Higher-Order Narrowing

Christian Prehofer™
Institut fir Informatik,
TU Minchen, 80290 Miinchen, Germany

prehofer@informatik.tu-muenchen.de

Abstract

We introduce several approaches for solving higher-
order equational problems by higher-order narrow-
g and give first completeness results. The results
apply to higher-order functional-logic programming
languages and to higher-order unification modulo a
higher-order equational theory.

We lft the general notion of first-order narrow-
g to so-called higher-order patterns and argue that
the full higher-order case is problematic. Integrai-
mg narrowing nto unification, called lazy narrow-
g, can avoid these problems and can be adapted to
the full higher-order case. For the second-order case,
we develop a version where the needed second-order
unification remains decidable. Finally we discuss a
method that combines both approaches by using nar-
rowing on higher-order patterns with full higher-order
constraints.

1 Introduction

In recent years many results for first-order term
rewriting have been lifted to the higher-order case.
Starting with the work of Klop [12], there exist
several notions of higher-order term rewriting [21,
32]. Among results for these systems are a criti-
cal pair lemma for higher-order term rewriting sys-
tems (HRS) [21], confluence of orthogonal HRS [22,
32] and termination criteria [31].

This interest in higher-order rewriting follows the
progress in its applications, for instance functional lan-
guages and theorem provers, where higher-order con-
cepts are of growing interest. In this paper we lift yet
another first-order concept to the higher-order case:
solving equations by narrowing. We introduce several
versions of higher-order narrowing for solving higher-

*Research supported by DFG grant Br 887/4-2 and by ES-
PRIT WG 6028, CCL.

order equations modulo a higher-order equational the-
ory and give first completeness results.

The well developed theory of first-order narrowing
serves as a general method for R-unification, where
R is a theory given by a convergent term rewriting
system. For an overview see [17]. Narrowing also
forms the underlying computation rule for functional-
logic programming languages [26, 6]. For several of
these there exist higher-order extensions [2, 3, 10, 13,
27], but to our knowledge completeness results for the
higher-order case are still missing.

Recently, Qian [25] lifted the completeness of first-
order narrowing strategies to higher-order patterns for
first-order rules. Higher-order patterns are an impor-
tant subclass of A-terms, discovered by Miller [19],
that include bound variables, but behave almost as
first-order terms in most respects. However patterns
are often too restrictive for many applications (see e.g.
[16]). For instance, a standard example for functional
programs, the function

map(F, cons(X,Y)) = cons(F(X), map(F,Y))

has the non-pattern F(X) on the right-hand side.
Hence rewriting with this rule may yield non-pattern
terms. When narrowing a first-order term with such
higher-order rules, some restrictions on the rewrite
rules can guarantee that the resulting term is still first-
order, as developed in [14]. Examples from other ar-
eas, e.g. formalizing logics, can be found in [21].

The structure of the work is as follows. The first ap-
proach we consider is the general notion of narrowing,
for which many refinements exist, e.g. basic narrow-
ing [9]. For this, Section 3 presents an abstract view of
higher-order narrowing, where a problem with locally
bound variables in the solutions becomes apparent.
We show in Section 3.1 that the first-order notion of
narrowing can be lifted to higher-order patterns and
argue that it is problematic when going beyond higher-
order patterns.

1The permitted terms are slightly more general than first-
order terms (see Sec. 3.1).

An alternative approach is lazy narrowing, dis-
cussed in Section 4, where many of the problems en-
countered in the first approach can be avoided, as
narrowing is embedded into unification. Using new
results on second-order unification [24], we present a
refinement of lazy narrowing for second-order equa-
tional matching with left-linear rules, where syntactic
solvability of the system remains decidable, as it is in
the first-order case.

The main problems of the first approach with gen-
eral narrowing come from the fact that narrowing at
variable positions 1s needed. Section 5 shows that we
can factor out this complicated case by flattening the
terms to patterns plus adding some constraints. Then
narrowing on the pattern part proceeds almost as in
the first-order case and it remains to solve the con-
straints, which can be done by lazy narrowing. In
that way we have a modular structure, and higher-
order lazy narrowing or an equally powerful method
is used only where it is really needed.

2 Preliminaries

We follow the standard notation of term rewriting,
see e.g. [5]. For the standard theory of A-calculus we
refer to [8, 1] and for higher-order unification we refer
to [29].

We assume the following variable conventions:

F, G, H, P, X,Y free variables,
a, b, c, f, g (function) constants,
x,y, z bound variables and

a, B, 7 type variables.

Type judgements are written as ¢ : 7. Further, s and
t stand for terms and u, v, w for constants or bound
variables. The following grammar defines the syntax
for A-terms:

t = Fla|ec| det| (t1t2)

A list of syntactic objects s1,...,s, where n > 0
is abbreviated by 5,. For instance, n-fold abstraction
and application are written as AT,.s = Axy...Ax,.s
and a(3,) = ((---(a s1)---) sn), respectively.

Substitutions are finite mappings from variables
to terms and are denoted by {X, — t,}. Free and
bound variables of a term ¢ will be denoted as FV(¢)
and BY(t), respectively.

The conversions in A-calculus are defined as:

o a-conversion:Ax.t =, Ay.({z — y}t)
o [-conversion:(Az.s)t =g {x — t}s

o n-conversion: if x ¢ FV(t), then Ax.(tx) =, t

We will in general assume that terms are in long G7-
normal form [21]. For brevity, we may write variables
in p-normal form, e.g. X instead of A7, . X(%T,). We
assume that the transformation into long gr-normal
form is an implicit operation, e.g. when applying a
substitution to a term.

The set of types 7 for the simply typed A-terms
is generated by a set 7y of base types (e.g. int, bool)
and the function type constructor —. Notice that —
is right associative, i.e.a = f—=y=a — (8 — 7).

The order of a type ¢ = a1 — ...
3, B €71y is defined as

— o, —

1 ifn=0,ie.0p=0€7
1+ %k otherwise, where
k =max(Ord(ay),...,0rd(ay))

Ord(yp) =

A language of order n is restricted to

e function constants of order < n + 1 and
e variables of order < n.

A substitution 6 is in long Sn-normal form if all
terms in the image of 8 are in long Br-normal form.
The convention that a-equivalent terms are identified
and that free and bound variables are kept disjoint (see
also [1]) is used in the following. Furthermore, we as-
sume that bound variables with different binders have
different names. Define Dom(f) = {X | 6X # X}
and Rng(0) = Uxepom(s) FV(0X). Two substitu-
tions are equal on a set of variables W, written
as 0 =w & if oo = &' v for all @« € W. The restriction
of a substitution to a set of variables W is defined
as Olwa = fa if @« € W and 0lwo = a otherwise.
A substitution 6 is idempotent iff 6 = 06. We will
in general assume that substitutions are idempotent.
A substitution 6’ is more general than @, written as
6" < 6,if 6 = o0 for some substitution o.

We describe positions in A-terms by sequences over
natural numbers. The subterm at a position p in a
A-term ¢ is denoted by t|,. A term ¢ with the subterm
at position p replaced by s is written as t[s],.

The following subclass of A-terms was introduced
originally by Dale Miller [18].

Definition 2.1 A term ¢ in S-normal form is called a
(higher-order) pattern if every free occurrence of a
variable F' is in a subterm F'(uy,) of t such that the u,
are n-equivalent to a list of distinct bound variables.

Unification of patterns is decidable and a most general
unifier exists if they are unifiable [18]. Also, the unifi-
cation of a linear pattern with a second-order term is
decidable and finitary, if they are variable-disjoint [24].

Examples of higher-order patterns, or patterns
for short, are Az, y.F(x,y), \e.f(G(Az.2(z))), where
the latter is at least third-order. Non-patterns are
Az, y.F(a,y) and Ae.G(H(2)).

If p is a position in s then let bu(s, p) be the set of
all A-abstracted variables on the path from the root
of s to p. Such a path is called rigid if it contains no
free variables. An Tj-lifter of a term ¢ away from
W is a substitution ¢ = {F — (pF)(73) | FF € FV(t)}
where p is a renaming such that Dom(p) = FV(1),
Rng(p) "W = {} and pF : 4 — ---
ifwy :m, ..., 2 7 and F ;7. A term t 1S Tg-
lifted if an Zy-lifter has been applied to t. For example
{G — G'(x)} is an z-lifter of ¢(G) away from any W
not containing G'.

The following definitions for Higher-Order Rewrite
Systems are slightly less restrictive than the ones by
Nipkow [21, 22], but are an instance of the definitions
by Wolfram [33].

— Ty — T

Definition 2.2 A rewrite rule is a pair | — r such
that [1s not n-equivalent to a free variable, [and r
are long gn-normal forms of the same base type, and
FV() 2 FV(r). A Higher-Order Rewrite System
(for short: HRS) is a set of rewrite rules. The letter R
always denotes an HRS. Assuming a rule ({ — r) € R
and a position p in a term s in long Gny-normal form,
a rewrite step from s to t is defined as

5—%}”15 & s, =00 At =sllr],.

In the first-order case, t ~/=" s is a narrowing

step if € is a most general unifier of t|p and [and
s = 6t[r],. For a rewrite or narrowing step we often
omit some of the parameters [— r,p and 6.

3 Full higher-order narrowing

The idea of first-order narrowing is, roughly speak-
ing, to find an instance of a term such that some sub-
term can be rewritten. Repeating this yields a com-
plete method for matching modulo a theory given by
a convergent rewrite system R, and for instance R-
unification can easily be embedded.?

Since A-calculus can express a notion of subterm,
we can model narrowing in a very abstract way. Even
in this very general setting we will identify a problem
with locally bound variables in solutions. To handle
bound variables correctly within A-calculus, it will be

2To R-unify s and ¢, it suffices to add both a new symbol =
and arule X=X — true and then to solve s = t—true.

necessary to guess these variables beforehand, which
is clearly unsatisfactory.

We simulate a context where reduction takes place
by an appropriate higher-order variable C' i.e. instead
of s—!="t we can write s = 0C(l) — 6C(r) =t for
an appropriate substitution #. This yields the follow-
ing generalization of first-order narrowing, where most
of the real problems are hidden in the unification.

Definition 3.1 A A-term s marrows to ¢ with the
rule [— r and with the substitution @, written as
5~k 4 if

e T1s a yp-lifter of [,
e 0 is a unifier of s =" C(Ayg.7l), where C is a
new variable of appropriate type, and

o t = 0C(Agp.Tr).

Instead of explicitly replacing a subterm at position
p, we use f-reduction for this purpose. It would be
possible to make the subterm explicit where the re-
placement takes place, but this considerably compli-
cates the completeness proof. Note that { may occur
repeatedly or not at all in 6C(l), i.e. s = 6t is possi-
ble.

Lemma 3.2 (One Step Lifting) Let R be an HRS
and let | — r € R. Suppose we have two terms s and
t witht = s for a substitution 0 and a set of vari-
ables V' such that FV(s) UDom(f) C V. Ift—%_”t’
with FY(L) NV = {}, then there exist a term s’ and
substitutions 6 and o such that

l—r of
L] 5’\/'>o. S

o 55’ =1,
e b0 =y B8 and 6 s R-normalized f 6 1s R-
normalized,

o FV(s')UDom(é) CV —Dom(o) URng(c).

?

With Lemma 3.2, completeness of narrowing can be
shown similarly to the first-order case, as e.g. in [17].
For the proof of the above lemma it is important that
the rewrite rule [— r has been lifted over the right
number of bound variables.

Let us see by an example that the number of vari-
ables over which a rule has to be lifted cannot be de-
termined beforehand. The problem occurs when a so-
lution @ for a variable X contains a local Ay and a
rewrite step in a subterm below where y occurs has
to be lifted. When narrowing the replaced subterm is
made explicit in oC(l) — ¢C(r), but y is not visible
yvet. With the lifting of [— » it 1s possible to rename
bound variables in r later.

Example 3.3 Assume R = {h(P,a) — g(P,a)} and
consider the matching problem H(a)—"u()y.g(y,a))
with the solution {H — Az.u(Ay.h(y,2))}. When
narrowing without lifting, we obtain H(a) ~»%
H"(g(P’,a)), which matches u(Ay.g(y,a)), but does
not subsume the above solution, as g(P’, a) cannot be
instantiated to g(y, a).

The solution is obtained here by lifting the rule over
one parameter. First, one solution to the unification
problem H(a) =" C(Ay.h(P(y),a)), which is needed

for the narrowing step, is
{H — Xe.H'(Ay.h(P(y), 2)),C — Xx.H' (Ay.x(y)).

Then we have H(a) ~f H'(Ay.g(P(y),a)) and the
matching problem can be solved with the substitution
{H' — Az.u(x), P — Ax.x}. In the general case, the
solution to H may contain an arbitrary number of lo-
cally bound variables, such as y here, but the need
to lift over these variables i1s not visible when looking
at H(a). To obtain completeness for this definition of
narrowing, we thus have to guess locally bound vari-
ables, at least in our framework.

The above notion of narrowing is not of great com-
putational interest. For instance, there is little hope
to find cases where even the application of narrowing

is decidable.
3.1 Narrowing on patterns

In this section we show that the first-order notion
of narrowing can be adapted to a restricted set of A-
terms, higher-order patterns. Then, as in the first-
order case, narrowing at variable positions implies that
the used substitution is reducible, thus this step is
redundant. We assume in this section that the rules
! — r € R are pattern rules, 1.e. both [and r are
patterns.

Definition 3.4 A narrowing step from a pattern s
to t with a pattern rule [— r at position ¢ with sub-
stitution @, is defined as 5«&27_9”15, where

o 7 is a Pg-lifter of [, where ¥, = bu(s, q) and
e @ is a most general unifier of /\y_k.5|q and Ayg.7l,

and ¢t = 0(s[rr],).

Here, in contrast to the last result, we only have to
lift the rule | — r to the context at position ¢. The
problem in Section 3 with locally bound variables oc-
curs only when narrowing at variable positions, which
is not needed here. When working with first-order
equations, as done by Qian [25] and by Snyder [28],

this lifting is not strictly needed, as the bound vari-
ables in 5|q can be treated as new constants and/or
ignored. This enables Qian to lift completeness of
first-order narrowing strategies to patterns for first-
order equations. We conjecture that most first-order
narrowing strategies can also be lifted to our setting,
yet not as in [25].

Completeness of narrowing follows from Lemma 3.5
as in the first-order case (e.g. [17]) and is omitted here.

Lemma 3.5 (One Step Lifting) Let R be an HRS
with pattern rules and let | — r € R. Suppose we
have two patterns s and t with t = fs for a R-
normalized substitution 8, and a set of variables V
such that FV(s) U Dom(0) C V. If t—%‘”t’ with
FVv()nV ={}, then there exist a term s’ and substi-
tutions 6, 0 such that

P
. 5«»{7_”"5’ and 6s' =t/

e b0 =y 0 and 6 is R-normalized

o FV(s')UDom(é) CV —Dom(c) URng(o)

A similar result has been developed independently
in [14] for conditional rules. In this work, rules with
pattern left-hand sides are used for narrowing on
so called quasi first-order terms. These are slightly
more general than first-order terms. This guarantees
that the resulting term is still quasi first-order. Al-
though this property is desirable, the restrictions in
this approach appear rather ad-hoc, e.g. higher-order
variables in the left-hand sides of rules may occur
only directly below the outermost symbol. For in-
stance, the example in the introduction, the function
map(F,cons(X,Y)) = ..., fulfills this requirement if
X and Y are first-order. Roughly speaking, when nar-
rowing with such a rule, narrowing and rewriting co-
incide for these higher-order variables as they occur
only at depth one on the left-hand side.

3.2 Beyond patterns

We argue in the following that it is difficult to adapt
the above notion of narrowing for patterns to full A-
terms. In Example 3.3 we identified a problem with
locally bound variables. This and several other prob-
lems stem from the fact that narrowing at variable po-
sitions is required, since the rewrite step we lift might
have been at a redex created by S-reduction.

Example 3.6 Assuming the rewrite system

Ro = {f(J(X)) = 9(X)},

narrowing at a variable position is required to
find the solution {H — Az.f(x)} to the problem

e H(f(x))—"Az.g(x):
Az H(f(x)) Mf[?—»kx.f(x) Az.g(x)

Now the question is how to define narrowing at
variable positions. For instance, consider the so-
lution 8 = {H — Xz.h(f(»),2)} to the problem
A H(f(z))—"Az.h(g(x), f(x)), wrt. the Rg-reduction

Az h(f(f(x)), f(x)—" Az .h(g(x), f(=)).

The naive approach, to instantiate H as little as pos-
sible, as in

Na H (f())

~ Hewxe H'(f(x) Az.H'(g(x)),

fails. The problem is that the subterm f(#) is dupli-
cated by 6 and the reduction does not occur inside
f(z). A solution is to create a local context at this
variable. Hence, we instantiate H first with {H
Az . H'"(H'(x),2)}. Then, after f-reduction, the sub-
term H'(f(z)) can be unified by {H' — Az.f(x)} with
the left-hand side f(f(x)) and can be rewritten. Thus
we have

A H(f(@)) s 10,0 A0 v-H (0(2).)

and the solution, here {H' — Az, y.h(x,y)}, is then
obtained by unification.

Extending this approach to second-order narrowing
and the completeness proof are highly technical and
reveal further problems not discussed here. Further
development 1s not pursued, as we believe that the
approaches in the following sections are more promis-
ing.

4 Lazy narrowing

Another, more goal-directed method to solve equa-
tional problems in a top-down manner is lazy narrow-
ing. The main idea is to integrate narrowing into uni-
fication. That is, when R-matching s with ¢, we start
with a goal s—’t that may be simplified to smaller
goals. Then narrowing steps are performed at the root
only, where the unification of the left-hand side of the
rule with s again has to be done modulo R. General-
izing this to lazy higher-order narrowing yields system
LN, shown in Figure 1. It should be noted that our no-
tion of lazy narrowing is also called lazy unification [7,
15] in the first-order case.

System LN essentially consists of the rules for
higher-order unification [29] plus the two narrowing

rules. For instance, reconsider from Example 3.6 the
Ry-matching problem

A H(f(x))—"Az.h(g(x), f(2)),

where lazy narrowing yields

{Ax.Hl(f(x))H?/\x.g(x), /\tz(f(x))—>7/\xf(x)}

by the imitation {H — Ay.h(Hi(y), H2(y))}. Then
the second goal can be solved by projection, and the
first by Lazy Narrowing at Variable with {H;
My f(Hii ()} to {Az Hyy(f(x))—"dz.f(z),...}, fol-

lowed by several higher-order unification steps.

Let s<>t stand for s—'t or t—"s. Observe that
the first five rules in Figure 1 apply symmetrically
as well, in contrast to the two narrowing rules. For
a sequence =1 . = of LN steps, we write =7,
where 8 = 6, ...01. A goal is called flex-flex if it is
of the form /\H.Y(E)—;]/\H.Y’(E).

The completeness proof of system LN is built upon
the completeness proof of higher-order unification.

Theorem 4.1 (Completeness of LN) If s—°t has
solution 0, i.e. Os——"0t, then {s—"t}=5 \{F} such
that & is more general ® than 0 and F is a set of flex-
flex goals.

Compared to the approach in Section 3, many prob-
lems are now taken care of by higher-order unification.
For instance, locally bound variables in a solution are
computed in a outside-in manner before the inner Lazy
Narrowing step needs to lift over these. Furthermore,
flex-flex pairs can express a possibly infinite number of
solutions. This is already very useful for higher-order
unification, but even more for higher-order equational
unification. In contrast, with general narrowing it is
hard to control narrowing at variable positions. The
corresponding goals in lazy narrowing can often be de-
layed as flex-flex pairs. For instance, consider the goal
Ax.e(F(f(2)))—"Az.c(G(x)) wrt. Rg, where lazy nar-
rowing stops after one decomposition step, whereas
general narrowing may blindly narrow at F'(...).

4.1 Decidability of goal systems

In this section we show how to balance a system
of goals such that the syntactic solvability (wrt. the
conversions of A-calculus) remains decidable.

Assumption. We assume in this section a second-
order HRS R where all left-hand sides are linear pat-
terns. Furthermore, we assume that all bound vari-
ables are of base type. In case a goal contains a

3Modulo the newly added variables.

Delete

Decompose

AT f(T) =" ATk f(1)}US =

Eliminate
(FENTRAIUS =*

Imitate

(\Fr F(I) AT f@) U S =*

Project
(VTR P () AT () u s =

Lazy Narrowing
Dz fln) =" Az t}US =

Lazy Narrowing at Variable
{Azp H(t,) =" Az t}usS =

{t="1}us = S

{IATpt, =" ATt U S

05 if F ¢ FV(AFy.t) and
where 6 = {F — Az .t}

{NT. Hp (00,) ATF.0,)} U 65
where 6 = {F — AT, f(Hm (Tn))}

and H,, are new variables

{ATE.0t;(H; (1)) = ATp.v(0t),)} UGS
where § = {F Him.xi(Hj (Tn))},

t; :7; — 19 and H; are new variables

ATt —"ATr .0, } U { AT r—="AT5 2} U S
where f(E) — 7 1s an Tg-lifted rule from R

{2z H(t,)—" Az 3 U Dzpr—" Azt U S
where | — r is a Tg-lifted rule from R

?

Figure 1: System LN for Lazy Narrowing

second-order bound variable, lifting over this variable
may yield a third-order term, which we avoid here for
simplicity.

We first define an ordering on goals:

Definition 4.2 We write s—'s' < t—"t/ if IX.X €
FV(s'YANX € FV(t).

The next goal is to achieve the following invariant:

Definition 4.3 A system of goals G, = {s,,—'t, } is
called cycle free if the transitive closure of € 1s a
strict partial ordering on G, and right isolated if
every variable occurs at most once on the right-hand
sides of G,,. Furthermore, G,, is called simple if all
right-hand sides 7,, are patterns and (,, is both cycle
free and right isolated.

For instance, to solve a matching problem {s—7t} we
may wlog. assume that ¢ is ground, thus the system
is simple. Solving a single goal [—"r of a simple sys-
tem by pure unification is decidable [24], since r is a
linear pattern and [and r share no variables. Further-
more, in a simple system, no occurs check is needed,
e.g. P—"¢(P) cannot occur. This extends to the full
system of goals since no cycles are allowed.

The next theorem shows that simple systems are
closed under the rules LN. For the Decomposition rule
and the two narrowing rules, the proof follows easily
from the form of the goals in a simple system and from
the restriction on the rules. The Imitation and Projec-
tion substitutions introduce new variables and hence
do not create cycles. The elimination rule requires a
few case distinctions. For instance, when eliminating
a goal of the form ¢t—" P, the variable P may not occur
in any other goal on the right hand side.

Theorem 4.4 Assume an HRS R where all left-hand
stdes are linear patterns. If G is a simple system of
goals then applying LN with R preserves this property.

In order to check if a second-order simple system is
solvable by unification only, we iteratively solve max-
imal (wrt. <) goals with LN. That is, if s—"¢ is a
maximal goal, then ¢ is a linear pattern and the free
variables in ¢ may not occur elsewhere. Then solving
this goal with LN (without the narrowing rules) ter-
minates with a set of flex-flex pairs, all of which are of
the form

XTn t = AT . G(T5),

where (G does not occur elsewhere. Such pairs can be
finitely solved as shown in [24]. It remains to be seen
that this solution preserves the property that the re-
maining system is simple: all solutions for F' € FV(¢)
are of the form {F — AZTg . F'(Z;)}, where {Z;} C {75}
and F’ is a new variable of appropriate type. Hence
when applying this solution to the remaining equa-
tions, the system remains simple, as G does not occur
elsewhere.

Theorem 4.5 Solving a simple second-order goal sys-
tem Gy, by unification 1s decidable and yields only a
finite number of solutions.

Thus we have achieved that divergence of simple sys-
tems only stems from the lazy narrowing rules, as in
the first-order case. This is important for practical
applications, and may be a good starting point for
functional-logic programming languages.

Simple systems also have the advantage that it is
easy to see if a system is in solved form:

Theorem 4.6 If a simple system of goals is of the

form Xlgtl, .. .,Xn;tn, where all X, are distinet,
then it 1s solvable.

It can be shown that the above solved form is equiva-
lent to dag-solved form [11] in the first-order case, but
notice that the «-ordering does not correspond to the
ordering needed for dag-solved form.

With the above completeness result for LN it re-
mains for future research to develop more refined and
incremental strategies, e.g. that behave like in the
first-order case as much as possible. For instance, if
a goal of the form /\H.Y(E)H?Aﬁ.t is solvable by
pure unification, application of Lazy Narrowing at the
variable Y could be delayed, and similarly for goals
with a variable on the right. Interestingly, if Y'(¢;) is
a pattern, Y ¢ FV(t) and the goal is solvable by uni-
fication, then 1t is solvable for all instances of AZy.¢,
thus generalizing the first-order case. This case is par-
ticularly easy to detect in simple systems.

5 Narrowing on patterns with con-
straints

We have seen in Section 3 that the well-developed
first-order notion of (general) narrowing is problematic
when we go beyond higher-order patterns. Although
lazy narrowing solves most of these problems, it would
be nice to integrate some of the ideas of the former
approach. For instance, lazy narrowing has similar

disadvantages as lazy evaluation, which can be less
efficient than eager evaluation.

An alternative approach that allows to use the gen-
eral version of first-order narrowing is presented in this
section. The idea is to factor out the complicated case,
narrowing at variable positions, into constraints and
work with the simpler pattern part as shown in Sec-
tion 3.1. Compared to [23], where non-pattern uni-
fication problems are delayed in a higher-order logic
programming language, we also have to solve the con-
straints modulo R.

The rules NC in Figure 2 work on a pair (¢,C),
where ¢ is a term whose subterms with variable heads
can be shifted to the goals C' with rule Flatten. These
can be solved with lazy narrowing as in NC or any
comparable method. Then on ¢, narrowing at or be-
low variable positions is not needed. The assumption
is that in many applications, most (sub-)terms are pat-
terns, such that the pattern part performs the large
part of the computation.

For instance, to solve a goal f(F(f(a)))—"g(a) wrt.
Ry as in Example 3.6, we may flatten the left-hand side
to (F(F")—"g(a),{F(f(a))—"F'}). Then the flat-
tened term can be handled with first-order techniques,
possibly yielding {F’ — f(a)}. Solving the remaining
constraint F'(f(a))—"f(a) is simple, and it may not
even be desirable to compute all its solutions.

It is sufficient to apply the rule Narrow only at sub-
terms that have been flattened to patterns, as done in
the completeness proof. Hence the unification needed
in rule Narrow is pattern unification if the the left-
hand sides are assumed to be patterns.

Notice that rule Flatten may also apply at a sub-
term X (%,) that is a pattern. This is clearly not
needed in many cases, but it is difficult to guaran-
tee that all substitutions involved are R-normalized.
For lazy narrowing, it may even be considered an ad-
vantage (for lazy evaluation) that not only normalized
substitutions are computed. This is a major problem
when integrating the two approaches to narrowing.
There are however simple criteria when this copying
is unnecessary for normalized substitutions. For in-
stance, if a variable Y in a tuple (¢,C) occurs only
once in ¢ and once in ', no flattening on a pattern
subterm Y'(...) is needed.

Theorem 5.1 (Completeness of NC) Assume an
HRS R where all left-hand sides are higher-order
patterns. If s—"t has the solution 0s——%t, then
(s—"1, {NS%c(t—="1,C) such that és = t and & is
more general * than 0 and the goals in C are flex-flex
equations.

4Modulo the newly added variables.

Solve

=", 0y =% (t
Flatten Non-pattern
t="1,C) =

and Ty = bu(t, p)
Pattern Narrow
t—="t,C) =?
o,
and Ty = bu(t, p)
Lazy Narrowing
t—="t,C) =?

=00 if 0t =t

(LX) — 1, (T X (T
if pis a rigid path in t such that t|p = X(n)

(0t[r],—"t',0C) if p is a rigid path in ¢,
= @l where | — r 1s a T3-lifted rule

O(t—="¢',C") if C = 5 C’

Figure 2: System NC for Narrowing with Constraints

Examining the completeness proof shows that
rewrite steps in fs——¥¢ are modeled either in the pat-
tern term or in the constraints. If the reduction from
fs has certain properties, such as left-most or inner-
most, these also hold for the pattern, as the reductions
there are part of the full reduction. Hence we con-
jecture that many narrowing strategies for first-order
rewrite systems can be lifted to the pattern part.

6 Example

In this section we present an example for modeling
symbolic differentiation where narrowing is used as a
programming language. Symbolic differentiation is a
standard example in many text books on Prolog [30].
In contrast to first-order programming, we can easily
formalize the rules for differentiating nested functions,
e.g. Ax.sin(cos(x)). This requires a notion of bound
variables and is hence excluded in the standard ver-
sions for Prolog.

The naive approach to specify differentiation with
an equation diff(Az.F') = Az.0 fails, as the equation
is not of base type. With rules of higher type, our
notion of rewriting does not capture the correspond-
ing equational theory [21]. The idea is a function d
such that d(Az.v, X) computes the value of the differ-
ential of Azxz.v at X. When abstracting over this X
we can express the differential of a function again as a
function. Although this generalization is slightly less
elegant, we can now use our notion of rewriting.

Figure 3 shows how to specify differentiation with
second-order equations of base type. Observe that we
do not formalize the chain rule explicitly, as this would

require nested free variables and our goal is to have
patterns as left-hand sides, i.e. the left-hand side of
the chain rule would be of the form Az.d(F(G())).
Figure 3 also includes a few rules for simple
trigonometry. Observe that the right-hand sides are
not patterns, hence rewriting a pattern term may yield
a non-pattern. Now we can attempt to solve the query

Ae.d(Ay.dn(F(y)),)= Ae.cotan(z).

The solution {F' — Az.sin(z)} can be found with the
narrowing sequence

Az.d(Ay.In(F(y)), =)
e.d(Ay F(y), z)/F(x) >
Az.cos(x)/sin(x)
Az.cotan(z).

—_—

—_—

Lazy narrowing provides a more goal directed
search in this example, as unification can be used ear-
lier for simplification:

{Az.d(Ay.In(F(y)), z)—"Az.cotan(z)} =
Az dAy.Fy),z)/F(z)—>7/\x.cotan(z)} =
{Aed(Ay. F(y),)/ F(x)— Ax.cos(x)/sin(x),

Az.cotan(z)—"Az.cotan(x)} =

{Az.d(Ay.F(y), z)—"Az.cos(z),
Az F(z)—="Az.sin(z)}

Now the solution can be found by first solving the
second goal by unification and then by rewriting the
first goal.

d(Ay.F, X) — 0

d(Ay.y, X) — 1
d(Ay.sin(F(y)), X) — cos(F(X)) *
d(Ay.cos(F(y)), X) — —l*sin(F
d(Ay-F(y) + G(y), X) — d(dy.F(y),
d(Ay.F(y) » G(y), X) — d(dy.F(y),
d(Ay.In(F(y)), X) — d(Ay.F(y),
cos(X)/sin(X) — cotan(X)
X*1 — X

d(Ay.F(y), X)
(X)) * d(Ay.F(y), X)
X) + d(ry.G(y), X)
X)* G(X) +d(Ay.G(y), X) * F(X)
X)/F(X)

Figure 3: Rules for symbolic differentiation

7 Conclusions

This work gives a first framework for solving higher-
order equations by comparing several approaches to
higher-order narrowing. The general first-order no-
tion of narrowing can be extended to higher-order pat-
terns, but for the full higher-order case it seems less
promising. Among several technical problems, han-
dling locally bound variables in the solutions seems to
be a principal problem with this approach. The al-
ternative, lazy narrowing, avoids most of these prob-
lems by integrating equational reasoning into unifica-
tion. Another alternative is to divide a higher-order
R-matching problem into a pattern part, where nar-
rowing works as in the first-order case, and a part with
constraints that are not patterns. This is possible as
higher-order patterns on the one side act like first-
order terms, but on the other side can express bound
variables in a sufficiently powerful way.

This paper prepares the ground for the integra-
tion of higher-order functional and logic program-
ming. Whereas all major functional languages support
higher-order programming, most existing approaches
to functional-logic programming only allow for lim-
ited higher-order programming (see e.g. [2, 3, 10, 13,
27]) and mostly use first-order semantics.

For an HRS R with linear patterns as left-hand
sides, we have introduced simple goal systems, where
solvability by pure unification is decidable in the
second-order case. This corresponds to the first-order
case. It permits second-order functional-logic pro-
gramming with decidable unification. Compared to
higher-order logic programming, this functional ap-
proach lies between A-Prolog [20], where full higher-
order terms are used, and EIf [23], where non-patterns
are just delayed as constraints.

Furthermore, this result can be the basis for further
investigation into the decidability of second-order R-
matching problems. For instance, Curien [4] presents
first results on second-order E-matching for first-order

theories.

Acknowledgements. The author wishes to thank
Tobias Nipkow, Heinrich Hufmann, Konrad Slind and
Jaco van de Pol for valuable comments and discus-
sions, in particular Tobias Nipkow for the idea to lift
rules into a context. The anonymous referees provided
further helpful comments.

References
[1] Hendrik Pieter Barendregt. The Lambda Calculus, its
Syntax and Semantics. North Holland, 2nd edition,
1984.

P. G. Bosco and E. Giovannetti. IDEAL: An ideal de-
ductive applicative language. In Symposium on Logic
Programming, pages 89-95. IEEE Computer Society,,
The Computer Society Press, September 1986.

W. Chen, M. Kifer, and D. S. Warren. HilLog: A
First-Order Semantics for Higher-Order Logic Pro-
gramming Constructs. In Ewing L. Lusk and Ross A.
Overbeek, editors, Proceedings of the North American
Conference on Logic Programming, pages 1090-1114,
Cleveland, Ohio, USA, 1989.

Régis Curien. Second-order E-matching as a tool for
automated theorem proving. In EPIA ’93. Springer
LNCS 725, 1993.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems.
In Jan Van Leeuwen, editor, Handbook of Theoretical
Computer Science Volume B: Formal Models and Se-
mantics, pages 243-320. Elsevier, 1990.

M. Hanus. The integration of functions into logic pro-
gramming: A survey. 1994. To appear in Journal of
Logic Programming.

M. Hanus. Lazy unification with simplification.

In Proc. FEuropean Symposium on Programming.
Springer LNCS (to appear), 1994.

J.R. Hindley and Jonathan P. Seldin. Introduction to
Combinators and A-Calculus. Cambridge University
Press, 1986.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Jean-Marie Hullot. Canonical forms and unification.
In W. Bibel and R. Kowalski, editors, Proceedings of
5th Conference on Automated Deduction, pages 318—
334. Springer Verlag, LNCS, 1980.

M.Rodriguez-Artalejo
Moreno, M.T.Hortala-Gonzalez.

ness of narrowing as the operational semantics of

J.C.Gonzalez-
On the complete-

functional logic programming. In E.Borger, G.Jager,
H.Kleine Biuning, S.Martini, and M.M.Richter, edi-
tors, Computer Science Logic. Selected papers from
CSL°92, LNCS, pages 216-231, San Miniato, Italy,
September 1992. Springer.

Solv-
ing equations in abstract algebras: A rule-based sur-
vey of unification. In Jean-Louis Lassez and Gor-
don Plotkin, editors, Computational Logic: Essays in
Honor of Alan Robinson, pages 257-321. MIT Press,
1991.

Jean-Pierre Jouannaud and Claude Kirchner.

Jan Willem Klop. Combinatory Reduction Systems.
Mathematical Centre Tracts 127. Mathematisch Cen-
trum, Amsterdam, 1980.

Hendrik C.R Lock. The Implementation of Functional
Logic Languages. Oldenbourg Verlag, 1993.

C. A. Loria-Saenz. A Theoretical Framework for Rea-
soning about Program Construction Based on Fxten-
stons of Rewrite Systems. PhD thesis, Univ. Kaiser-
slautern, December 1993.

A. Martelli, G. F. Rossi, and C. Moiso. Lazy unifi-
cation algorithms for canonical rewrite systems. In
H. Ait-Kaci and M. Nivat, editors, Resolution of
FEquations in Algebraic Structures, Vol. 2, Rewriting
Techniques. Academic Press, 1989.

Spiro Michaylov and Frank Pfenning. Higher-order
logic programming as constraint logic programming.
In Position Papers for the First Workshop on Princi-
ples and Practice of Constraint Programming, pages
221-229, Newport, Rhode Island, April 1993. Brown
University.

A. Middeldorp and E. Hamoen. Counterexamples to
completeness results for basic narrowing. In H. Kirch-
ner and G. Levi, editors, Algebraic and Logic Pro-
gramming: Proc. of the Third International Confer-
ence, pages 244-258. Springer, Berlin, Heidelberg,
1992. Long version to appear in J. of Applicable Alge-
bra in Engineering, Communication and Computing.

Dale Miller.
lambda-abstraction, function variables, and simple
In Peter Schroeder-Heister, editor, Ez-
tensions of Logic Programming, pages 253-281. LNCS
475, 1991.

Dale Miller.
terms as logic programming. In P.K. Furukawa, edi-
tor, Proc. 1991 Joint Int. Conf. Logic Programming,
pages 253-281. MIT Press, 1991.

A logic programming language with

unification.

Unification of simply typed lambda-

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[28]

[29]

[30]

[31]

[32]

[33]

Gopalan Nadathur and Dale Miller. An overview of
A-Prolog. In Robert A. Kowalski and Kenneth A.
Bowen, editors, Proc. 5th Int. Logic Programming
Conference, pages 810-827. MIT Press, 1988.

Tobias Nipkow. Higher-order critical pairs. In Pro-
ceedings, Sixth Annual IEFE Symposium on Logic in
Computer Science, pages 342—-349, Amsterdam, The
Netherlands, 15-18 July 1991. IEEE Computer Soci-
ety Press.

Tobias Nipkow. Orthogonal higher-order rewrite sys-
tems are confluent. In M.A. Bezem and Jan Friso
Groote, editors, Proc. Int. Conf. Typed Lambda Cal-
culi and Applications, pages 306-317. LNCS 664,
1993.

Frank Pfenning. Logic programming in the LF logical
framework. In Gérard Huet and Gordon D. Plotkin,
editors, Logical Frameworks. Cambridge University
Press, 1991.

Christian Prehofer. Decidable higher-order unifica-
tion problems. In Automated Deduction: CADE-12 -
Proc. of the 12th International Conference on Auto-
mated Deduction, 1994. To appear.

7. Qian. Higher-order equational logic programming.
In Proc. 21st ACM Symposium on Principles of Pro-
grammeing Languages, Portland, 1994.

U. S. Reddy. Narrowing as the operational semantics
of functional languages. In Symposium on Logic Pro-
gramming, pages 138-151. IEEE Computer Society,
Technical Committee on Computer Languages, The
Computer Society Press, July 1985.

Yeh-Heng Sheng. HIFUNLOG: Logic programming
with higher-order relational functions. In David H. D.
Warren and Peter Szeredi, editors, Proceedings of
the Seventh International Conference on Logic Pro-
gramming, pages 529-545 Jerusalem, 1990. The MIT
Press.

W. Snyder. Higher order E-unification. In M. E.
Stickel, editor, 10th International Conference on Au-
tomated Deduction, pages 573-587, Berlin, Heidel-
berg, 1990. Springer.

Wayne Snyder and Jean Gallier. Higher-order unifi-
cation revisited: Complete sets of transformations. J.
Symbolic Computation, 8:101-140, 1989.

Leon Sterling. The Art of Prolog Advanced Program-
ming Techniques. MIT Press, 1986.

J. C. van de Pol. Termination proofs for higher order
rewrite systems. In HOA 93. Springer LNCS, 1994.
To appear.

Femke van Raamsdonk. Confluence and superdevel-
opments. In Rewriting Techniques an Applications,
pages 168-182. LNCS 690, June 1993.

D. A. Wolfram. The Clausal Theory of Types. Cam-
bridge Tracts in Theoretical Computer Science 21.
Cambridge University Press, 1993.

