
Towards Development of Correct Software using Views

Barbara Paech, Bernhard Rumpe
Institut für Informatik, Technische Universit¨at München

Munich, Germany
http://www.forsoft.de/˜(paechjrumpe)

Abstract

This paper aims at integratingheterogeneous documents used in pragmatic software develpoment methods to describe
views with a formal refinement based software development process. Therefore we propose an integrated semantics
of heterogeneous documents based on a commonsystem model and a set ofsyntactic development steps with a well-
defined semantics for document evolution. The use of the development steps is demonstrated in a small example.

1 Introduction

Software engineering methodologies structure the software development into a specificprocess yielding a certain set
of products. Very often the process is only roughly described (e.g. distinguishing analysis, system design, object
design and implementation in OMT[21]), but an elaborate set of description techniques for the products is given (cf.
the newly developing standardUnified Modeling Language [3]). These description techniques define differentviews
on the application system or the software system. While the particular notations and views have changed over the years
adhering to a structured, data-oriented or object-oriented paradigma (for a comparison see e.g. [7]), the use of views in
software development is indespensable in order to concentrate on different systemaspects (e.g. static structure, data,
behaviour) on differentabstraction levels. The former reflect concerns of the different participants (e.g. manager, user,
system analyst, software designer) and the latter the amount of information relevant in the different stages of software
development (e.g. [16]).

Thus the products ofpragmatic software development methods constitute a quiteheterogeneous set of documents.
Formal software development methods, on the contrary, usually offer auniform specification language equipped with
constructs forspecification in the large and a notion ofrefinement (e.g. VDM[2], Z[27] and a great variety of algebraic
approaches[26]). In recent years efforts have been made to combine pragmatic and formal methods. However, they
have concentrated on giving a formal semantics to pragmatic notations (e.g. [10]), on using pragmatic notations for
requirements engineering yielding a formal requirements specification (e.g. [20], [11],[14], [17]) or using the formal
specification as an additional means of analysis, design, specification and validation within the pragmatic methods
(e.g. [19]).

To our knowledge no proposal has been made forusing heterogeneous documents within a refinement based formal
development process. The present paper is one step in this direction. It advocates

� amathematical system model as a basis for the semantic integration of the heterogeneous documents and

� a set ofsyntactic development steps with a well-defined semantics for document evolution.

In the following we will explain our approach within the context of a software engineering method for distributed
object-oriented systems. Thus the system model introduced in section 2 formalizes a system as a set ofinteracting
components. In section 3 we define the syntax and semantics of three exemplary view documents: anobject model
for describing the static system structure,class descriptions for describing the component interface andautomata for
describing component behaviour. Then we define the syntactic developments steps particular to the individual kinds of
documents are defined. In section 5 we sketch over a chain of development steps for the development of a distributed

Making Object-oriented Methods More Rigorous, 1997 1



Towards Development of Correct Software using Views

car rental system in order to give a flavour of the handling of our approach. We close with some remarks on related
and future work.

2 System Model

The system model serves as a common reference model for the definition of thesemantics of the description tech-
niques. It therefore is a solid basis for theirintegration. It also helps the different system developers participating in
the development process to achieve a common understanding of the kind of system to be developed.

In this section we sketch the system model and motivate its design decisions. The underlying formalism is pure
mathematics enhanced with the theory of streams as given in FOCUS ([5]). This allows us to use very powerful and
flexible concepts, but all proofs of correctnes over the development steps are paper-and-pencil-proofs. To ensure
automatic proof support, the system model, the used description techniques, their semantics and transformations may
be coded within a logic, e.g. HOL ([8]) and then proved with a theorem-prover likeIsabelle ([18]).

A more detailed explanation of a more general system model, allowing combined use of hardware and software
components can be found in [24] and [12].

Outline of the System Model

The system model aims at describing distributed object-oriented systems. It formalizes a system as a set ofinteract-
ing components, calledobjects. All objects interact byasynchronous message passing. Data (states) of objects are
encapsulated, no sharing occurs. The concept for message addressing uses identifiers of objects. Dynamic creation of
components is modeled by using possibly infinite sets of objects, which are “activated” by special messages.

We do not abstract from time, because this on the one hand allows us to describe real-time object-oriented systems
and on the other hand prevents semantic problems as e.g. the merge anomaly ([4]).

Formalisation of the system model

The system modelSM formally is the set of systems, we are interested in. A systemsys � SM is a tuple consisting
of all the sets and functions defined in the following.

Let V AL denote the universe of allvalues in systemsys. We do not regard objects as values, but their state is
composed of values, and an object identifier is a value as well. This universe is structured by the setSORT of sorts,
where each sorts � SORT denotes a subset ofV AL by the functionvalues:

values�s� � V AL�

Let V AR be the set of variable names including attributes. We assume each variable name to be used only once, and
therefore allow an assignment of a sort for every variable, denoted by:

sort � V AR� SORT�

Object and Class Signature

An object-oriented system consists of a set of objects, that are conceptually and/or spatially distributed. Every object
is uniquely identified by an element of the enumerable setID of identifiers.

Objects with common behavior and interface are grouped together by the notion ofclass. A finite set of classes
thus defines a type system for objects1. Each system contains a set of class namesCN . One of the purposes of a class
is, that it serves as a sort of its object identifiers. This is very similar to the class notion inC � �, where the object
typeOBJECT and the type of object identifiersOBJECT & are both used. We therefore set

CN � SORT

1For sake of brevity we have omitted inheritance. An example of a system model with inheritance can be found in [22].

Making Object-oriented Methods More Rigorous, 1997 2



Towards Development of Correct Software using Views

and demand that each class-sortc � CN contains only identifiers as its values:

�c � CN�values�c� � ID�

Vice versa each object identifierid � ID has a unique class assigned via the functionclass. Objectid is instance of
classclass�id� � CN .

The signature of an object is given by the set of messages it can accept and emit. Objects which are instances
of the same class have a common signature defined by a finite set of method names, the arity and the kind of their
parameters. We do not define the concrete signature of a class here. But let us assume�c denotes the appropriate set
of input messages of classc.

Messages in the system model contain the identifier of the receiving object. As this is not part of the message
contents, we define the set of input messages of objectid � ID as

Inid � f�id�msg�jmsg � �class�id�g�

where the message bodymsg may be itself a complex structure composed of a method name and arguments. As the
actual set of output messages of one object is determined by the implementation respectively the specification itself,
we use the setMSG �

S
id�ID Inid of all messages as output interface.

Black-Box Behaviour

Let M� denote an infinite timed stream overM . The black-box behavior of object id is described as a function
behaviorid relating a stream of input messages to a stream of output messages2

behaviorid � In�id
p
����MSG���

Similarily to message signatures, each class is given an attribute signature denoted by�c � V AR, which assigns
a set of variables to each class.

Object Communication

Message
Message

Object

Object

Object
Object

Figure 1: Object communication

Every kind of computation is performed within objects. However these objects are not directly composed. As shown
in Figure 1, this is done by embedding all objects in acommunication medium that does the necessary routing of
messages. As communication is asynchronous in general, the necessary buffering of messages is done within the
communication medium as well. The communication medium has to obey several restrictions, e.g. messages are
not lost or duplicated and order has to be maintained between two messages with common source and destination.
In principle the communication medium is allowed to delay messages, but not infinitely long. If one is interested

2 p

�� denotes apulse-driven function ensuring that at any point in time the input does not depend on the future

Making Object-oriented Methods More Rigorous, 1997 3



Towards Development of Correct Software using Views

in specifying real-time object-oriented systems, the medium may be refined to a medium without as well as with a
restricted sort of delay. Although the medium is not a component that is intended to be implemented, we can describe
the communication medium as an ordinary component, as done in [12].

State-Box Behavior

Besides the object signature that constitutes the interface, objects also have an internal state, composed of a finite set
of attributes. The behaviour of an object can be given either in a property oriented way as a black-box or based on
internal states.

The state space of an object is given by

statesid � ��class�id� � V AL�� CTRL�

The value part is determined by its attributes. The control partCTRL resembles an abstraction of the program counter
and is not further determined here. A setstates�id contains the initial states of the componentid:

states�id � statesid�

To describe the behavior of a componentid, a state transition relation�id is used. Each transition consists of a source
state, a sequence of accepted input messages, a sequence of emitted output messages and a destination state. The
transition relation is nondeterministic allowing also for underspecification of the object:

�id � statesid � In�id �MSG� � Statesc�

�Inid�MSG� statesid� states
�
id� �id� constitutes a timed port automaton (defined in [9]). Timed port automata have a

precisely defined black-box semantics and therefore fully determinebehaviorid.
To give a full account of the system behaviour object creation and deletion must be handled. As mentioned before,

this is modeled by special messages. The details are omitted here. Asystem run is described by the stream of messages
each object accepts and emits, as well as by the sequence of states each objects assumes.

3 Documents and their semantics

In this section we demonstrate, how different description techniques, like object models and automata can be given an
integrated formal semantics based on the system model. The common semantic function is denoted as

����� � DOC � ��SM �

associating with each document a set of system models satisfying the specification given in the document.
For each kind of documents we give

� a concrete (usually graphical) notation,

� an abstract syntax definition and

� a semantics definition.

The concrete, at least in part graphical notation, is used by the software engineer. The abstract syntax comprises this
notation without syntactic sugar. It is sufficient to define the semantics based on the later.

Making Object-oriented Methods More Rigorous, 1997 4



Towards Development of Correct Software using Views

3.1 Object Models

An object model defines the structure of the system in terms ofclasses anddata relationships. As graphical notation
we use a kind of entity relationship diagram where boxes denote classes and lines data relationships. Lines are labelled
with role identifiers and the cardinality (� denotes 1:n, no label denotes 1:1).

Figure 2 shows the initial object model of the example distributed car rental system. This system consists of
differentbranches where cars can be picked-up at one branch and returned at a possibly different one. For each rented
car therental details are stored. Here cars are not modelled as objects, but as attributes ofbranches andrentals (see the
class description of figure 3). The initial object model contains the classesbranch andrental and data relationships to
record thepick-up branch andreturn branch of eachrental.

objectmodel InitObjectModel:

Branch

pick-up branch

return branch
Rental

endobjectmodel

Figure 2: Initial Object Model

The abstract syntax of anobject model document is given as the tuple�C�R�, consisting of

� a set of classesC � CN and

� a set of data relationshipsR � Role�Role

where a role�c� rn� card� � Role consists of a classnamec � C, an optional rolenamern and a cardinalitycard �
f	� �g.

The semantics���C�R��� of object model�C�R� is defined as the set of systemssys � SM which fulfill the
following properties:

1. Classes exist:C � CN .

2. The semantics of a data relationship is given by using rolenames as attributes to refer to an object in case of
cardinality	 and to a set of objects in case of cardinality�. The full semantics is more involved, since cardinality
restricts the set of possible system states.

3.2 Class Descriptions

A class description defines the signature of classes in terms of methods and attributes.
Figure 3 shows the class descriptions forbranch andrental. They are based on some type definitions which are

collected in a special document. These data type definitions constrain the sortsSORT of the system model. Their
syntax and semantics is straightforward and not included here for sake of brevity. In the example, methods are not
used in these initial class descriptions. A class description using methods is given in figure 5 in section 5.

Thus the abstract syntax of aclass description is given as a tuple�c�meth� attr�, consisting of

� a classnamec,

� a set of method signaturesmeth and

� a set of attributesattr.

Making Object-oriented Methods More Rigorous, 1997 5



Towards Development of Correct Software using Views

classdocument InitBranch :
class Branch ;

attributes town : Town ;
availablecars : Set Car;

endclassdocument

classdocument InitRental :
class Rental ;

attributes begin : Date ;
end : Date ;
status : RentalStatus ;
car : Car;
pick-up branch : Branch ;
returnBranch : Branch;

endclassdocument

Figure 3: Initial class descriptions

The semantics���c�meth� attr��� of class description�c�meth� attr� is given accordingly as the set of systems
sys where:

1. The class exists:fcg � CN .

2. Method signatures are defined3: Messages�meth� � �c.

3. Attribute signatures are defined:attr � �c.

The main decision is the way we cope withabsent information. The semantics of a document is given in aloose
style. The absence of a piece of information does not imply that itmust be absent. This allows to later add further
details without changing but only detailing the semantics of a document. For example, further classes and relationships
can be added, because the semantics does not rule out their existence. This is achived by using subset relations
rather than equalities in the semantics definitions and is the basis for a powerfulrefinement calculus comprising the
development steps, a software engineer uses.

3.3 Automata

Automata are a well suited concept to give a state-based description of object behavior. However, a lot different au-
tomata variants are used for different purposes (e.g. I/O-Automata ([15])). We use automata to describe the lifecycle
of objects. The lifecycle determines the sequence of states an object passes through, the sequence of inputs it accepts
and the sequence of output it emits. An automaton describes object states as nodes and the processing of each input

3Given a concrete formal notion of the syntactical interfacemeth, the functionMessages determines a minimal set of messages for�c.

Making Object-oriented Methods More Rigorous, 1997 6



Towards Development of Correct Software using Views

message by a transition. One should note that in contrast to the use of automata in established object-oriented descrip-
tion techniques like OMT[21] we incorporate result messages of object calls as methods into the lifecycle. This is
necessary to give a formal semantics to the description technique.

The set of possible object states and transitions is usually infinite. We therefore use an appropriateabstraction
mechanism to allow a finite representation of an automaton. This abstraction is done by groupingobject states into
equivalence classes, calledautomata states. Accordingly transitions are grouped.

To define abstractions and to keep the possibility of defining fine grained behavior, a logic or an algebraic specifi-
cation language, for example SPECTRUM([6]) or HOL ([8]) is used. This allows to define state predicates to determine
equivalence classes of states and to define transitions by pre- and postconditions. Let us assume, a logic languageL is
given. We writeI�sys�f�, if formulaf � L is valid in systemsys under variable assignment� � V AR� V AL.

lifecycledocument Pick-UpBranchLifecycle :

DENIAL RENTAL

Name Description
RENTAL Input sender/pick-up(e,t)

Pre c� availablecars
Output [ok(rental)/sender,
create(now,e,c,self,branches(t))/rental]
Post pick-up rentals’ = pick-uprentals	frentalg,
availablecars’ = availablecarsnfcg

DENIAL Input sender/pick-up(e,t)
Pre c 
� availablecars
Output no/sender

endlifecycledocument

lifecycledocument Pick-UpRentalLifecycle :
init := status = init;
pickedup := status = pickedup;

init picked up
CREATE

Name Description
CREATE Input create(b,e,c,br1,br2)

Post begin’ = b, end’ = e, status’ = picked-up, car’ = c,
pick-up branch’ = br1, returnbranch’ = br2

endlifecycledocument

Figure 4: Pick-up Lifecycles

Figure 4 shows the lifecycles ofbranch andrental representing the interaction necessary for thepick-up function-
ality of the system.

In the graphical representation each transition is given a name and labelled with an input message, a sequence
of output messages, a precondition and a postcondition. Input and output messages may have free variables, whose
values are determined from the conditions. We use the notationsender�message andmessage�receiver to indicated
the sender and receiver of messages. The precondition also restricts the source state. The postcondition restricts the

Making Object-oriented Methods More Rigorous, 1997 7



Towards Development of Correct Software using Views

destination state, denoted as primed attributes as in TLA[13]. States are labelled with predicates defined in terms of
attributes of the corresponding class.

In the example, upon receipt of the messagepick-up(e,t) thebranch distinguishes two cases: if acar is available, it
creates arental, updates itpick-up rentals and theavailable cars and acknowledges therental to thesender. Otherwise,
it denies therental. Therental reacts in the initial lifecycle just to thecreate message by initializing its attributes.

In the abstract syntax, we deal only with pre- and postconditions, because input messages likem�a� b� can be
added to the precondition as�a� b�in � m�a� b� and similarily for the output. Conditions then only have four free
variables:in for the input message,out for the output message sequence, ands resp. t for source and destination
state. Preconditions only usein ands, state conditions only uses. A precise definition can be found in [22].

The abstract syntax of alifecycledocument is given as theautomaton �c� S�
� �� s��, consisting of

� a classc � CN the automaton belongs to,

� a nonempty set of automata statesS,

� a map
 � S � L, assigning a state predicate to each automaton state,

� a transition relation� � S �L � S �L, and

� an initial states� � S.

Several context conditions for automata have to be fulfilled, to make automata an intuitive description technique.
The most interesting ones are:

1. Each automaton states coresponds to a nonempty set of object states, i.e.

���I�sys
�s��

2. State predicates are disjoint and thus denote equivalence classes of object states, i.e.

����I�sys
�s� � I
�
sys
�t��
 s � t�

3. Transitions have to be enabled. This means, that the firing of transition�s� pre� t� post� � � is determined by
the preconditionpre, and the postconditionpost can always be fulfilled if the precondition is true4:

�� � fs� ing � V AL�I�syspre � 
�s�
 �� � fs� outg � V AL�I���sys post � 
�t��

4 Document Evolution

In this section we introduce the refinement rules for the documents. First, the basic document relations are defined for
an arbitrary setDOC of documents. These relations are based on the common semantic function����� � DOC � ��SM �
associating with each document a set of system models satisfying the specification given in the document. This
function is straightforwardly extended to subsetsD � DOC such that

��D��
def
�
�

d�D

��d���

Consistency and refinement of documents are defined as usual.
Given a semantics based refinement notionj�, we are now interested in establishing a syntax based refinement

calculus� that allows to manipulate documents in such a way, that each manipulation is a correct refinement. This
means:

�D� d�D � d 
 D j� d

4With ��t� we denote the logical formula, where each occurence of a free variable (here onlys) is replaced by its primed variant (heres)

Making Object-oriented Methods More Rigorous, 1997 8



Towards Development of Correct Software using Views

As we have a heterogeneous set of description techniques, we naturally establish a set of refinement rules� rather than
one. For practical usage it is not necessary to have a complete set of rules. Instead one should give a comprehensive
set of basic rules, that can be combined to more powerful ones covering the standard ways of constructing documents
incrementally .� is defined as the smallest transitive relation, that incorporates the set of given basic rules. In the
following, we define the rules for the description techniques introduced before.

� is itself a heterogeneous relation. It is important to relate abstract specifications, such as automata to concrete
ones, such as code in a executable language. Moreover,� captures the notion of code generation. For example, if an
automaton has only executable preconditions and a restricted form of postconditions, it can be automatically translated
to code.

Object model and Class Description

Based on the semantics of object models, a refinement calculus can be established. It consists of the following atomic
rules:

addclass(c) A new classc may be added.

addrel(rel) A new data relationship may be added.

refrel(oldrel,newrel) A data relationship may be refined, e.g. by restricting a cardinality or adding a rolename.

Class descriptions themselves can be refined by these rules:

addmeth(m) The list of message signatures may be extended by a methodm.

addattr(a) The list of attributes may be extended.

It can be easily proven, that the defined steps are correct.

Automata

For automata, the refinement calculus is more difficult, as proof obligations have to be generated to ensure that the
resulting automaton fulfills the context conditions given in section 3.3. These proof obligations have to be proven with
a theorem prover in order to ensure the correctness of the rule application.

In [22] and [23] a comprehensive set of refinement steps is given and proven correct. It consists of:

addstate(s) New automaton states may be added, denoting equivalence classes of object states that where previously
unreachable.

remstate(s) Unreachable automaton states may be removed.

split(s) Automaton states may be splitted with splitting transitions accordingly.

addtrans(t) Transitions may be added, if the input of the new transitions could not be processed by given transitions
before.

remtrans(t) Transitions can be removed (see below).

reftrans(t) Transitions can be refined, e.g. splitted or the postcondition strengthened.

reminit(s) Initial states may be removed.

Proof obligations are omitted here.
Each of these steps makes a behavior description more deterministic or more detailed.

Making Object-oriented Methods More Rigorous, 1997 9



Towards Development of Correct Software using Views

5 A Development Example

In this section we show by way of example how to employ the refinement rules in the development process.
The example consists of the development process for the distributed car rental system introduced earlier. The

process is roughly structured as follows. Starting from an initial object model containingbranches andrentals, initial
class descriptions and type descriptions are developed. Then thepick-up functionality of thebranch is developed,
followed by thereturn functionality.

The initial object model and class descriptions were shown in figure 2 and 3 respectively.
Now thepick-up functionality of branches is developed. Therefore a methodpick-up with parametersend and

return town is introduced. To allow thebranch to look up thebranch resident in thereturn town, it must incorporate a
corresponding cataloguebranches. Also therentals processed at the branch are recorded. Thepick-up method checks,
whether a car is available. If so, it creates a corresponding rental. Otherwise the pick-up request is denied. Figure 5
shows the refined object model and class description for branch. The correspondingbranch andrental lifecycles were
shown in figure 4. Also the class description forrental is refined by adding the methodcreate which initializes the
attributes. Both documents are omitted here for sake of brevity.

objectmodel Pick-UpObjectModel :

RentalBranch

pick-up branch

return branch

pick-up rentals

endobjectmodel

classdocument Pick-UpBranch :
class Branch ;

attributes town : Town ;
availablecars : Set Car ;
branches : Catalogue ;
pick-up rentals : Set Rental ;

methods pick-up(end : Date, t : Town)
endclassdocument

Figure 5: Pick-up object model and class descriptions

It is straightforward to show that thepick-up funtionality is a refinement of the initial documents: In the ob-
ject model a role name is added, thereforePick-UpObjectModel is constructed fromInitObjectModel by applying
refrel(pick-up branch, pick-up rentals). In the class diagram only attributes and a method were added. ThereforePick-
Up Branch is constructed fromInitBranch by applyingaddattr(branches), addattr(pick-up rentals), addmeth(pick-up).
Therental documents are constructed similarly.

Following the above development steps thereturn functionality is developed. The object model and the class
descriptions are refined by introducing an additional attribute inbranch to store thereturned rentals and by introducing
a return method at the branches. In reaction to thereturn message thereturn branch asks therental for the identity of
the pick-up branch. It processes the answer with the methodinform which sends thecar back to thepick-up branch.
The latter is processed by a methodcar return in branch. Also rental is extended by a methodreturn which updates
the status of therental and sends the identification of thepick-up branch to thereturn branch. In figures 6 and 7 the
refined descriptions are given. In the lifecycle documents only the new methods are listed.

Making Object-oriented Methods More Rigorous, 1997 10



Towards Development of Correct Software using Views

objectmodel FinalObjectModel ;

RentalBranch

pick-up branch

return branch return rentals

*

*

pick-up rentals

endobjectmodel

classdocument FinalBranch :
class Branch ;

attributes Town : Town ;
availablecars : Set Car ;
branches : Catalogue
returnrentals : Set Rental ;
pick-up rentals : Set Rental ;

methods return(r : Rental, c : Car);
pick-up(end : Date, t : Town);
inform(pu branch : Branch, c : Car);
car return(r : Rental, c : Car)

endclassdocument

classdocument FinalRental :
class Rental ;

attributes begin : Date ;
end : Date ;
status : RentalStatus ;
car : Car;
pick-up branch : Branch ;
returnBranch : Branch;

methods create(b : Date, e : Date, c : Car, pub : Branch, rb : Branch);
return(c : Car)

endclassdocument

Figure 6: Final object model and class descriptions

Making Object-oriented Methods More Rigorous, 1997 11



Towards Development of Correct Software using Views

lifecycledocument FinalBranchLifecycle :

DENIAL

CAR_RETURN

RETURN

RENTAL

Name Description
RETURN Input sender/return(r,c)

Pre r 
� returnrentals
Output return/r
Post returnrentals’ = returnrentals	frg

INFORM Input r/inform(pu branch,c)
Pre r � returnrentals
Output car return(r,c)/pubranch

CAR RETURN Input sender/carreturn(r,c)
Pre r � pick-up rentals, c
� availablecars
Post pick-up rentals’ = pick-uprentalsn f r g,
availablecars’ = availablecars	f c g

endlifecycledocument

lifecycledocument FinalRentalLifecycle :
pickedup := status = pickedup;
returned := status = returned;

returned
RETURN

picked upinit picked up
CREATE

Name Description
RETURN Input sender/return

Output pick-up branch/sender
endlifecycledocument

Figure 7: Final lifecycles

It is straightforward to show that the final object models and class descriptions refine thepick-up documents by
usingrefrel, addattr andaddmeth.

For thebranch lifecycles, the involved refinement steps are just the addition of transitions. Since the state label is
true and the transitions add reaction to new method calls, the context conditions are satisfied.

For therental lifecycles addition of state and transitions is involved. Again, the context conditions are trivially
satisfied.

6 Conclusions

We have shown a first step to adapt the formal development process by refinement to the pragmatic development
process with views. The main elements of our approach are the mathematical system model and the development

Making Object-oriented Methods More Rigorous, 1997 12



Towards Development of Correct Software using Views

calculi for the view documents. These features are also necessary to give a powerful tool support to pragmatic methods.
Todays CASE-Tools only offer the functionality of graphical editors for the view documents together with a repository
of documents to allow import checks. Based on our approachconsistency checks are possible using the common
semantical model.Correct Development steps are made practical through guidance by the development calculi.

There is a bulk of research on software process modelling trying to give tool support to the activities of the
development process (e.g. [1]). However, in this research the correctness of the development steps is not treated.

In the area of formal software development the most similar approach is KORSO[20]. However, it does not deal
with heterogenous documents.

Future Work

There remains much to be done to apply this approach to a complete set of view documents as e.g. proposed in
UML [3]. On one hand there are some open questions regarding the semantic foundation of views describing object
interaction (e.g. operation specification by pre and postconditions, collaboration diagrams), as discussed in our UML
formalization [?]. On the other hand it will require some effort to devise the development calculi for these views.
Even more effort will be necessary to build a tool supporting the refinement steps together with a full fledged version
control system like RCS [25].

Acknowledgements

For a careful reading of a draft version of the paper we thank Manfred Broy and Cornel Klein. This paper originated
in the SYSLAB project, which is supported by the DFG under the Leibnizpreis and by Siemens-Nixdorf.

References

[1] B. Nuseibh A. Finkelstein, J. Kramer.Software Process Modelling and Technology. Research Studies Press
LTD., 1994.

[2] D. Andrews and D. Ince.Practical Formal Methods with VDM. Series in Software Engeneering. McGraw-Hill,
1991.

[3] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language for Object-Oriented De-
velopment, Version 0.9, 1996.

[4] J. Brock and W. Ackermann. Scenarios: A Model of Non-deterministic Computations. InFormalization of
Programming Concepts, pages 252–267. LNCS 107,Springer-Verlag, 1981.

[5] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. F. Gritzner, and R. Weber. The Design of Distributed Systems
— An Introduction toFOCUS– revised version –. SFB-Bericht 342/2-2/92 A, Technische Universit¨at München,
1993.

[6] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hußmann, D. Nazareth, F. Regensburger, O. Slotosch, and K. Stølen.
The Requirement and Design Specification Language SPECTRUM, An Informal Introduction, Version 1.0, Part
1. Technical Report TUM-I9312, Technische Universit¨at München, 1993.

[7] R.G. Fichman and C.F. Kemerer. Object-oriented and conventional analysis and design methodologies.IEEE
Computer, pages 22–39, october 1992.

[8] M. Gordon and T. Melham.Introduction to HOL: A Theorem Proving Environment for Higher Order Logic.
Cambridge University Press, 1993.

[9] R. Grosu and B. Rumpe. Concurrent timed port automata. Technical Report TUM-I 9533, Technische Universit¨at
München, 1995.

Making Object-oriented Methods More Rigorous, 1997 13



Towards Development of Correct Software using Views

[10] H. Hußmann. Formal foundation for pragmatic software engineering methods. In B. Wolfinger, editor,Innova-
tionen bei Rechen- und Kommunikationssystemen, pages 27–34, 1994.

[11] R. Jungclaus, R.J. Wieringa, P. Hartel, G. Saake, and T. Hartmann. Combining TROLL with the object modeling
technique. In B. Wolfinger, editor,Innovationen bei Rechen- und Kommunikationssystemen, pages 35–42, 1994.

[12] Cornel Klein, Bernhard Rumpe, and Manfred Broy. A stream-based mathematical model for distributed in-
formation processing systems - SysLab system model. In E. Naijm and J.B. Stefani, editors,FMOODS’96
Formal Methods for Open Object-based Distributed Systems, pages 323–338. ENST France Telecom, 1996.
http://www4.informatik.tu-muenchen.de/papers/KleinRumpeBroyFMfO1996.html.

[13] L. Lamport. The temporal logic of actions.ToPLAS, 16(3):972–923, 1994.

[14] K. Lano. Reactive system specification and refinement. In M.I. Schwartzbach P.D. Mosses, M. Nielsen, editor,
TAPSOFT’95, pages 696–711. LNCS 915,Springer-Verlag, 1995.

[15] N. Lynch and E. Stark. A Proof of the Kahn Principle for Input/Output Automata.Information and Computation,
82:81–92, 1989.

[16] B. Paech. A methodology integrating formal and informal software development. In M.Wirsing, editor,ICSE-17
Workshop on Formal Methods Application in Software Engineering Practice, pages 61–68, 1995.

[17] B. Paech. Algebraic view specification. In M.Wirsing, editor,AMAST’96, pages 444–457. LNCS 1101,Springer-
Verlag, 1996.

[18] L. Paulson.Isabelle: A Generic Theorem Prover. LNCS 929, Springer-Verlag, 1994.

[19] F. Polack, M. Whiston, and K. Mander. The SAZ project: Integrating SSADM and Z. InFormal Methods Europe
1993, pages 541–557. LNCS 670, Springer Verlag, 1993.

[20] P.Pepper and M. Wirsing. A method for the development of correct software. InKORSO: Methods, Languages,
and Tools for the Construction of Correct Software, pages 27–57. LNCS 1009, Springer-Verlag, 1995.

[21] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.Object-Oriented Modeling and Design.
Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1992.

[22] B. Rumpe.Formal Design Method of Distributed Object-oriented Systems. PhD thesis, Technische Universit¨at
München, submitted, in German 1996.

[23] B. Rumpe and C. Klein. Automata with output as description of object behavior. In H. Kilov and W. Harvey, ed-
itors,Specification of Behavioral Semantics in Object-Oriented Information Modeling, Norwell, Massachusetts,
1996. to appear.

[24] B. Rumpe, C. Klein, and M. Broy. Ein strombasiertes mathematisches Modell verteilter informationsverarbeit-
ender Systeme - Syslab Systemmodell -. Technical Report TUM-I9510, Technische Universit¨at München, 1995.

[25] W.F. Tichy. Rcs - a system for version control.Software - Practice and Experience, 15(7):637–654, 1985.

[26] Martin Wirsing. Algebraic specification languages - an overview. In E. Astesiano, G. Reggio, and A. Tarlecki,
editors,Recent Trends in Data Type Specifciation. LNCS 906, Springer Verlag, 1995.

[27] J.B. Wordsworth.Software Development with Z. Addison-Wesley, 1992.

Making Object-oriented Methods More Rigorous, 1997 14


