��� � v ���T��

For a well
formed program � � if the execution of a statement transforms one
state into another then for all local environments �� if the the statement is well

typed according to the environment �� ��� and the �rst state conforms to it� so
does the second state� and the new heap is an extension of the old one� The same
holds for expressions� but additionally the value of the expression conforms to
its type� in case there is no exception�

The �heap extension� is a pre
order on states of type st � st � bool� where
���� means that any object existing on the heap of � also exists on �� and
has the same type there� �If we considered garbage collection� we would have
to restrict this proposition to accessible objects�� The heap extension property
holds for any transition of the operational semantics� which turns out to be
necessary in our inductive proof�

����
def
� �a obj� heap � a � Some obj ��

�obj�� heap �� a � Some obj� 
 obj ty obj� � obj ty obj

The proof of the main type soundness theorem is by far the heaviest� At the
top level� it consists of currently �� cases� one for each evaluation rule� where

� � cases can be solved rather directly �e�g� from the induction hypothesis��

� � cases require just simple lemmas on the structure of the state� and

� the remaining � cases require extensive reasoning on the characteristic prop

erties of the constructs concerned�

Most of this reasoning is independent of the operational semantics itself and can
be tackled separately� which keeps the main proof manageable�

��



Consequences A corollary of type soundness is that method calls always ex

ecute a suitable method� i�e� a �method not understood
 run
time error is im

possible� This property can be stated more formally� for a well
formed program
and a state that conforms to the environment� if an expression of reference type
�which plays the role of the target expression for the method call considered�
evaluates without an exception to a non
null reference� and if for that �static�
type and a given signature a method is available� the dynamic method lookup
for the same signature according to the class instance pointed at by the reference
value yields a proper method body�

E � �� ��� 
 wf prog � 
 E � e��RefT T 
 � ���E 
 � � � �e�a�� Norm �� 

a� �� Val Null 
 dynT � fst �the Obj �heap �� �the Addr a���� 

mheads � T sig �� fg �� �m� cmethd � dynT sig � Some m

This implies that in a well
formed context� in every instance of the evaluation
rule for method calls� the function cmethd returns a proper method body�

As it stands� the type soundness theorem does not directly say anything about
non
terminating computations� which might lead to the conclusion that it is
useless for the type
safety of reactive systems and looping programs� Fortunately�
the theorem guarantees type
safety even in such cases if one accepts the following
meta
level reasoning� An in�nite computation can be interrupted after any �nite
number of computation steps� for example by introducing a counter of steps
and raising an exception when a given value has been reached� The theorem
implies that the state resulting from interrupting the computation after any �nite
number of statements executed conforms to the environment� Together with
the fact that there is no single non
terminating statement� the whole �in�nite�
computation can be concluded to be type
safe�

In addition to the evaluation semantics� we plan to de�ne a transition seman

tics and prove both styles equivalent �for �nite computations�� The transition
semantics will be less concise and abstract� but allows type soundness to be
formulated as a subject reduction property� which is more natural for in�nite
computations� More importantly� it seems to be unavoidable to describe concur

rency �and I�O��

� Experience and statistics

Recalling our design goals stated at the end of x�� we comment how far we have
reached them and share some of the lessons learned during the project�

Faithfulness to the o	cial language speci�cation HOL
s expressiveness
enables us to formalize the Java speci�cation quite naturally and directly�
without facing any severe obstacles� There is almost a one
to
one correspon

dence between the concepts given in the speci�cation and those de�ned in
Bali� As far as we could tell� all the messy well
formedness conditions in

herited from the language speci�cation are actually needed somewhere in
the proofs� This inspires con�dence in the adequacy of both the speci�cation
and our formalization�

��



We do not yet have tools for automatically generating executable code from
our theories� which would be an additional help in validating our formaliza

tion� The importance of such a mechanism became very obvious when we
uncovered a mistake in our formalization �which was not present in �NO���
but was introduced by modi�cations� when symbolically executing the ex

ample in this article in Isabelle� the list returned by function �elds was in
reverse order� Although the type soundness proof itself was an excellent de

bugging mechanism which caught many minor and some major mistakes� it
failed to detect the wrong order because type soundness is independent of
the order in which �elds are inherited� In the original language speci�cation
we did not �nd any signi�cant errors� but some omissions and unneeded
restrictions� which we lifted�

Succinctness and simplicity Our policy to restrict the number of features
considered and to make straightforward simpli�cations that do not diminish
the expressiveness of the language has lead to a clear and straightforward
formalization� Mix�x syntax and mathematical fonts as o�ered by Isabelle
also contribute greatly to moderately readable de�nitions and theorems�

The facility to conduct concise proofs strongly depends on the formal

ization� In our case� the use of the �also more elegant� evaluation semantics
saved us from a lot of trouble� while the intricacies of a transition semantics
faced by Drossopoulou and Eisenbach �DE��� lead to several mistakes that
were �nally corrected during Syme
s machine
checked proof �Sym��b�� but
at the expense of additional concepts�

Maintainability and extendibility Unless the language changes drastically�
modi�cations tend to be of a local nature� but only if both the formalization
and the proofs are reasonably structured� As always� modularity is the key
issue� But when the formalization is extended� even well
structured proofs
need to be modi�ed� which remains a tedious job� Higher
level proof scripts
and more automation are some of the answers� A dedicated mechanism for
change management exploring and �xing the impact of modi�cations would
also help�

We are reasonably happy with the modularity of our work� For instance�
Martin B uchi �BW��� has adpoted the formalization �including the proofs��
extended it to handle compound types� and proved the type
safety of the
augmented language� all of which worked very smoothy�

Adequacy for the theorem prover Theorem provers are notoriously sensi

tive to the precise formulation of de�nitions and theorems� Thus the two
goals of maximal automation of proofs and maximal abstractness of de�ni

tions are sometimes in con�ict� In a number of cases this meant that although
we could start with an abstract de�nition� we had to derive consequences
which were better suited for the available proof procedures� Although we
are far from satis�ed with the current status of Isabelle
s proof procedures
�for example� the handling of assumptions during simpli�cation� or the ne

cessity to expand tuples and similar datatypes by hand�� they are basically
adequate for the task at hand� Nevertheless� more automation is necessary
and feasible by extending the capabilities of Isabelle itself�

��



Statistics We spent two months �estimated net time� developing and maintain

ing our formalization� and the Isabelle theory �les produced add up to about
���� lines of well
documented de�nitions� To conduct and maintain the type
soundness proof with all necessary lemmas� it took us roughly three months of
work and about �	�� lines of proof scripts�

� Conclusion

The reader has been exposed to large chunks of a formal language speci�cation
and a proof of type soundness and may need to be reminded of the bene�ts� Even
including the slight generalizations mentioned at the beginning of x	� we did not
discover a loop
hole in the type system� But we had not seriously expected this
either� So what have we gained over and above a level of certainty far beyond
any paper
and
pencil proof!

We view our work primarily as an investment for the future� For a start�
it can serve as the basis for many other mechanized proofs about Java� e�g� as
a foundation for the work by Dean �Dea��� or for compiler correctness� More
importantly� we see machine
checked proofs as an invaluable aid in maintaining
large language designs �or formal documents of any kind�� It is all very well to
perform a detailed proof on paper once� but in the face of changes and extensions�
the reliability of such proofs begins to crumble� In contrast� we developed the
design incrementally� and Isabelle reminded us where proofs needed to be modi

�ed� This has shown to be important� for example when we extended Bali with
full exception handling� It will continue to help us further� apart from adding
the last important Java features missing from Bali� e�g� threads� we also plan to
use Bali as a vehicle for experimental extensions of Java such as parameterized
types �MBL���OW���AFM����

Despite our general enthusiasm for machine
checked language designs� a few
words of warning are in order�

� Bali is still a half
way house� not a toy language any more� but missing
many details and some important features of Java�

� The Java type system is� despite subclassing� simpler than that of your av

erage functional language� whereas the type checking rules of Java are al

most directly executable� the veri�cation of ML
s type inference algorithm
against the type system requires a signi�cant e�ort �NN���� The key compli

cation there is the presence of free and bound type variables� which requires
complex reasoning about substitutions� VanInwegen �Van��� reports similar
di�culties in her formalization of the type system and the semantics of ML�

� Theorem provers� and Isabelle is no exception� require a certain learning
e�ort due to the machine
oriented proof style� Recent moves towards a more
human
oriented proof style like Syme
s DECLARE system �Sym��a� promise
to lower this hurdle� However� as Harrison �Har��� points out� both proof
styles have their merits� and we are currently investigating a combination�

�	



In a nutshell� although machine
checked language designs for the masses are still
some way o�� this article demonstrates that they have de�nitely become a viable
option for the expert�
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