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Abstract. Higher-order narrowing is a general method for higher-order
equational reasoning and serves for instance as the foundation for the
integration of functional and logic programming. We present several re-
finements of higher-order lazy narrowing for convergent (terminating and
confluent) term rewrite systems and their application to program trans-
formation. The improvements of narrowing include a restriction of nar-
rowing at variables, generalizing the first-order case. Furthermore, func-
tional evaluation via normalization is shown to be complete and a partial
answer to the eager variable elimination problem is presented.

1 Introduction and Overview

Higher-order narrowing is a method for solving higher-order equations modulo a
set of rewrite rules. It forms the basis of functional-logic programming and has
been extensively studied in the first-order case, for a survey see [10]. Motivated
by functional programming, there exist several higher-order extensions for such
languages [7, 18, 32]. Even more expressive than the latter is the language Es-
cher, proposed in [17]. Higher-order narrowing [29] can be used as an operational
semantics for such languages. The basis for narrowing are higher-order rewrite
rules. Examples are the function map with

map(F, [X|R]) — [F(X)[map(F, R)]
or a rule for pushing quantifiers inside:
Ve.PAQ(z) — P AY2.Q(x)

In the latter example the quantifier ¥ is a constant of type (term — bool) — bool,
where V(Az.P) is written as Va. P for brevity. For more examples on higher-order
rewriting, we refer to [30], to [24] for formalizing logics and A-calculi, and for
Process Algebras to [27].

With higher-order narrowing we solve higher-order unification problems mod-
ulo such rewrite rules. Compared to the first-order case, also values for functional
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variables have to be computed via higher-order unification. To show the expres-
siveness of this method, we give an example for program transformation.

The framework for higher-order narrowing in [29] serves as a basis for the re-
finements of lazy narrowing we present here. For convergent higher-order rewrite
systems, we show several techniques that use the determinism of convergent sys-
tems. The main contributions are as follows:

— We disallow narrowing at variable positions, generalizing the first-order case,
as 1t is possible to restrict attention to R-normalized solutions. This is the
gist of (first-order) narrowing, since narrowing into variables is undesirable.

— Simplification of equational goals via rewriting is shown to be complete. This
is an important refinement as it performs deterministic evaluation without
any search.

— Completeness of eager variable elimination (see below) is an open problem
even for the first-order case [33]. By using oriented goals, this can be partially
solved.

— Several deterministic operations for constructors, i.e. uninterpreted symbols,
are shown.

Notice that the third item is also new for the first-order case. Another partial
solution to this problem has been presented recently [20]. The significance of the
other contributions has been argued in the first-order case in several papers, for
references see [10].

Eager variable elimination means to solve a goal X =7 ¢ by binding X to t,
without considering alternative rules. The result for eager variable elimination is
based on a simpler notion of goals to be solved: we consider oriented equational
goals of the form s —” ¢, where a substitution @ is a solution if #s —— t. We
show that for goals of the form X — ¢, elimination is complete. We adopt
this simpler operational model, which also eases technicalities, with no loss of
expressiveness.

The higher-order case 1s more subtle in many respects. One of the typi-
cal technical problems is that higher-order substitutions and reducibility wrt a
rewrite system R are harder to relate. For instance, if 6t is R-normalized, then
neither # nor ¢ must be R-normalized, which is the basis for first-order narrowing.
The solution is to use patterns, a restricted class of A-terms, for the left-hand
sides of rules. This is no limitation in practice and allows to argue similar to the
first-order case when needed.

The paper is organized as follows. Section 3 introduces a calculus for higher-
order narrowing that utilizeses normalized solutions. This is followed by an anal-
ysis of deterministic operations for constructors in Section 4 and deterministic
variable elimination in Section 5. Narrowing with simplification is the subject of
Section 6. An application to program transformation is shown in Section 7.

2 Preliminaries

We briefly introduce simply typed A-calculus (see e.g. [12]). We assume the fol-
lowing variable conventions:



— F,G, H, P, X,Y denote free variables,
— a,b,c, f, ¢ (function) constants, and
— z,y, 2 bound variables.

Type judgments are written as ¢ : 7. Further, we often use s and ¢ for terms and
u, v, w for constants or bound variables. The set of types 7 for the simply typed
A-terms is generated by a set 7y of base types (e.g. int, bool) and the function
type constructor —. The syntax for A-terms is given by

t = Fla|c| et ] (t1t2)

A list of syntactic objects si1,...,s, where n > 0 is abbreviated by s,. For
instance, n-fold abstraction and application are written as AT,.s = Ax1 ... Ax,.s
and a(5;) = ((---(a 81) - --) spn), respectively.

Substitutions are finite mappings from variables to terms and are denoted
by {X, — t,}. Free and bound variables of a term ¢ will be denoted as FV(1)
and BY(t), respectively. The conversions in A-calculus are defined as:

— a-conversion: Az.t =, Ay.({z — y}t),
— f-conversion: (Az.s)t =3 {z — t}s, and
— n-conversion: if x ¢ FV(t), then Az.(tz) =, t.

For f-conversion (n-conversion), applying the rule from left to right is called
B-reduction (n-reduction), and expansion in the other direction. A term is in 3n-
normal form if no 3- or n-reductions apply, and 7-expanded if no 5-expansion
applies. The long @n-normal form of a term ¢, denoted by Igt, is the 7-
expanded form of the gn-normal form of ¢. It is well known [12] that s =.g, ¢
iff Igs = Igt As long fn-normal forms exist for typed A-terms, we will in
general assume that terms are in long Gn-normal form. For brevity, we may
write variables in p-normal form, e.g. X instead of A%, . X (7). We assume that
the transformation into long fGn-normal form is an implicit operation, e.g. when
applying a substitution to a term.

The convention that a-equivalent terms are identified and that free and
bound variables are kept disjoint (see also [2]) is used in the following. Fur-
thermore, we assume that bound variables with different binders have different
names. Define Dom(0) = {X | 6X # X} and Rng(0) = Uxepom(s) FV(0X).
Two substitutions are equal on a set of variables W, written as § =y &',
if o = @' v for all o« € WW. A substitution § is idempotent iff § = 06. We will
in general assume that substitutions are idempotent. A substitution 6’ is more
general than @, written as ¢’ < 8, if § = o6’ for some substitution o.

We describe positions in A-terms by sequences over natural numbers. The
subterm at a position p in a A-term ¢ is denoted by t|,. A term ¢ with the
subterm at position p replaced by s is written as t[s],.

A term ¢ in F-normal form is called a (higher-order) pattern if every
free occurrence of a variable F' is in a subterm F(%,) of ¢ such that the w,
are n-equivalent to a list of distinct bound variables. Unification of patterns is
decidable and a most general unifier exists if they are unifiable [21]. Also, the



unification of a linear pattern with a second-order term is decidable and finitary,
if they are variable-disjoint [28].

Examples of higher-order patterns are Az, y.F(z,y) and Az.f(G(Az.z(z2))),
where the latter is at least third-order. Non-patterns are for instance Az, y.F(a, y)

and Az .G(H(x)).

2.1 Higher-Order Rewriting

The following definitions for higher-order rewriting are in the lines of [24, 19].

Definition1. A rewrite rule is a pair [ — » such that [ is a pattern but not
n-equivalent to a free variable, [ and r are long fn-normal forms of the same
base type, and FV(I) O FV(r). A Higher-Order Rewrite System (HRS)
is a set of rewrite rules. The letter R always denotes an HRS. Assuming a rule
(I = r) € R and a position p in a term s in long fn-normal form, a rewrite
step from s to t is defined as

5—>;;5rt & s, =00 At =s[lr].

For instance, with the quantifier rule of the first section, we have the following
rewrite step:

Yy Ye.p(y) A q(z,y) — Ve PAQ(@)=PAYe.Q(z) Yy.p(y) AVe.q(z,y)

For a rewrite step we often omit some of the parameters [ — r p and 6. We
assume that constants symbols are divided into free constructor symbols and
defined symbols. A symbol f is called a defined symbol, if a rule f(...) — ¢
exists. Constructor symbols are denoted by ¢ and d. A term is in R-normal
form if no rule from R applies and a substitution # is R-normalized if if all
terms in the image of # are in E-normal form.

In contrast to the first-order notion of term rewriting, — is not stable under
substitution: reducibility of s does not imply reducibility of fs. Its transitive
reflexive closure is however stable [19]:

Lemma 2. Assume an GHRS R. If s — T t, then s —— 7 6t.

A reduction is called confluent, if any two reductions from a term t are
joinable, i.e. if ¢ —— u and { —— v then there exists w with « —— w and
v —— w. For results on confluence of higher-order rewrite systems, we refer
to [19]. A terminating and confluent reduction system is called convergent.

Termination orderings for higher-order rewriting can be found in [27, 16].
For our purpose, we need the following result, which can be shown similar to
the first-order case [15]. A term s = AZ,.s¢ is a subterm modulo binders of
t = A%, 1o, written as s <gyup t, if s 18 a true subterm of ¢

Theorem 3. The reduction —>f;b = —F U >, is terminating for « GHRS
R if —® is terminating.®

# All missing proofs can be found in [30].



Notice that a subterm 5|p may contain free variables which used to be bound
in s. For rewriting 1t is possible to ignore this, as only matching of a left-hand
side of a rewrite rule is needed. For narrowing, we need unification and hence
we use the following construction to lift a rule into a binding context.

An 7p-lifter of a term ¢ away from W is a substitution o = {F — (pF")(T%) |
F € FVY(t)} where p is arenaming such that Dom(p) = FV(t), Rng(p)nW = {}
and pFl:m — - — 1, —7ifey i, oo, o o and Fooro A term ¢ (rewrite
rule | — r) is ZTg-lifted if an Tp-lifter has been applied to ¢ ({ and r). For example,
{G — G'(x)} is an z-lifter of ¢(G) away from any W not containing G’.

2.2 Higher-Order Unification

We introduce in the following the transformations for higher-order unification
as in [34]. Although higher-order unification is undecidable in general, it per-
forms remarkably well in systems such as A-Prolog [22] and Isabelle [25]. For
programming applications, there even exist decidable fragments [28, 30].

In contrast to first-order unification, we solve unification problems modulo
the conversions of A-calculus, i.e. f is a unifier of s =" ¢ if fs =apy 0. We
examine in the following the most involved case of higher-order unification: flex-
rigid goals of the form Azy.F(f,) =" AZ;.v(t],), where v is not a free variable.
Clearly, for any solution ¢ to F' the term 8F(,) must have (after B-reduction)
the symbol v as its head. There are two possibilities:

— In the first case, v already occurs in (the solution to) some ¢;. For instance,
consider the equation F'(a) =" a, where {F ~ Az.z} is a solution based on
a projection. In general, a projection binding for F' is of the from {F —
ATy.zi(...)}. As some argument, here a, is carried to the head of the term,
such a binding is called projection.

— In the second case, the head of the solution to F' is just the desired symbol
v. For instance, in the last example, an alternative solution is {F +— Az.a}.
This is called imitation. Notice that imitation is not possible if v is a bound
variable.

To solve a flex-rigid pair, the strategy is to guess an appropriate imitation or
projection binding only for one rigid symbol, here a, and thus approximate the
solution to F'. Unification proceeds by iterating this process which focuses only
on the outermost symbol. Roughly speaking, the rest of the solution for F' is left
open by introducing new variables.

Definition4. Assume an equation A%y F(%,) =" A\Tr.v(t,,), where all terms are
in long fn-normal form. An imitation binding for F' is of the form

F = Xty f(Hm(Tn))

where H,, are new variables of appropriate type. A projection binding for F’
is of the form

F— Xz, .2:(Hp(Tn))
where H, are new variables with H, : 7, and z; : 7, — 7. A partial binding is
an imitation or a projection binding.



Notice that in the above definition, the bindings are not written in long G7-
normal form. The long gr-normal form of an imitation or projection binding
can be written as

F = (N5, (5, 757,)).

A full exhibition of the the types involved can be found in [34].

For lack of space, the transformation rules for higher-order unification are
shown in Figure 1 together with the narrowing rules. The rules consist of the
basic rules for unification, such as Deletion, Elimination and Decomposition
plus the two rules explained above: Imitation and Projection. For the purpose of
narrowing (to be detailed later), the rules work on oriented goals, which does not
affect unification, and use subscripts (d), which only serve to improve narrowing.

It should be mentioned that the higher-order unification rules only perform
so-called pre-unification. The idea of pre-unification is to handle flex-flex pairs
as constraints and not to attempt to solve them explicitly. These are equations of
the form AZ;.P(...) =" Az . P/(...). Huet [13] showed that for such pairs there
may exist an infinite chain of unifiers, one more general than the other, without
any most general one. Since flex-flex pairs are guaranteed to have at least one
unifier, e.g. {P — AZ,,.a, P’ — AT, .a}, pre-unification is sufficient.

3 Lazy Narrowing with Normalized Solutions

We introduce in this section higher-order lazy narrowing and refine it for R-
normalized solutions. Consider a solution @ of an equational goal s —* ¢ with
s — 6t.* For any solution there exists an equivalent R-normalized one, assum-
ing convergent rewrite systems. Hence it is a desirable restriction to consider only
these. In the higher-order case, narrowing at (sub-)terms with variable heads
such as H(t) is needed [29]. The main improvement we discuss in this section is
that narrowing is not needed at goals of the form H(F;) —" t for normalized
solutions, which covers many practical cases. The rules of System LNN for lazy
higher-order narrowing, shown in Figure 1, consist of the rules for higher-order
unification plus two narrowing rules; they are a refinement of System LN in [29].

Let s <> ¢ stand for one of s —" ¢ and ¢ —' s. For a sequence =% . =0x
of LNN steps, we write = ¢, where §# = 6, ...6;.

The subscripts (d) and d on goals only serve for a particular optimization and
are not needed for soundness or completeness. The idea is to use marked goals
s —>Zl t. These are created only in the last rule, in order to avoid repeated appli-
cation of Lazy Narrowing rules on these goals. The remaining rules work on both
marked goals and unmarked goals, indicated by —>Ed). For both <> and —>Zd> the
rules are intended to preserve the orientation for < and marking for —>Ed). Only
the Decomposition rule and the Imitation rule, which includes decomposition,

* Although this corresponds only to equational matching, an equational unification
problem s =g t can easily be encoded by adding a new rule X =g X — true and
solving the goal s =g t — true.



Deletion
{t =~y tJus = 5
Decomposition
DTS () =gy NS} US = {Nor b — Aerdh} U S
Elimination

{r ‘i’(d) ATrt} U S =P 05 if F ¢ FV(ATx.t) and
where § = {F +— ATx.t}

Imitation

OT%.F(Tn) <(a) AT f(6) } U S =° {(ATw. Hn(810) < AT5.08},} UGS
where § = {F — AT,,.f(Hmn(Tn))}

is an imitation binding with fresh variables

Projection

OT%. F(Tn) < (a) ATE.0(1h)} U S =0 {AT7.0t:(H, (T)) <>(ay ATR.0(017)} U S
where 8§ = {F — AT,.2:(H,;(Zn))},

is a projection binding with fresh variables

Lazy Narrowing with Decomposition

DFnf(tn) =" ATR U S = DF5tn =7 ATE1L U
Depr =" Azptlus
where f(E) — 1 is an Tg-lifted rule

Lazy Narrowing at Variable

D75 H(tn) =" Aot} U S = (A% H(Tn) —§ A\Tr.1}U
DZrr =" AR tjuUSs
where Tx.H (1) is not a pattern and
| — r 1s an Tx-lifted rule

Fig. 1. System LNN for Lazy Narrowing

transform marked goals to unmarked goals. In other words, on marked goals the
Lazy Narrowing rules may only be applied after some decomposition took place.

Consider for instance the matching problem Az . H(f(z)) — Az.h(g(z), f(z)),
modulo the rule f(f(X)) — ¢(X). Here LNN yields

D Hi(f(x)) =7 Ae.g(e), \e. Ho(f(x)) =7 Az f(x)}



by the imitation { H — Ay.h(H1(y), H2(y))}. Then the second goal can be solved
by Projection, and the first by Lazy Narrowing to

() =5 A F(F(X (@), Arg(X () =7 Aag(a)

Notice that the rewrite rule has been lifted over the variable = in the binding
environment. As the first goal is marked, Lazy Narrowing does not re-apply. This
is an important restriction and improves the similar system in [29], as otherwise
infinite reductions occur, as in this case, very often. The two goals can be solved
by several higher-order unification steps, which yield the solution

{Hy — Ay.f(y), X — Az}

Observe that the last two rules of LNN can be integrated into one rule of the
form

DTr.s = AT AU S = (MTr.s —5 AT (1), \Tp.r — ATp4} U S,

which is used in the completeness proofs and is called the Lazy Narrowing
rule. From this rule, the narrowing rules of LNN can easily be derived, e.g. the
first by decomposition on f.

Theorem 5. If s —' t has solution 0, i.e. s — 7 0t, and 0 is R-normalized
for a convergent HRS R, then {s —" t} :>6LNN F such that 6 s more general,
modulo the newly added variables, than 6 and F is a set of flex-flex goals.

The proof proceeds as in the more general Theorem 9, which we show later. A
key ingredient is the following lemma which generalizes the first-order case:

Lemma 6. Assume an HRS R and a substitution 0. Then 6F (%) is R-reducible,
iff OF 1s R-reducible.

4 Deterministic Narrowing Rules for Constructors

In practice, rewrite systems often have a number of symbols, called constructors,
that only serve as data structures. For constructor symbols, we give a few simple
additional rules for Lazy Narrowing in Figure 2. Their main advantage is that
their application is deterministic. The rules cover the cases where the root symbol
of the left side of a goal is a constructor. Notice that the rules, except for the
first, are only possible with oriented goals, where evaluation proceeds only from
left to right. The correctness of the rules follows easily.



Deterministic Constructor Decomposition

{(ATr.c(tn) —(a) ATrc(th)} US = {ATi.ty =7 ATR L} US

if ¢ is a constructor symbol

Deterministic Constructor Imitation

{ATx.c(Tn) —(a) AT F(Tm)} U S =0 {ATx .t —' ATx. Ha(Tr) } U 6S
where § = {F — AT, . f(Hn(Tm))}

is an imitation binding with fresh variables
Constructor Clash

{(ATr.c(n) —(q) ATx0(th)} US = fail
if ¢ # v, where ¢ is a constructor symbol
and v is not a free variable

Fig. 2. Deterministic Constructor Rules

5 Deterministic Variable Elimination

Eager variable elimination i1s a particular strategy of general E-unification sys-
tems. The idea 1s to apply the elimination rule as a deterministic operation
whenever possible. Tt is an open problem of general (first-order) E-unification
strategies if eager variable elimination is complete [33].

In our case, with oriented goals, we obtain more precise results by differen-
tiating the orientation of the goal to be eliminated. We distinguish two cases of
variable elimination, where in one case elimination is deterministic, i.e. no other
rules have to be considered for completeness.

Theorem 7. System LNN with eager variable elimination on goals of the form
X ="t with X ¢ FV(t) is complete for a convergent HRS R.

The main idea of the proof is that there can be no rewrite step in X —7 6t,
thus we have 6X = 8¢, assuming that # is R-normalized.

In the general case, variable elimination may copy reducible terms with the
result that the reductions have to be performed several times. Notice that this
case of variable elimination does not affect the reductions in the solution con-
sidered, as only terms in normal form are copied: #t must be in normal form.

There are however a few important cases when elimination on goals of the
form t —" X is deterministic [30]: if ¢ is either ground and in R-normal form or
a pattern without defined symbols. Furthermore, for left-linear rewrite systems,
elimination on goals of the form ¢ —* X is not needed, as shown in [30].



6 Lazy Narrowing with Simplification

Simplification by normalization of goals is one of the earliest [4] and one of the
most important optimizations. Its motivation is to prefer deterministic reduction
over search within narrowing. Notice that normalization coincides with determin-
istic evaluation in functional languages. For first-order systems, functional-logic
programming with normalization has shown to be a more efficient control regime
than pure logic programming [6, 9].

The main problem of normalization is that completeness of narrowing may be
lost. For first-order (plain) narrowing, there exist several works dealing with com-
pleteness of normalization in combination with other strategies (for an overview
see [10]). Recall from Section 4 that deterministic operations are possible as soon
as the left-hand side of a goal has been simplified to a term with a construc-
tor at its root. For instance, with the rule f(1) — 1, we can simplify a goal
f() =" g(Y) by {f(1) =" g(YV),...} = {1 =7 g(Y),...} and deterministically
detect a failure.

In the following, we show completeness of simplification for lazy narrowing.
The result is similar to the corresponding result for the first-order case [11]. The
technical treatment here is more involved in many respects due to the higher-
order case. Using oriented goals, however, simplifies the completeness proof.

For oriented goals, normalization is only complete for goals s —* ¢, where
#t is in R-normal form for a solution #. For instance, it suffices if ¢ is a ground
term in R-normal form. For most applications, this is no real restriction and
corresponds to the intuitive understanding of directed goals.

Definition8. Normalizing Lazy Narrowing, called NLN, is defined as the
rules of LNN plus arbitrary simplification steps on goals. A simplification step
on a goal s —7 t is a rewrite step on s, written as {s —" ¢} =yry {8’ ="t} if
s —f g

We first need an auxiliary construct for the termination ordering in the com-
pleteness result. The decomposition function D is defined as

D(5—>?t):5—>?t
DOT%. f(5n) =5 ATx.f(11)) = ATk .50 —* ATxn

and is undefined otherwise. The function D extends component-wise to sets of
goals. The idea of D is to view marked goals as goals with delayed decomposition.

Theorem 9 Completeness of NLN. Assume a confluent HRS R that termi-
nates with order <®. If s =" t has solution 0, i.e. 0s —— £ 0t where 0t and 0
are R-normalized, then {s —" t} = Sin Fosuch that 6 is more general modulo
the newly added variables than 6 and F' s a set of flex-flex goals.

Proof. Let <f;b = <f U < up. Assume G, = s, —>Zd> t, 18 a system of goals

with solution 6, i.e. fs, — B 6t,,. Let s/, —" t/, = D(G,). The proof proceeds
by induction on the following lexicographic termination order on (G, #):



. <B . extended to the multiset of {fs!,},
: multiset of sizes of the bindings in 8,

: multiset of sizes of the goals 0G,,,

: <® extended to the multiset of {5,}.

|
oQw e

By Theorem 3, item A is terminating. For the proof we need two invariants: first,
all 7 are R-normalized terms. Secondly, for marked goals s —>Zl t, Head(fs) =
Head(6t) is not a free variable and furthermore, no rewrite step at root position
occurs in 0s —— £ 9t. Except for the narrowing rule, it follows easily that the
latter is invariant. E.g. Decomposition and Imitation on marked goals decompose
the outermost symbol and yield unmarked goals.

In the following we show that normalization reduces this ordering and, fur-
thermore, that for a non flex-flex goal some rule applies that reduces the ordering.
In addition, we show in each of these cases that the above invariants are pre-
served. First, we select some non flex-flex goal s —* t from G,,; if none exists,
the case is trivial.

We first consider the case where a simplification step is applied to an un-
marked goal, i.e. s —" t is transformed to s’ — t. We obtain #s — s’ from
Lemma 2. As 0t is in normal form, confluence of R yields 0s — s’ —— 0t.
Thus 6 is a solution of s’ — ¢. For termination, we have two cases:

— If 8s = 0s’, measures A through C remain unchanged, whereas D decreases.
— If 0s # 05’ measure A decreases.

Clearly, the invariants are preserved.

If no simplification is applied, we distinguish two cases: if s = 8¢, then we
proceed as in pure higher-order unification, as one of the rules of higher-order
unification must apply. In case of the Deletion rule, measure A decreases. For De-
composition on marked goals, A and B remain unchanged, whereas ' decreases.
On unmarked goals, Decomposition reduces A. Imitation on marked goals does
not change A, but reduces B; on unmarked goals, it reduces A. Projection only
decreases B.

Normalization of the associated solution is preserved in these cases: In case of
a Projection or Imitation, the partial binding computed maps a variable X to a
higher-order pattern of the form AT, .v(H, (7). The new, intermediate solution
constructed maps the newly introduced variables H,, (%) to subterms of X,
which are in R-normal form. Hence all 8H,, must be in R-normal form. For
the elimination rule, no new variables are introduced, thus the solution remains
R-normalized.

Furthermore, the terms 0t/ do not change under Decomposition and Imita-
tion on marked goals. On unmarked goals, Decomposition and Imitation yield
new right hand sides ¢,,. These are subterms of #¢ and are thus R-normalized.

In the remaining case, there must be a rewrite step in fs — 6¢. First, assume
there is no rewrite step at the root position in 0s —— 6¢. Hence all terms in
this sequence have the same root symbol. Then similar to the last case, one of
the unification rules must apply.




Now consider the case with rewrite steps in s —— 6¢ at root position.
Clearly, s —7 t cannot be marked. Further, s cannot be of the form ATy X (Um ):
with the invariant that 6’ is R-normalized, it is clear that there can be no rewrite
step in the solution @ of a goal AZ,;. X (¥,) —" t as 0X is in R-normal form.

Assume the first rewrite step in s —— ¢ is 5 —— Ayg.s1 —= Ayt
with the rule { — r. Notice that s; — t; must be an instance of [ — r (modulo
lifting).

We apply Lazy Narrowing (integrating the two lazy narrowing rules), yielding
the subgoals:

s — 3 AR A — t

As there exists § such that s; = 6] and #; = ér, we can extend @ to the newly
added variables: define ¢/ = 0 U 8. Let s, —7 I, = D(0's —5 Ay;.0'1). Clearly,
S5 <f;b ¢'s holds, and &' A\xg.r <f;b ¢’'s follows from #’s —— #’r. Thus ¢’ is a
solution of s, —" [, and r —7 ¢ that coincides with § on FV(G,,). It remains
to show that @’ is in R-normal form. As the reduction is innermost, all 61, are
in R-normal form. As [ is a pattern, this yields that 8’ is R-normalized. Since we
consider the first rewrite step a root position, the new marked goal s —>Zl ATy
fulfills the invariant, as Head(0s) = Head(6l) and no rewrite step can occur at
root position. a

The termination ordering in this proof is rather complex. For instance, the
last item in the ordering is needed for the following example: assume a goal
Az.c(F(z,t)) =" Az.c(x) with solution § = {F + Az, y.z}. Here, normalization
of t does not change OAx.c(F(z,1)).

7 An Example: Program Transformation

The utility of higher-order unification for program transformations has been
shown nicely by Huet and Lang [14] and has been developed further in [26, 8].
The following models an example for unfold/fold program transformation in [5].
We assume the following rules for lists:

map(F,[X|R]) — [F(X)|map(F, R)]
Foldl(G,[X|R]) — G(X, foldl(G, R))

Now assume writing a function g(F, L) by
g(F, L) — foldl(Az,y.plus(x,y), map(F, L))

that first maps F' onto a list and then adds the elements. This simple implemen-
tation for g is very inefficient, since the list must be traversed twice. The goal
is now to find an equivalent function definition that is more efficient. We can
specify this desired behavior in a syntactic fashion by one simple equation:

Mow Lg(f [2]0) =" B(f(x), 9(f,D)



The variable B represents the body of the function to be computed. The
schema on the right only allows recursing on [ for ¢, indicated by the argument
g(f,1) to B, and similarly allows to use f(z). Notice that the bound variables
above can be viewed as V-quantified variables.

To solve this equation, we add a rule X =" X — true, where we view

=" as a new (infix) constant and then apply narrowing, yielding the solution
0 = {Bw— Afx,recplus(fz,rec)} where

g(f, [=ll]) = 0B(f(x), g(f,1)) = plus(f(x), 9(f, 1))

This shows the more efficient definition of g. In this example, simplification can
reduce the search space for narrowing drastically: it suffices to simplify the goal
to

M, x, Lplus(f(x), foldl(plus, map(f, 1)) =" B(f(x), foldl(plus, map(f,1))),

where narrowing with the newly added rule X =7 X — true yields the two goals

M,z Lplus(f(z), foldl(plus, map(f,1))) —" Af, =, L.X(f, =,1),
M, 2, LB(f(x), foldl(plus, map(f,1))) —* Af,z, 1. X(f, z,1).

These can be solved by pure higher-order unification. Observe that simplification
in this examples corresponds to (partial) evaluation.

8 Conclusions and Related Work

We have presented several refinements for narrowing, based on the determinism
of reduction in convergent systems, in a highly expressive setting. The results
apply to higher-order functional-logic programming, for which there exist several
approaches and implementations [3, 7, 18, 32, 17] and to high-level reasoning,
e.g. dealing with programs or mathematics [29]. Further development of higher-
order narrowing towards functional-logic programming languages can be found
in [30].

The work in [31] on higher-order narrowing considers only a restricted class of
A-terms, higher-order patterns with first-order equations, which does not suffice
for modeling higher-order functional programs. The approach to higher-order
narrowing in [1] aims at narrowing with higher-order functional programs, but
restricts higher-order variables in the left-hand sides of rules and only permits
first-order goals. These restrictions seem to be similar to the ones in [7].

Compared to higher-order logic programming [23], predicates and terms are
not separated here. In the former, higher-order A-terms are used for data struc-
tures and do not permit higher-order programming as in functional languages.
For instance, the function map as in the last section cannot be written directly
in higher-order logic programming.
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