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Abstract� Higher�order narrowing is a general method for higher�order
equational reasoning and serves for instance as the foundation for the
integration of functional and logic programming� We present several re�
�nements of higher�order lazy narrowing for convergent �terminating and
con�uent� term rewrite systems and their application to program trans�
formation� The improvements of narrowing include a restriction of nar�
rowing at variables� generalizing the �rst�order case� Furthermore� func�
tional evaluation via normalization is shown to be complete and a partial
answer to the eager variable elimination problem is presented�

� Introduction and Overview

Higher�order narrowing is a method for solving higher�order equations modulo a
set of rewrite rules� It forms the basis of functional�logic programming and has
been extensively studied in the �rst�order case� for a survey see ����� Motivated
by functional programming� there exist several higher�order extensions for such
languages ��� �	� 
��� Even more expressive than the latter is the language Es�
cher� proposed in ����� Higher�order narrowing ���� can be used as an operational
semantics for such languages� The basis for narrowing are higher�order rewrite
rules� Examples are the function map with

map
F� �XjR��� �F 
X�jmap
F�R��

or a rule for pushing quanti�ers inside�

�x�P �Q
x�� P � �x�Q
x�

In the latter example the quanti�er � is a constant of type 
term � bool�� bool�
where �
�x�P � is written as �x�P for brevity� For more examples on higher�order
rewriting� we refer to �
��� to ���� for formalizing logics and ��calculi� and for
Process Algebras to �����

With higher�order narrowing we solve higher�order uni�cation problemsmod�
ulo such rewrite rules� Compared to the �rst�order case� also values for functional
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variables have to be computed via higher�order uni�cation� To show the expres�
siveness of this method� we give an example for program transformation�

The framework for higher�order narrowing in ���� serves as a basis for the re�
�nements of lazy narrowing we present here� For convergent higher�order rewrite
systems� we show several techniques that use the determinism of convergent sys�
tems� The main contributions are as follows�

� We disallow narrowing at variable positions� generalizing the �rst�order case�
as it is possible to restrict attention to R�normalized solutions� This is the
gist of 
�rst�order� narrowing� since narrowing into variables is undesirable�

� Simpli�cation of equational goals via rewriting is shown to be complete� This
is an important re�nement as it performs deterministic evaluation without
any search�

� Completeness of eager variable elimination 
see below� is an open problem
even for the �rst�order case �

�� By using oriented goals� this can be partially
solved�

� Several deterministic operations for constructors� i�e� uninterpreted symbols�
are shown�

Notice that the third item is also new for the �rst�order case� Another partial
solution to this problem has been presented recently ����� The signi�cance of the
other contributions has been argued in the �rst�order case in several papers� for
references see �����

Eager variable elimination means to solve a goal X �� t by binding X to t�
without considering alternative rules� The result for eager variable elimination is
based on a simpler notion of goals to be solved� we consider oriented equational
goals of the form s �� t� where a substitution � is a solution if �s

�
�� �t� We

show that for goals of the form X �� t� elimination is complete� We adopt
this simpler operational model� which also eases technicalities� with no loss of
expressiveness�

The higher�order case is more subtle in many respects� One of the typi�
cal technical problems is that higher�order substitutions and reducibility wrt a
rewrite system R are harder to relate� For instance� if �t is R�normalized� then
neither � nor tmust be R�normalized� which is the basis for �rst�order narrowing�
The solution is to use patterns� a restricted class of ��terms� for the left�hand
sides of rules� This is no limitation in practice and allows to argue similar to the
�rst�order case when needed�

The paper is organized as follows� Section 
 introduces a calculus for higher�
order narrowing that utilizeses normalized solutions� This is followed by an anal�
ysis of deterministic operations for constructors in Section � and deterministic
variable elimination in Section �� Narrowing with simpli�cation is the subject of
Section �� An application to program transformation is shown in Section ��

� Preliminaries

We brie�y introduce simply typed ��calculus 
see e�g� ������ We assume the fol�
lowing variable conventions�



� F�G�H� P�X� Y denote free variables�
� a� b� c� f� g 
function� constants� and
� x� y� z bound variables�

Type judgments are written as t � � � Further� we often use s and t for terms and
u� v� w for constants or bound variables� The set of types T for the simply typed
��terms is generated by a set T� of base types 
e�g� int� bool� and the function
type constructor �� The syntax for ��terms is given by

t � F j x j c j �x�t j 
t� t��

A list of syntactic objects s�� � � � � sn where n � � is abbreviated by sn� For
instance� n�fold abstraction and application are written as �xn�s � �x� � � ��xn�s
and a
sn� � 

� � � 
a s�� � � �� sn�� respectively�

Substitutions are �nite mappings from variables to terms and are denoted
by fXn �� tng� Free and bound variables of a term t will be denoted as FV
t�
and BV 
t�� respectively� The conversions in ��calculus are de�ned as�

� ��conversion� �x�t �� �y�
fx �� ygt��
� ��conversion� 
�x�s�t �� fx �� tgs� and
� ��conversion� if x �� FV
t�� then �x�
tx� �� t�

For ��conversion 
��conversion�� applying the rule from left to right is called
��reduction 
��reduction�� and expansion in the other direction� A term is in ���
normal form if no �� or ��reductions apply� and ��expanded if no ��expansion
applies� The long ���normal form of a term t� denoted by l�

�
t� is the ��

expanded form of the ���normal form of t� It is well known ���� that s ���� t
i� l��s �� l��t� As long ���normal forms exist for typed ��terms� we will in
general assume that terms are in long ���normal form� For brevity� we may
write variables in ��normal form� e�g� X instead of �xn�X
xn�� We assume that
the transformation into long ���normal form is an implicit operation� e�g� when
applying a substitution to a term�

The convention that ��equivalent terms are identi�ed and that free and
bound variables are kept disjoint 
see also ���� is used in the following� Fur�
thermore� we assume that bound variables with di�erent binders have di�erent
names� De�ne Dom
�� � fX j �X �� Xg and Rng
�� �

S
X�Dom��� FV
�X��

Two substitutions are equal on a set of variables W � written as � �W ���
if �� � ��� for all � � W � A substitution � is idempotent i� � � ��� We will
in general assume that substitutions are idempotent� A substitution �� is more
general than �� written as �� 	 �� if � � 	�� for some substitution 	�

We describe positions in ��terms by sequences over natural numbers� The
subterm at a position p in a ��term t is denoted by tjp� A term t with the
subterm at position p replaced by s is written as t�s�p�

A term t in ��normal form is called a 
higher�order� pattern if every
free occurrence of a variable F is in a subterm F 
un� of t such that the un
are ��equivalent to a list of distinct bound variables� Uni�cation of patterns is
decidable and a most general uni�er exists if they are uni�able ����� Also� the



uni�cation of a linear pattern with a second�order term is decidable and �nitary�
if they are variable�disjoint ��	��

Examples of higher�order patterns are �x� y�F 
x� y� and �x�f
G
�z�x
z����
where the latter is at least third�order� Non�patterns are for instance �x� y�F 
a� y�
and �x�G
H
x���

��� Higher�Order Rewriting

The following de�nitions for higher�order rewriting are in the lines of ���� ����

De�nition�� A rewrite rule is a pair l � r such that l is a pattern but not
��equivalent to a free variable� l and r are long ���normal forms of the same
base type� and FV
l� 
 FV
r�� A Higher�Order Rewrite System 
HRS�
is a set of rewrite rules� The letter R always denotes an HRS� Assuming a rule

l � r� � R and a position p in a term s in long ���normal form� a rewrite

step from s to t is de�ned as

s ��l�r
p�� t � sjp � �l � t � s��r�p�

For instance� with the quanti�er rule of the �rst section� we have the following
rewrite step�

�y��x�p
y� � q
x� y� ���x�P�Q�x��P��x�Q�x� �y�p
y� � �x�q
x� y�

For a rewrite step we often omit some of the parameters l � r� p and �� We
assume that constants symbols are divided into free constructor symbols and
de�ned symbols� A symbol f is called a de�ned symbol� if a rule f
� � �� �� t
exists� Constructor symbols are denoted by c and d� A term is in R�normal

form if no rule from R applies and a substitution � is R�normalized if if all
terms in the image of � are in R�normal form�

In contrast to the �rst�order notion of term rewriting� �� is not stable under
substitution� reducibility of s does not imply reducibility of �s� Its transitive
re�exive closure is however stable �����

Lemma�� Assume an GHRS R� If s
�
�� R t� then �s

�
�� R �t�

A reduction is called con�uent� if any two reductions from a term t are
joinable� i�e� if t

�
�� u and t

�
�� v then there exists w with u

�
�� w and

v
�
�� w� For results on con�uence of higher�order rewrite systems� we refer

to ����� A terminating and con�uent reduction system is called convergent�
Termination orderings for higher�order rewriting can be found in ���� ����

For our purpose� we need the following result� which can be shown similar to
the �rst�order case ����� A term s � �xn�s� is a subterm modulo binders of
t � �xn�t�� written as s 
sub t� if s� is a true subterm of t�

Theorem	� The reduction ��R
sub � ��R � �sub is terminating for a GHRS

R if ��R is terminating��

� All missing proofs can be found in �����



Notice that a subterm sjp may contain free variables which used to be bound
in s� For rewriting it is possible to ignore this� as only matching of a left�hand
side of a rewrite rule is needed� For narrowing� we need uni�cation and hence
we use the following construction to lift a rule into a binding context�

An xk�lifter of a term t away fromW is a substitution 	 � fF �� 
�F �
xk� j
F � FV
t�g where � is a renaming such that Dom
�� � FV
t��Rng
��
W � fg
and �F � �� � � � � � �k � � if x� � ��� � � � � xk � �k and F � � � A term t 
rewrite
rule l � r� is xk�lifted if an xk�lifter has been applied to t 
l and r�� For example�
fG �� G�
x�g is an x�lifter of g
G� away from any W not containing G��

��� Higher�Order Uni�cation

We introduce in the following the transformations for higher�order uni�cation
as in �
��� Although higher�order uni�cation is undecidable in general� it per�
forms remarkably well in systems such as ��Prolog ���� and Isabelle ����� For
programming applications� there even exist decidable fragments ��	� 
���

In contrast to �rst�order uni�cation� we solve uni�cation problems modulo
the conversions of ��calculus� i�e� � is a uni�er of s �� t if �s ���� �t� We
examine in the following the most involved case of higher�order uni�cation� �ex�
rigid goals of the form �xk�F 
tn� �� �xk�v
t�m�� where v is not a free variable�
Clearly� for any solution � to F the term �F 
tn� must have 
after ��reduction�
the symbol v as its head� There are two possibilities�

� In the �rst case� v already occurs in 
the solution to� some ti� For instance�
consider the equation F 
a� �� a� where fF �� �x�xg is a solution based on
a projection� In general� a projection binding for F is of the from fF ��
�xn�xi
� � ��g� As some argument� here a� is carried to the head of the term�
such a binding is called projection�

� In the second case� the head of the solution to F is just the desired symbol
v� For instance� in the last example� an alternative solution is fF �� �x�ag�
This is called imitation�Notice that imitation is not possible if v is a bound
variable�

To solve a �ex�rigid pair� the strategy is to guess an appropriate imitation or
projection binding only for one rigid symbol� here a� and thus approximate the
solution to F � Uni�cation proceeds by iterating this process which focuses only
on the outermost symbol� Roughly speaking� the rest of the solution for F is left
open by introducing new variables�

De�nition
� Assume an equation �xk�F 
tn� �� �xk�v
t�m�� where all terms are
in long ���normal form� An imitation binding for F is of the form

F �� �xn�f
Hm
xn��

where Hm are new variables of appropriate type� A projection binding for F
is of the form

F �� �xn�xi
Hp
xn��

where Hp are new variables with Hp � �p and xi � �p � � � A partial binding is
an imitation or a projection binding�



Notice that in the above de�nition� the bindings are not written in long ���
normal form� The long ���normal form of an imitation or projection binding
can be written as

F �� �xn�v
�zjp �Hp
xn� zjp���

A full exhibition of the the types involved can be found in �
���
For lack of space� the transformation rules for higher�order uni�cation are

shown in Figure � together with the narrowing rules� The rules consist of the
basic rules for uni�cation� such as Deletion� Elimination and Decomposition
plus the two rules explained above� Imitation and Projection� For the purpose of
narrowing 
to be detailed later�� the rules work on oriented goals� which does not
a�ect uni�cation� and use subscripts 
d�� which only serve to improve narrowing�

It should be mentioned that the higher�order uni�cation rules only perform
so�called pre�uni�cation� The idea of pre�uni�cation is to handle �ex��ex pairs

as constraints and not to attempt to solve them explicitly� These are equations of
the form �xk�P 
� � �� �

� �xk�P
�
� � ��� Huet ��
� showed that for such pairs there

may exist an in�nite chain of uni�ers� one more general than the other� without
any most general one� Since �ex��ex pairs are guaranteed to have at least one
uni�er� e�g� fP �� �xm�a� P

� �� �xn�ag� pre�uni�cation is su�cient�

� Lazy Narrowing with Normalized Solutions

We introduce in this section higher�order lazy narrowing and re�ne it for R�
normalized solutions� Consider a solution � of an equational goal s �� t with
�s

�
�� �t�� For any solution there exists an equivalent R�normalized one� assum�

ing convergent rewrite systems� Hence it is a desirable restriction to consider only
these� In the higher�order case� narrowing at 
sub��terms with variable heads
such as H
t� is needed ����� The main improvement we discuss in this section is
that narrowing is not needed at goals of the form H
xn� �� t for normalized
solutions� which covers many practical cases� The rules of System LNN for lazy
higher�order narrowing� shown in Figure �� consist of the rules for higher�order
uni�cation plus two narrowing rules� they are a re�nement of System LN in �����

Let s
�
� t stand for one of s �� t and t �� s� For a sequence ��� � � ���n

of LNN steps� we write
�
� �� where � � �n � � � ���

The subscripts 
d� and d on goals only serve for a particular optimization and
are not needed for soundness or completeness� The idea is to use marked goals

s��
d t� These are created only in the last rule� in order to avoid repeated appli�

cation of Lazy Narrowing rules on these goals� The remaining rules work on both

marked goals and unmarked goals� indicated by��
�d�� For both

�
� and��

�d� the

rules are intended to preserve the orientation for
�
� and marking for��

�d�� Only
the Decomposition rule and the Imitation rule� which includes decomposition�

� Although this corresponds only to equational matching� an equational uni�cation
problem s �R t can easily be encoded by adding a new rule X �R X � true and
solving the goal s �R t�� true�



Deletion

ft��
�d� tg � S � S

Decomposition

f�xk�f�tn��
�
�d� �xk�f�t

�

n�g � S � f�xk �tn �� �xk�t�ng � S

Elimination

fF
�
��d� �xk�tg � S �� �S if F �� FV��xk�t� and

where � � fF �� �xk �tg

Imitation

f�xk �F �tn�
�
��d� �xk�f�t�m�g � S �� f�xk �Hm��tn�

�
� �xk��t�mg � �S

where � � fF �� �xn�f�Hm�xn��g
is an imitation binding with fresh variables

Projection

f�xk�F �tn�
�
��d� �xk�v�t

�

m�g � S �� f�xk ��ti�Hj�tn��
�
��d� �xk�v��t

�

m�g � �S

where � � fF �� �xn�xi�Hj�xn��g�
is a projection binding with fresh variables

Lazy Narrowing with Decomposition

f�xk�f�tn��
� �xk�tg � S � f�xk �tn �� �xk�lng�

f�xk �r�
� �xk�tg � S

where f�ln�� r is an xk�lifted rule

Lazy Narrowing at Variable

f�xk�H�tn��
� �xk�tg � S � f�xk �H�tn��

�
d �xk�lg�

f�xk �r�
� �xk�tg � S

where xk�H�tn� is not a pattern and
l � r is an xk�lifted rule

Fig� �� System LNN for Lazy Narrowing

transform marked goals to unmarked goals� In other words� on marked goals the
Lazy Narrowing rules may only be applied after some decomposition took place�

Consider for instance the matching problem �x�H
f
x���� �x�h
g
x�� f
x���
modulo the rule f
f
X�� � g
X�� Here LNN yields

f�x�H�
f
x�� �
� �x�g
x�� �x�H�
f
x�� �

� �x�f
x�g



by the imitation fH �� �y�h
H�
y��H�
y��g� Then the second goal can be solved
by Projection� and the �rst by Lazy Narrowing to

f�x�H�
f
x�� �
�
d �x�f
f
X
x���� �x�g
X
x�� �� �x�g
x�g

Notice that the rewrite rule has been lifted over the variable x in the binding
environment� As the �rst goal is marked� Lazy Narrowing does not re�apply� This
is an important restriction and improves the similar system in ����� as otherwise
in�nite reductions occur� as in this case� very often� The two goals can be solved
by several higher�order uni�cation steps� which yield the solution

fH� �� �y�f
y�� X �� �x�xg�

Observe that the last two rules of LNN can be integrated into one rule of the
form

f�xk�s�
� �xk�tg � S � f�xk�s�

�
d �xk�f
ln�� �xk�r�

� �xk�tg � S�

which is used in the completeness proofs and is called the Lazy Narrowing

rule� From this rule� the narrowing rules of LNN can easily be derived� e�g� the
�rst by decomposition on f �

Theorem�� If s �� t has solution �� i�e� �s
�
�� R �t� and � is R�normalized

for a convergent HRS R� then fs �� tg ��
LNN F such that 
 is more general�

modulo the newly added variables� than � and F is a set of �ex��ex goals�

The proof proceeds as in the more general Theorem �� which we show later� A
key ingredient is the following lemma which generalizes the �rst�order case�

Lemma�� Assume an HRS R and a substitution �� Then �F 
xn� is R�reducible�
i� �F is R�reducible�

� Deterministic Narrowing Rules for Constructors

In practice� rewrite systems often have a number of symbols� called constructors�
that only serve as data structures� For constructor symbols� we give a few simple
additional rules for Lazy Narrowing in Figure �� Their main advantage is that
their application is deterministic� The rules cover the cases where the root symbol
of the left side of a goal is a constructor� Notice that the rules� except for the
�rst� are only possible with oriented goals� where evaluation proceeds only from
left to right� The correctness of the rules follows easily�



Deterministic Constructor Decomposition

f�xk �c�tn��
�
�d� �xk�c�t

�

n�g � S � f�xk�tn �� �xk �t�ng � S

if c is a constructor symbol

Deterministic Constructor Imitation

f�xk �c�tn��
�
�d� �xk�F �xm�g � S �� f�xk�tn �� �xk �Hn�xm�g � �S

where � � fF �� �xm�f�Hn�xm��g
is an imitation binding with fresh variables

Constructor Clash

f�xk�c�tn��
�
�d� �xk�v�t

�

n�g � S � fail

if c �� v� where c is a constructor symbol
and v is not a free variable

Fig� �� Deterministic Constructor Rules

� Deterministic Variable Elimination

Eager variable elimination is a particular strategy of general E�uni�cation sys�
tems� The idea is to apply the elimination rule as a deterministic operation
whenever possible� It is an open problem of general 
�rst�order� E�uni�cation
strategies if eager variable elimination is complete �

��

In our case� with oriented goals� we obtain more precise results by di�eren�
tiating the orientation of the goal to be eliminated� We distinguish two cases of
variable elimination� where in one case elimination is deterministic� i�e� no other
rules have to be considered for completeness�

Theorem
� System LNN with eager variable elimination on goals of the form

X �� t with X �� FV
t� is complete for a convergent HRS R�

The main idea of the proof is that there can be no rewrite step in �X �� �t�
thus we have �X � �t� assuming that � is R�normalized�

In the general case� variable elimination may copy reducible terms with the
result that the reductions have to be performed several times� Notice that this
case of variable elimination does not a�ect the reductions in the solution con�
sidered� as only terms in normal form are copied� �t must be in normal form�

There are however a few important cases when elimination on goals of the
form t�� X is deterministic �
��� if t is either ground and in R�normal form or
a pattern without de�ned symbols� Furthermore� for left�linear rewrite systems�
elimination on goals of the form t�� X is not needed� as shown in �
���



� Lazy Narrowing with Simpli�cation

Simpli�cation by normalization of goals is one of the earliest ��� and one of the
most important optimizations� Its motivation is to prefer deterministic reduction
over search within narrowing� Notice that normalization coincides with determin�
istic evaluation in functional languages� For �rst�order systems� functional�logic
programming with normalization has shown to be a more e�cient control regime
than pure logic programming ��� ���

The main problem of normalization is that completeness of narrowing may be
lost� For �rst�order 
plain� narrowing� there exist several works dealing with com�
pleteness of normalization in combination with other strategies 
for an overview
see ������ Recall from Section � that deterministic operations are possible as soon
as the left�hand side of a goal has been simpli�ed to a term with a construc�
tor at its root� For instance� with the rule f
�� � �� we can simplify a goal
f
�� �� g
Y � by ff
�� �� g
Y �� � � �g � f��� g
Y �� � � �g and deterministically
detect a failure�

In the following� we show completeness of simpli�cation for lazy narrowing�
The result is similar to the corresponding result for the �rst�order case ����� The
technical treatment here is more involved in many respects due to the higher�
order case� Using oriented goals� however� simpli�es the completeness proof�

For oriented goals� normalization is only complete for goals s �� t� where
�t is in R�normal form for a solution �� For instance� it su�ces if t is a ground
term in R�normal form� For most applications� this is no real restriction and
corresponds to the intuitive understanding of directed goals�

De�nition�� Normalizing Lazy Narrowing� called NLN� is de�ned as the
rules of LNN plus arbitrary simpli�cation steps on goals� A simpli�cation step

on a goal s�� t is a rewrite step on s� written as fs�� tg �NLN fs� �� tg if
s ��R s��

We �rst need an auxiliary construct for the termination ordering in the com�
pleteness result� The decomposition function D is de�ned as

D
s �� t� � s�� t

D
�xk�f
sn��
�
d �xk�f
tn�� � �xk�sn �� �xk�tn

and is unde�ned otherwise� The function D extends component�wise to sets of
goals� The idea ofD is to view marked goals as goals with delayed decomposition�

Theorem� Completeness of NLN� Assume a con�uent HRS R that termi�

nates with order 
R� If s �� t has solution �� i�e� �s
�
�� R �t where �t and �

are R�normalized� then fs�� tg
�
� �

NLN F such that 
 is more general modulo

the newly added variables than � and F is a set of �ex��ex goals�

Proof� Let 
R
sub � 
R � 
sub� Assume Gn � sn ��

�d� tn is a system of goals

with solution �� i�e� �sn
�
�� R �tn� Let s�m �� t�m � D
Gn�� The proof proceeds

by induction on the following lexicographic termination order on 
Gn� ���



� A� 
R
sub extended to the multiset of f�s�mg�

� B� multiset of sizes of the bindings in ��
� C� multiset of sizes of the goals �Gn�
� D� 
R extended to the multiset of fsng�

By Theorem 
� item A is terminating� For the proof we need two invariants� �rst�
all t�m are R�normalized terms� Secondly� for marked goals s ��

d t� Head
�s� �
Head
�t� is not a free variable and furthermore� no rewrite step at root position

occurs in �s
�
�� R �t� Except for the narrowing rule� it follows easily that the

latter is invariant� E�g� Decomposition and Imitation on marked goals decompose
the outermost symbol and yield unmarked goals�

In the following we show that normalization reduces this ordering and� fur�
thermore� that for a non �ex��ex goal some rule applies that reduces the ordering�
In addition� we show in each of these cases that the above invariants are pre�
served� First� we select some non �ex��ex goal s �� t from Gn� if none exists�
the case is trivial�

We �rst consider the case where a simpli�cation step is applied to an un�
marked goal� i�e� s �� t is transformed to s� � t� We obtain �s

�
�� �s� from

Lemma �� As �t is in normal form� con�uence of R yields �s
�
�� �s�

�
�� �t�

Thus � is a solution of s� � t� For termination� we have two cases�

� If �s � �s�� measures A through C remain unchanged� whereas D decreases�
� If �s �� �s� measure A decreases�

Clearly� the invariants are preserved�
If no simpli�cation is applied� we distinguish two cases� if �s � �t� then we

proceed as in pure higher�order uni�cation� as one of the rules of higher�order
uni�cation must apply� In case of the Deletion rule� measure A decreases� For De�
composition on marked goals� A and B remain unchanged� whereas C decreases�
On unmarked goals� Decomposition reduces A� Imitation on marked goals does
not change A� but reduces B� on unmarked goals� it reduces A� Projection only
decreases B�

Normalization of the associated solution is preserved in these cases� In case of
a Projection or Imitation� the partial binding computed maps a variable X to a
higher�order pattern of the form �xn�v
Hm
xn��� The new� intermediate solution
constructed maps the newly introduced variables Hm
xn� to subterms of �X�
which are in R�normal form� Hence all �Hm must be in R�normal form� For
the elimination rule� no new variables are introduced� thus the solution remains
R�normalized�

Furthermore� the terms �t�m do not change under Decomposition and Imita�
tion on marked goals� On unmarked goals� Decomposition and Imitation yield
new right hand sides tn� These are subterms of �t and are thus R�normalized�

In the remaining case� there must be a rewrite step in �s
�
�� �t� First� assume

there is no rewrite step at the root position in �s
�
�� �t� Hence all terms in

this sequence have the same root symbol� Then similar to the last case� one of
the uni�cation rules must apply�



Now consider the case with rewrite steps in �s
�
�� �t at root position�

Clearly� s�� t cannot be marked� Further� s cannot be of the form �xn�X
ym��
with the invariant that �� is R�normalized� it is clear that there can be no rewrite
step in the solution � of a goal �xn�X
ym��� t as �X is in R�normal form�

Assume the �rst rewrite step in �s
�
�� �t is �s

�
�� �yk�s� ��l�r

� �yk�t��
with the rule l � r� Notice that s� � t� must be an instance of l � r 
modulo
lifting��

We apply Lazy Narrowing 
integrating the two lazy narrowing rules�� yielding
the subgoals�

s��
d �yk�l� �yk�r�

� t

As there exists 
 such that s� � 
l and t� � 
r� we can extend � to the newly
added variables� de�ne �� � � � 
� Let sm �� lm � D
��s ��

d �yk��
�l�� Clearly�

si 

R
sub �

�s holds� and ���xk�r 

R
sub �

�s follows from ��s
�
�� ��r� Thus �� is a

solution of sm �� lm and r �� t that coincides with � on FV
Gn�� It remains
to show that �� is in R�normal form� As the reduction is innermost� all �lm are
in R�normal form� As l is a pattern� this yields that �� is R�normalized� Since we
consider the �rst rewrite step a root position� the new marked goal s ��

d �xk�l
ful�lls the invariant� as Head
�s� � Head
�l� and no rewrite step can occur at
root position� ut

The termination ordering in this proof is rather complex� For instance� the
last item in the ordering is needed for the following example� assume a goal
�x�c
F 
x� t���� �x�c
x� with solution � � fF �� �x� y�xg� Here� normalization
of t does not change ��x�c
F 
x� t���

� An Example� Program Transformation

The utility of higher�order uni�cation for program transformations has been
shown nicely by Huet and Lang ���� and has been developed further in ���� 	��
The following models an example for unfold�fold program transformation in ����
We assume the following rules for lists�

map
F� �XjR�� � �F 
X�jmap
F�R��
foldl
G� �XjR��� G
X� foldl
G�R��

Now assume writing a function g
F�L� by

g
F�L�� foldl
�x� y�plus
x� y��map
F�L��

that �rst maps F onto a list and then adds the elements� This simple implemen�
tation for g is very ine�cient� since the list must be traversed twice� The goal
is now to �nd an equivalent function de�nition that is more e�cient� We can
specify this desired behavior in a syntactic fashion by one simple equation�

�f� x� l�g
f� �xjl�� �� B
f
x�� g
f� l��



The variable B represents the body of the function to be computed� The
schema on the right only allows recursing on l for g� indicated by the argument
g
f� l� to B� and similarly allows to use f
x�� Notice that the bound variables
above can be viewed as ��quanti�ed variables�

To solve this equation� we add a rule X �� X � true� where we view
�� as a new 
in�x� constant and then apply narrowing� yielding the solution
� � fB �� �fx� rec�plus
fx� rec�g where

g
f� �xjl�� � �B
f
x�� g
f� l�� � plus
f
x�� g
f� l���

This shows the more e�cient de�nition of g� In this example� simpli�cation can
reduce the search space for narrowing drastically� it su�ces to simplify the goal
to

�f� x� l�plus
f
x�� foldl
plus�map
f� l��� �� B
f
x�� foldl
plus�map
f� l����

where narrowing with the newly added rule X �� X � true yields the two goals

�f� x� l�plus
f
x�� foldl
plus�map
f� l��� �� �f� x� l�X
f� x� l��

�f� x� l�B
f
x�� foldl
plus�map
f� l��� �� �f� x� l�X
f� x� l��

These can be solved by pure higher�order uni�cation� Observe that simpli�cation
in this examples corresponds to 
partial� evaluation�

	 Conclusions and Related Work

We have presented several re�nements for narrowing� based on the determinism
of reduction in convergent systems� in a highly expressive setting� The results
apply to higher�order functional�logic programming� for which there exist several
approaches and implementations �
� �� �	� 
�� ��� and to high�level reasoning�
e�g� dealing with programs or mathematics ����� Further development of higher�
order narrowing towards functional�logic programming languages can be found
in �
���

The work in �
�� on higher�order narrowing considers only a restricted class of
��terms� higher�order patterns with �rst�order equations� which does not su�ce
for modeling higher�order functional programs� The approach to higher�order
narrowing in ��� aims at narrowing with higher�order functional programs� but
restricts higher�order variables in the left�hand sides of rules and only permits
�rst�order goals� These restrictions seem to be similar to the ones in ����

Compared to higher�order logic programming ��
�� predicates and terms are
not separated here� In the former� higher�order ��terms are used for data struc�
tures and do not permit higher�order programming as in functional languages�
For instance� the function map as in the last section cannot be written directly
in higher�order logic programming�
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