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Abstract

We introduce several approaches for solving higher�

order equational problems by higher�order narrow�

ing and give �rst completeness results� The results

apply to higher�order functional�logic programming

languages and to higher�order uni�cation modulo a

higher�order equational theory�

We lift the general notion of �rst�order narrow�

ing to so�called higher�order patterns and argue that

the full higher�order case is problematic� Integrat�

ing narrowing into uni�cation� called lazy narrow�

ing� can avoid these problems and can be adapted to

the full higher�order case� For the second�order case�

we develop a version where the needed second�order

uni�cation remains decidable� Finally we discuss a

method that combines both approaches by using nar�

rowing on higher�order patterns with full higher�order

constraints�

� Introduction

In recent years many results for �rst�order term
rewriting have been lifted to the higher�order case�
Starting with the work of Klop ����� there exist
several notions of higher�order term rewriting ����
���� Among results for these systems are a criti�
cal pair lemma for higher�order term rewriting sys�
tems 	HRS
 ����� con�uence of orthogonal HRS ����
��� and termination criteria �����

This interest in higher�order rewriting follows the
progress in its applications� for instance functional lan�
guages and theorem provers� where higher�order con�
cepts are of growing interest� In this paper we lift yet
another �rst�order concept to the higher�order case�
solving equations by narrowing� We introduce several
versions of higher�order narrowing for solving higher�
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order equations modulo a higher�order equational the�
ory and give �rst completeness results�

The well developed theory of �rst�order narrowing
serves as a general method for R�uni�cation� where
R is a theory given by a convergent term rewriting
system� For an overview see ��
�� Narrowing also
forms the underlying computation rule for functional�
logic programming languages ���� ��� For several of
these there exist higher�order extensions ��� �� ��� ���
�
�� but to our knowledge completeness results for the
higher�order case are still missing�

Recently� Qian ���� lifted the completeness of �rst�
order narrowing strategies to higher�order patterns for
�rst�order rules� Higher�order patterns are an impor�
tant subclass of ��terms� discovered by Miller �����
that include bound variables� but behave almost as
�rst�order terms in most respects� However patterns
are often too restrictive for many applications 	see e�g�
����
� For instance� a standard example for functional
programs� the function

map	F� cons	X�Y 

 � cons	F 	X
�map	F� Y 



has the non�pattern F 	X
 on the right�hand side�
Hence rewriting with this rule may yield non�pattern
terms� When narrowing a �rst�order term with such
higher�order rules� some restrictions on the rewrite
rules can guarantee that the resulting term is still �rst�
order� as developed in ������ Examples from other ar�
eas� e�g� formalizing logics� can be found in �����

The structure of the work is as follows� The �rst ap�
proach we consider is the general notion of narrowing�
for which many re�nements exist� e�g� basic narrow�
ing ���� For this� Section � presents an abstract view of
higher�order narrowing� where a problem with locally
bound variables in the solutions becomes apparent�
We show in Section ��� that the �rst�order notion of
narrowing can be lifted to higher�order patterns and
argue that it is problematic when going beyond higher�
order patterns�

�The permitted terms are slightly more general than 
rst�
order terms �see Sec	 �	
�	



An alternative approach is lazy narrowing� dis�
cussed in Section �� where many of the problems en�
countered in the �rst approach can be avoided� as
narrowing is embedded into uni�cation� Using new
results on second�order uni�cation ����� we present a
re�nement of lazy narrowing for second�order equa�
tional matching with left�linear rules� where syntactic
solvability of the system remains decidable� as it is in
the �rst�order case�

The main problems of the �rst approach with gen�
eral narrowing come from the fact that narrowing at
variable positions is needed� Section � shows that we
can factor out this complicated case by �attening the
terms to patterns plus adding some constraints� Then
narrowing on the pattern part proceeds almost as in
the �rst�order case and it remains to solve the con�
straints� which can be done by lazy narrowing� In
that way we have a modular structure� and higher�
order lazy narrowing or an equally powerful method
is used only where it is really needed�

� Preliminaries

We follow the standard notation of term rewriting�
see e�g� ���� For the standard theory of ��calculus we
refer to ��� �� and for higher�order uni�cation we refer
to �����

We assume the following variable conventions�

� F�G�H� P�X�Y free variables�
� a� b� c� f� g 	function
 constants�
� x� y� z bound variables and
� �� �� � type variables�

Type judgements are written as t � � � Further� s and
t stand for terms and u� v� w for constants or bound
variables� The following grammar de�nes the syntax
for ��terms�

t � F j x j c j �x�t j 	t� t�


A list of syntactic objects s�� � � � � sn where n � �
is abbreviated by sn� For instance� n�fold abstraction
and application are written as �xn�s � �x� � � � �xn�s
and a	sn
 � 		� � � 	a s�
 � � �
 sn
� respectively�
Substitutions are �nite mappings from variables

to terms and are denoted by fXn �� tng� Free and
bound variables of a term t will be denoted as FV	t

and BV	t
� respectively�

The conversions in ��calculus are de�ned as�

� ��conversion��x�t �� �y�	fx �� ygt

� ��conversion�	�x�s
t �� fx �� tgs

� ��conversion� if x �� FV	t
� then �x�	tx
 �� t

We will in general assume that terms are in long ���
normal form ����� For brevity� we may write variables
in ��normal form� e�g� X instead of �xn�X	xn
� We
assume that the transformation into long ���normal
form is an implicit operation� e�g� when applying a
substitution to a term�

The set of types T for the simply typed ��terms
is generated by a set T� of base types 	e�g� int� bool

and the function type constructor �� Notice that �
is right associative� i�e� �� � � � � �� 	� � �
�

The order of a type 	 � �� � � � � � �n �
�� � � T� is de�ned as

Ord		
 �

��
�
� if n � �� i�e� 	 � � � T�
� � k otherwise� where

k � max	Ord	��
� � � � � Ord	�n



A language of order n is restricted to

� function constants of order � n� � and
� variables of order � n�

A substitution 
 is in long ���normal form if all
terms in the image of 
 are in long ���normal form�
The convention that ��equivalent terms are identi�ed
and that free and bound variables are kept disjoint 	see
also ���
 is used in the following� Furthermore� we as�
sume that bound variables with di�erent binders have
di�erent names� De�ne Dom	

 � fX j 
X �� Xg
and Rng	

 �

S
X�Dom��� FV	
X
� Two substitu�

tions are equal on a set of variables W � written
as 
 �W 
�� if 
� � 
�� for all � � W � The restriction
of a substitution to a set of variables W is de�ned
as 
jW� � 
� if � � W and 
jW� � � otherwise�
A substitution 
 is idempotent i� 
 � 

� We will
in general assume that substitutions are idempotent�
A substitution 
� is more general than 
� written as

� � 
� if 
 � �
� for some substitution ��

We describe positions in ��terms by sequences over
natural numbers� The subterm at a position p in a
��term t is denoted by tjp� A term t with the subterm
at position p replaced by s is written as t�s�p�

The following subclass of ��terms was introduced
originally by Dale Miller �����

De�nition ��� A term t in ��normal form is called a
	higher�order
 pattern if every free occurrence of a
variable F is in a subterm F 	un
 of t such that the un
are ��equivalent to a list of distinct bound variables�

Uni�cation of patterns is decidable and a most general
uni�er exists if they are uni�able ����� Also� the uni��
cation of a linear pattern with a second�order term is
decidable and �nitary� if they are variable�disjoint �����



Examples of higher�order patterns� or patterns
for short� are �x� y�F 	x� y
� �x�f	G	�z�x	z


� where
the latter is at least third�order� Non�patterns are
�x� y�F 	a� y
 and �x�G	H	x

�

If p is a position in s then let bv	s� p
 be the set of
all ��abstracted variables on the path from the root
of s to p� Such a path is called rigid if it contains no
free variables� An xk�lifter of a term t away from
W is a substitution � � fF �� 	�F 
	xk
 j F � FV	t
g
where � is a renaming such that Dom	�
 � FV	t
�
Rng	�
 � W � fg and �F � �� � � � � � �k � �
if x� � ��� � � � � xk � �k and F � � � A term t is xk�
lifted if an xk�lifter has been applied to t� For example
fG �� G�	x
g is an x�lifter of g	G
 away from any W
not containing G��

The following de�nitions for Higher�Order Rewrite
Systems are slightly less restrictive than the ones by
Nipkow ���� ���� but are an instance of the de�nitions
by Wolfram �����

De�nition ��� A rewrite rule is a pair l � r such
that l is not ��equivalent to a free variable� l and r
are long ���normal forms of the same base type� and
FV	l
 	 FV	r
� AHigher�OrderRewrite System
	for short� HRS
 is a set of rewrite rules� The letter R
always denotes an HRS� Assuming a rule 	l � r
 � R
and a position p in a term s in long ���normal form�
a rewrite step from s to t is de�ned as

s
�l�r
p�� t � sjp � 
l � t � s�
r�p�

In the �rst�order case� t �l�r
p�� s is a narrowing

step if 
 is a most general uni�er of tjp and l and
s � 
t�r�p� For a rewrite or narrowing step we often
omit some of the parameters l� r� p and 
�

� Full higher�order narrowing

The idea of �rst�order narrowing is� roughly speak�
ing� to �nd an instance of a term such that some sub�
term can be rewritten� Repeating this yields a com�
plete method for matching modulo a theory given by
a convergent rewrite system R� and for instance R�
uni�cation can easily be embedded��

Since ��calculus can express a notion of subterm�
we can model narrowing in a very abstract way� Even
in this very general setting we will identify a problem
with locally bound variables in solutions� To handle
bound variables correctly within ��calculus� it will be

�To R�unify s and t� it su�ces to add both a new symbol �
and a rule X�X � true and then to solve s � t�

�
true	

necessary to guess these variables beforehand� which
is clearly unsatisfactory�

We simulate a context where reduction takes place
by an appropriate higher�order variable C� i�e� instead
of s
�l�rt we can write s � 
C	l
 
� 
C	r
 � t for
an appropriate substitution 
� This yields the follow�
ing generalization of �rst�order narrowing� where most
of the real problems are hidden in the uni�cation�

De�nition ��� A ��term s narrows to t with the
rule l � r and with the substitution 
� written as
s�l�r

� t� if

� � is a yk�lifter of l�
� 
 is a uni�er of s �� C	�yk�� l
� where C is a
new variable of appropriate type� and
� t � 
C	�yk��r
�

Instead of explicitly replacing a subterm at position
p� we use ��reduction for this purpose� It would be
possible to make the subterm explicit where the re�
placement takes place� but this considerably compli�
cates the completeness proof� Note that l may occur
repeatedly or not at all in 
C	l
� i�e� 
s � 
t is possi�
ble�

Lemma ��� �One Step Lifting� Let R be an HRS

and let l � r � R� Suppose we have two terms s and

t with t � 
s for a substitution 
 and a set of vari�

ables V such that FV	s
 
Dom	

 � V � If t
�l�r
p t�

with FV	l
 � V � fg� then there exist a term s� and
substitutions 
 and � such that

� s�l�r
� s��

� 
s� � t��
� 
� �V 
 and 
 is R�normalized if 
 is R�
normalized�

� FV	s�
 
Dom	

 � V 
Dom	�
 
Rng	�
�

With Lemma ���� completeness of narrowing can be
shown similarly to the �rst�order case� as e�g� in ��
��
For the proof of the above lemma it is important that
the rewrite rule l � r has been lifted over the right
number of bound variables�

Let us see by an example that the number of vari�
ables over which a rule has to be lifted cannot be de�
termined beforehand� The problem occurs when a so�
lution 
 for a variable X contains a local �y and a
rewrite step in a subterm below where y occurs has
to be lifted� When narrowing the replaced subterm is
made explicit in �C	l
 
� �C	r
� but y is not visible
yet� With the lifting of l � r it is possible to rename
bound variables in r later�



Example ��� Assume R � fh	P� a
 � g	P� a
g and
consider the matching problem H	a
��u	�y�g	y� a


with the solution fH �� �x�u	�y�h	y� x

g� When
narrowing without lifting� we obtain H	a
 �R

H��	g	P �� a

� which matches u	�y�g	y� a

� but does
not subsume the above solution� as g	P �� a
 cannot be
instantiated to g	y� a
�

The solution is obtained here by lifting the rule over
one parameter� First� one solution to the uni�cation
problem H	a
 �� C	�y�h	P 	y
� a

� which is needed
for the narrowing step� is

fH �� �x�H�	�y�h	P 	y
� x

� C �� �x�H�	�y�x	y

�

Then we have H	a
 �R H�	�y�g	P 	y
� a

 and the
matching problem can be solved with the substitution
fH� �� �x�u	x
� P �� �x�xg� In the general case� the
solution to H may contain an arbitrary number of lo�
cally bound variables� such as y here� but the need
to lift over these variables is not visible when looking
at H	a
� To obtain completeness for this de�nition of
narrowing� we thus have to guess locally bound vari�
ables� at least in our framework�

The above notion of narrowing is not of great com�
putational interest� For instance� there is little hope
to �nd cases where even the application of narrowing
is decidable�

��� Narrowing on patterns

In this section we show that the �rst�order notion
of narrowing can be adapted to a restricted set of ��
terms� higher�order patterns� Then� as in the �rst�
order case� narrowing at variable positions implies that
the used substitution is reducible� thus this step is
redundant� We assume in this section that the rules
l � r � R are pattern rules� i�e� both l and r are
patterns�

De�nition ��	 A narrowing step from a pattern s
to t with a pattern rule l � r at position q with sub�

stitution 
� is de�ned as s
p
�

l�r
q�� t� where

� � is a yk�lifter of l� where yk � bv	s� q
 and
� 
 is a most general uni�er of �yk�sjq and �yk�� l�
and t � 
	s��r�q
�

Here� in contrast to the last result� we only have to
lift the rule l � r to the context at position q� The
problem in Section � with locally bound variables oc�
curs only when narrowing at variable positions� which
is not needed here� When working with �rst�order
equations� as done by Qian ���� and by Snyder �����

this lifting is not strictly needed� as the bound vari�
ables in sjq can be treated as new constants and�or
ignored� This enables Qian to lift completeness of
�rst�order narrowing strategies to patterns for �rst�
order equations� We conjecture that most �rst�order
narrowing strategies can also be lifted to our setting�
yet not as in �����

Completeness of narrowing follows from Lemma ���
as in the �rst�order case 	e�g� ��
�
 and is omitted here�

Lemma ��
 �One Step Lifting� Let R be an HRS

with pattern rules and let l � r � R� Suppose we

have two patterns s and t with t � 
s for a R�
normalized substitution 
� and a set of variables V
such that FV	s
 
 Dom	

 � V � If t
�l�r

� t� with
FV	l
�V � fg� then there exist a term s� and substi�

tutions 
� � such that

� s
p
�

l�r
� s� and 
s� � t�

� 
� �V 
 and 
 is R�normalized

� FV	s�
 
Dom	

 � V 
Dom	�
 
Rng	�


A similar result has been developed independently
in ���� for conditional rules� In this work� rules with
pattern left�hand sides are used for narrowing on
so called quasi �rst�order terms� These are slightly
more general than �rst�order terms� This guarantees
that the resulting term is still quasi �rst�order� Al�
though this property is desirable� the restrictions in
this approach appear rather ad�hoc� e�g� higher�order
variables in the left�hand sides of rules may occur
only directly below the outermost symbol� For in�
stance� the example in the introduction� the function
map	F� cons	X�Y 

 � � � �� ful�lls this requirement if
X and Y are �rst�order� Roughly speaking� when nar�
rowing with such a rule� narrowing and rewriting co�
incide for these higher�order variables as they occur
only at depth one on the left�hand side�

��� Beyond patterns

We argue in the following that it is di�cult to adapt
the above notion of narrowing for patterns to full ��
terms� In Example ��� we identi�ed a problem with
locally bound variables� This and several other prob�
lems stem from the fact that narrowing at variable po�
sitions is required� since the rewrite step we lift might
have been at a redex created by ��reduction�

Example ��� Assuming the rewrite system

R� � ff	f	X

 � g	X
g�

narrowing at a variable position is required to
�nd the solution fH �� �x�f	x
g to the problem



�x�H	f	x

���x�g	x
�

�x�H	f	x

�R�

H ���x�f�x� �x�g	x


Now the question is how to de�ne narrowing at
variable positions� For instance� consider the so�
lution 
 � fH �� �x�h	f	x
� x
g to the problem
�x�H	f	x

���x�h	g	x
� f	x

� wrt� the R��reduction

�x�h	f	f	x

� f	x


�R��x�h	g	x
� f	x

�

The naive approach� to instantiate H as little as pos�
sible� as in

�x�H	f	x

�R�

H ���x�H��f�x�� �x�H
�	g	x

�

fails� The problem is that the subterm f	x
 is dupli�
cated by 
 and the reduction does not occur inside
f	x
� A solution is to create a local context at this
variable� Hence� we instantiate H �rst with fH ��
�x�H��	H�	x
� x
g� Then� after ��reduction� the sub�
termH�	f	x

 can be uni�ed by fH� �� �x�f	x
g with
the left�hand side f	f	x

 and can be rewritten� Thus
we have

�x�H	f	x

�R�

H ���x�H��f�x��x� �x� y�H
�	g	x
� x


and the solution� here fH � �� �x� y�h	x� y
g� is then
obtained by uni�cation�

Extending this approach to second�order narrowing
and the completeness proof are highly technical and
reveal further problems not discussed here� Further
development is not pursued� as we believe that the
approaches in the following sections are more promis�
ing�

� Lazy narrowing

Another� more goal�directed method to solve equa�
tional problems in a top�down manner is lazy narrow�
ing� The main idea is to integrate narrowing into uni�
�cation� That is� when R�matching s with t� we start
with a goal s��t that may be simpli�ed to smaller
goals� Then narrowing steps are performed at the root
only� where the uni�cation of the left�hand side of the
rule with s again has to be done modulo R� General�
izing this to lazy higher�order narrowing yields system
LN� shown in Figure �� It should be noted that our no�
tion of lazy narrowing is also called lazy uni�cation �
�
��� in the �rst�order case�

System LN essentially consists of the rules for
higher�order uni�cation ���� plus the two narrowing

rules� For instance� reconsider from Example ��� the
R��matching problem

�x�H	f	x

���x�h	g	x
� f	x

�

where lazy narrowing yields

f�x�H�	f	x

�
��x�g	x
� �x�H�	f	x

�

��x�f	x
g

by the imitation fH �� �y�h	H�	y
�H�	y

g� Then
the second goal can be solved by projection� and the
�rst by Lazy Narrowing at Variable with fH� ��
�y�f	H��	y

g to f�x�H��	f	x

�

��x�f	x
� � � �g� fol�
lowed by several higher�order uni�cation steps�

Let s
�
�t stand for s��t or t��s� Observe that

the �rst �ve rules in Figure � apply symmetrically
as well� in contrast to the two narrowing rules� For
a sequence ��� � � � ��n of LN steps� we write

�
���

where 
 � 
n � � � 
�� A goal is called �ex��ex if it is
of the form �xk�Y 	tj
���xk�Y

�	t�
l
�

The completeness proof of system LN is built upon
the completeness proof of higher�order uni�cation�

Theorem 	�� �Completeness of LN� If s��t has

solution 
� i�e� 
s
�

�R
t� then fs��tg

�
�	

LNfFg such

that 
 is more general � than 
 and F is a set of �ex�

�ex goals�

Compared to the approach in Section �� many prob�
lems are now taken care of by higher�order uni�cation�
For instance� locally bound variables in a solution are
computed in a outside�in manner before the inner Lazy
Narrowing step needs to lift over these� Furthermore�
�ex��ex pairs can express a possibly in�nite number of
solutions� This is already very useful for higher�order
uni�cation� but even more for higher�order equational
uni�cation� In contrast� with general narrowing it is
hard to control narrowing at variable positions� The
corresponding goals in lazy narrowing can often be de�
layed as �ex��ex pairs� For instance� consider the goal
�x�c	F 	f	x


���x�c	G	x

 wrt� R�� where lazy nar�
rowing stops after one decomposition step� whereas
general narrowing may blindly narrow at F 	� � �
�

��� Decidability of goal systems

In this section we show how to balance a system
of goals such that the syntactic solvability 	wrt� the
conversions of ��calculus
 remains decidable�
Assumption� We assume in this section a second�

order HRS R where all left�hand sides are linear pat�
terns� Furthermore� we assume that all bound vari�
ables are of base type� In case a goal contains a

�Modulo the newly added variables	



Delete
ft��tg 
 S � S

Decompose

f�xk�f	tn
�
��xk�f	t�n
g 
 S � f�xk�tn���xk�t�ng 
 S

Eliminate

fF
�
��xk�tg 
 S �� 
S if F �� FV	�xk�t
 and

where 
 � fF �� �xk�tg
Imitate

f�xk�F 	tn

�
��xk�f	t�m
g 
 S �� f�xk�Hm	
tn


�
��xk�
t�m
g 
 
S

where 
 � fF �� �xn�f	Hm	xn

g
and Hm are new variables

Project

f�xk�F 	tn

�
��xk�v	t�m
g 
 S �� f�xk�
ti	Hj	tn



�
��xk�v	
t�m
g 
 
S

where 
 � fF �� �xn�xi	Hj	xn

g�
ti � �j � �� and Hj are new variables

Lazy Narrowing

f�xk�f	tn
���xk�tg 
 S � f�xk�tn���xk�lng 
 f�xk�r�
��xk�tg 
 S

where f	ln
� r is an xk�lifted rule from R
Lazy Narrowing at Variable

f�xk�H	tn
�
��xk�tg 
 S � f�xk�H	tn
�

��xk�lg 
 f�xk�r�
��xk�tg 
 S

where l � r is a xk�lifted rule from R

Figure �� System LN for Lazy Narrowing

second�order bound variable� lifting over this variable
may yield a third�order term� which we avoid here for
simplicity�

We �rst de�ne an ordering on goals�

De�nition 	�� We write s��s� � t��t�� if �X�X �
FV	s�
 �X � FV	t
�

The next goal is to achieve the following invariant�

De�nition 	�� A system of goals Gn � fsn��tng is
called cycle free if the transitive closure of � is a
strict partial ordering on Gn and right isolated if
every variable occurs at most once on the right�hand
sides of Gn� Furthermore� Gn is called simple if all
right�hand sides tn are patterns and Gn is both cycle
free and right isolated�

For instance� to solve a matching problem fs��tg we
may wlog� assume that t is ground� thus the system
is simple� Solving a single goal l��r of a simple sys�
tem by pure uni�cation is decidable ����� since r is a
linear pattern and l and r share no variables� Further�
more� in a simple system� no occurs check is needed�
e�g� P��c	P 
 cannot occur� This extends to the full
system of goals since no cycles are allowed�

The next theorem shows that simple systems are
closed under the rules LN� For the Decomposition rule
and the two narrowing rules� the proof follows easily
from the form of the goals in a simple system and from
the restriction on the rules� The Imitation and Projec�
tion substitutions introduce new variables and hence
do not create cycles� The elimination rule requires a
few case distinctions� For instance� when eliminating
a goal of the form t��P � the variable P may not occur
in any other goal on the right hand side�

Theorem 	�	 Assume an HRS R where all left�hand

sides are linear patterns� If G is a simple system of

goals then applying LN with R preserves this property�

In order to check if a second�order simple system is
solvable by uni�cation only� we iteratively solve max�
imal 	wrt� �
 goals with LN� That is� if s��t is a
maximal goal� then t is a linear pattern and the free
variables in t may not occur elsewhere� Then solving
this goal with LN 	without the narrowing rules
 ter�
minates with a set of �ex��ex pairs� all of which are of
the form

�xn�t � �xn�G	yj
�



where G does not occur elsewhere� Such pairs can be
�nitely solved as shown in ����� It remains to be seen
that this solution preserves the property that the re�
maining system is simple� all solutions for F � FV	t

are of the form fF �� �xk�F

�	zj
g� where fzjg � fxkg
and F � is a new variable of appropriate type� Hence
when applying this solution to the remaining equa�
tions� the system remains simple� as G does not occur
elsewhere�

Theorem 	�
 Solving a simple second�order goal sys�

tem Gn by uni�cation is decidable and yields only a

�nite number of solutions�

Thus we have achieved that divergence of simple sys�
tems only stems from the lazy narrowing rules� as in
the �rst�order case� This is important for practical
applications� and may be a good starting point for
functional�logic programming languages�

Simple systems also have the advantage that it is
easy to see if a system is in solved form�

Theorem 	�� If a simple system of goals is of the

form X�
�
�t�� � � � � Xn

�
�tn� where all Xn are distinct�

then it is solvable�

It can be shown that the above solved form is equiva�
lent to dag�solved form ���� in the �rst�order case� but
notice that the��ordering does not correspond to the
ordering needed for dag�solved form�

With the above completeness result for LN it re�
mains for future research to develop more re�ned and
incremental strategies� e�g� that behave like in the
�rst�order case as much as possible� For instance� if
a goal of the form �xk�Y 	tj
���xk�t is solvable by
pure uni�cation� application of Lazy Narrowing at the
variable Y could be delayed� and similarly for goals
with a variable on the right� Interestingly� if Y 	tj
 is
a pattern� Y �� FV	t
 and the goal is solvable by uni�
�cation� then it is solvable for all instances of �xk�t�
thus generalizing the �rst�order case� This case is par�
ticularly easy to detect in simple systems�

� Narrowing on patterns with con�
straints

We have seen in Section � that the well�developed
�rst�order notion of 	general
 narrowing is problematic
when we go beyond higher�order patterns� Although
lazy narrowing solves most of these problems� it would
be nice to integrate some of the ideas of the former
approach� For instance� lazy narrowing has similar

disadvantages as lazy evaluation� which can be less
e�cient than eager evaluation�

An alternative approach that allows to use the gen�
eral version of �rst�order narrowing is presented in this
section� The idea is to factor out the complicated case�
narrowing at variable positions� into constraints and
work with the simpler pattern part as shown in Sec�
tion ���� Compared to ����� where non�pattern uni�
�cation problems are delayed in a higher�order logic
programming language� we also have to solve the con�
straints modulo R�

The rules NC in Figure � work on a pair 	t� C
�
where t is a term whose subterms with variable heads
can be shifted to the goals C with rule Flatten� These
can be solved with lazy narrowing as in NC or any
comparable method� Then on t� narrowing at or be�
low variable positions is not needed� The assumption
is that in many applications� most 	sub�
terms are pat�
terns� such that the pattern part performs the large
part of the computation�

For instance� to solve a goal f	F 	f	a


��g	a
 wrt�
R� as in Example ���� we may �atten the left�hand side
to 	f	F �
��g	a
� fF 	f	a

��F �g
� Then the �at�
tened term can be handled with �rst�order techniques�
possibly yielding fF � �� f	a
g� Solving the remaining
constraint F 	f	a

��f	a
 is simple� and it may not
even be desirable to compute all its solutions�

It is su�cient to apply the rule Narrow only at sub�
terms that have been �attened to patterns� as done in
the completeness proof� Hence the uni�cation needed
in rule Narrow is pattern uni�cation if the the left�
hand sides are assumed to be patterns�

Notice that rule Flatten may also apply at a sub�
term X	xn
 that is a pattern� This is clearly not
needed in many cases� but it is di�cult to guaran�
tee that all substitutions involved are R�normalized�
For lazy narrowing� it may even be considered an ad�
vantage 	for lazy evaluation
 that not only normalized
substitutions are computed� This is a major problem
when integrating the two approaches to narrowing�
There are however simple criteria when this copying
is unnecessary for normalized substitutions� For in�
stance� if a variable Y in a tuple 	t� C
 occurs only
once in t and once in C� no �attening on a pattern
subterm Y 	� � �
 is needed�

Theorem 
�� �Completeness of NC� Assume an

HRS R where all left�hand sides are higher�order

patterns� If s��t has the solution 
s
�

�Rt� then

	s��t� fg

�
�	

NC 	t�
�t� C
 such that 
s � t and 
 is

more general � than 
 and the goals in C are �ex��ex

equations�

�Modulo the newly added variables	



Solve
	t��t�� C
 �� 	t���t�� 
C
 if 
t � t�

Flatten Non�pattern
	t��t�� C
 � 	t�X�	xk
�p��t�� f�xk�X	tn
���xk�X

�	xk
g 
C

if p is a rigid path in t such that tjp � X	tn

and xk � bv	t� p


Pattern Narrow
	t��t�� C
 �� 	
t�r�p��t�� 
C
 if p is a rigid path in t�


tjp � 
l where l � r is a xk�lifted rule
and xk � bv	t� p


Lazy Narrowing
	t��t�� C
 �� 
	t��t�� C�
 if C ��

LN C�

Figure �� System NC for Narrowing with Constraints

Examining the completeness proof shows that
rewrite steps in 
s

�

�Rt are modeled either in the pat�

tern term or in the constraints� If the reduction from

s has certain properties� such as left�most or inner�
most� these also hold for the pattern� as the reductions
there are part of the full reduction� Hence we con�
jecture that many narrowing strategies for �rst�order
rewrite systems can be lifted to the pattern part�

� Example

In this section we present an example for modeling
symbolic di�erentiation where narrowing is used as a
programming language� Symbolic di�erentiation is a
standard example in many text books on Prolog �����
In contrast to �rst�order programming� we can easily
formalize the rules for di�erentiating nested functions�
e�g� �x�sin	cos	x

� This requires a notion of bound
variables and is hence excluded in the standard ver�
sions for Prolog�

The naive approach to specify di�erentiation with
an equation di�	�x�F 
 � �x�� fails� as the equation
is not of base type� With rules of higher type� our
notion of rewriting does not capture the correspond�
ing equational theory ����� The idea is a function d
such that d	�x�v�X
 computes the value of the di�er�
ential of �x�v at X� When abstracting over this X�
we can express the di�erential of a function again as a
function� Although this generalization is slightly less
elegant� we can now use our notion of rewriting�

Figure � shows how to specify di�erentiation with
second�order equations of base type� Observe that we
do not formalize the chain rule explicitly� as this would

require nested free variables and our goal is to have
patterns as left�hand sides� i�e� the left�hand side of
the chain rule would be of the form �x�d	F 	G	x


�

Figure � also includes a few rules for simple
trigonometry� Observe that the right�hand sides are
not patterns� hence rewriting a pattern termmay yield
a non�pattern� Now we can attempt to solve the query

�x�d	�y�ln	F 	y

� x
���x�cotan	x
�

The solution fF �� �x�sin	x
g can be found with the
narrowing sequence

�x�d	�y�ln	F 	y

� x
 
�

�x�d	�y�F 	y
� x
�F 	x

�
�

�x�cos	x
�sin	x
 
�
�x�cotan	x
�

Lazy narrowing provides a more goal directed
search in this example� as uni�cation can be used ear�
lier for simpli�cation�

f�x�d	�y�ln	F 	y

� x
���x�cotan	x
g �
f�x�d	�y�F 	y
� x
�F 	x
���x�cotan	x
g �
f�x�d	�y�F 	y
� x
�F 	x
���x�cos	x
�sin	x
�

�x�cotan	x
���x�cotan	x
g
�
�

f�x�d	�y�F 	y
� x
���x�cos	x
�
�x�F 	x
���x�sin	x
g

Now the solution can be found by �rst solving the
second goal by uni�cation and then by rewriting the
�rst goal�



d	�y�F�X
 � �
d	�y�y�X
 � �
d	�y�sin	F 	y

� X
 � cos	F 	X

 � d	�y�F 	y
� X

d	�y�cos	F 	y

� X
 � 
� � sin	F 	X

 � d	�y�F 	y
� X

d	�y�F 	y
 �G	y
� X
 � d	�y�F 	y
� X
 � d	�y�G	y
� X

d	�y�F 	y
 �G	y
� X
 � d	�y�F 	y
� X
 �G	X
 � d	�y�G	y
� X
 � F 	X

d	�y�ln	F 	y

� X
 � d	�y�F 	y
� X
�F 	X

cos	X
�sin	X
 � cotan	X

X � � � X

Figure �� Rules for symbolic di�erentiation

� Conclusions

This work gives a �rst framework for solving higher�
order equations by comparing several approaches to
higher�order narrowing� The general �rst�order no�
tion of narrowing can be extended to higher�order pat�
terns� but for the full higher�order case it seems less
promising� Among several technical problems� han�
dling locally bound variables in the solutions seems to
be a principal problem with this approach� The al�
ternative� lazy narrowing� avoids most of these prob�
lems by integrating equational reasoning into uni�ca�
tion� Another alternative is to divide a higher�order
R�matching problem into a pattern part� where nar�
rowing works as in the �rst�order case� and a part with
constraints that are not patterns� This is possible as
higher�order patterns on the one side act like �rst�
order terms� but on the other side can express bound
variables in a su�ciently powerful way�

This paper prepares the ground for the integra�
tion of higher�order functional and logic program�
ming� Whereas all major functional languages support
higher�order programming� most existing approaches
to functional�logic programming only allow for lim�
ited higher�order programming 	see e�g� ��� �� ��� ���
�
�
 and mostly use �rst�order semantics�

For an HRS R with linear patterns as left�hand
sides� we have introduced simple goal systems� where
solvability by pure uni�cation is decidable in the
second�order case� This corresponds to the �rst�order
case� It permits second�order functional�logic pro�
gramming with decidable uni�cation� Compared to
higher�order logic programming� this functional ap�
proach lies between ��Prolog ����� where full higher�
order terms are used� and Elf ����� where non�patterns
are just delayed as constraints�

Furthermore� this result can be the basis for further
investigation into the decidability of second�order R�
matching problems� For instance� Curien ��� presents
�rst results on second�order E�matching for �rst�order

theories�
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