On Modularity in Term Rewriting and
Narrowing

Christian Prehofer*

Technische Universitat Minchen™*

Abstract. We introduce a modular property of equational proofs, called
modularity of normalization, for the union of term rewrite systems with
shared symbols. The idea is, that every normalization with R = R; +
R> may be obtained by first normalizing with R, followed by an R,
normalization.

We develop criteria for this that cover non-convergent TRS R, where, as
the main restriction, R; is required to be left-linear and convergent. As
interesting applications we consider solving equations modulo a theory
given by a TRS. Here we present a modular narrowing strategy that can
be combined with nearly all common narrowing strategies. Furthermore,
we also prove some modularity results for decidability of unification and
matching (via termination of narrowing).

1 Introduction

We study a modular property of equational normalization proofs, called modu-
larity of normalization, for term rewrite systems with shared symbols. The idea
is, that every normalization with R = R; + Rs may be obtained by first nor-
malizing with R; followed by an Rs normalization. We examine this idea in the
context of rewrite systems, with possible extension to more complex and possibly
hybrid systems.

There has been considerable work to show modularity for properties of term
rewrite systems (TRS) such as confluence and termination, e.g. [16, 24, 10].
Most of the results on modularity concern the union of term rewrite systems
with disjoint signatures, only a few also cover shared symbols [17, 20]. For the
union of TRS with shared symbols, many approaches are based on commutation
criteria, see Figure 1 for the common definitions, where R = Ry 4+ R» is assumed.
For an overview see [16].

For convergent R, some criteria for modularity of normalization follow from
known results. Our main contribution is to extend these to the case where R»
is not convergent. This extension allows for much wider applications, e.g. to
functional programming or functional-logic programming languages based on
narrowing [11], where ground-convergence and non-termination are prevalent.

* Research supported by the DFG under grant Br 887/4-2, Deduktive Programm-
entwicklung and by ESPRIT WG 6028, CCL.

** Full Address: Fakultat fiir Informatik, 80290 Miinchen, Germany. Tel: +49 89 2105
2693, Fax: 449 89 2105 8183 E-mail: prehofer@informatik.tu-muenchen.de

Modularity of normalization has some interesting applications for equational
reasoning: assume R| C Ry | R2] holds, then

— R has unique normal forms (wrt. reduction) iff Ry and Rz have. With this ar-
gument we present results that overlap with an open problem in Middeldorp
[16] (also in [15]).

— We can combine arbitrary complete narrowing strategies for Ry and Ra to
yield a complete R-narrowing strategy, which only considers solutions of the
above form (see Section 5.2) and thus reduces the search space. For instance,
an optimized strategy for Ry can be used, which may not be applicable to R.

— We can combine unification procedures of R; and Ry to obtain a unifica-
tion procedure for R (see Section 5.1). This may yield new results about
decidability of matching and unification.

— We have a notion of incremental or partial evaluation, e.g. if Rs is yet un-
known. Furthermore, if Ry is convergent but R, is not, we have a way to
prefer deterministic operations of R;. This can be applied to incremental
constraint solving based on rewriting.

— If Ry and R» terminate, we have an effective way to compute all R-normal
forms of a term without divergence, even if E does not terminate.

Before we examine these applications in Section 5, we study in Section 4 crite-
ria for modularity of normalization. This property is easy to show for convergent
R if Ry and Rs share no symbols: only Ry must be left-linear and Rs may not
have collapsing rules. Otherwise, if they share symbols, critical pairs have to be
considered as well. As we will see, the property that comes closest to modularity
of normalization is commutation-over. Commutation-over usually requires left-
linearity of Ry and — in almost any reasonable setting — also right-linearity of
Rs. This last requirement is prohibitive for many applications.

For modularity of normalization, convergence and left-linearity of Ry are
required in most criteria, but right-linearity of R is not required.

In addition we observe that the termination of narrowing with a TRS R is a
stronger property than decidability of unification modulo R. That is, there exist
convergent TRSs, such that unification modulo R 1s decidable, but any complete
narrowing strategy cannot terminate.

2 Preliminaries

An abstract reduction system (ARS) R is a binary relation on some set A.
For (a,b) € R we write @ R b. An element « is in R-normal form if no b with
a R b exists. For some reduction R, we denote the transitive closure by Rt,
the reflexive transitive closure by R*, and its reverse by R~'. The union of two
abstract reduction systems is written as Ry + R2. The normalizations of an

ARS R are defined as

R| = {(r,s)|(r R" s) and s is in R-normal form} .

RQ* R2
t————> 12 t—————> 12

R1* R1* I| R1* 1 R1
RQ* v v RQ*
t1 ------ > s t1 ------ > s
Ry and R> commute R1 commutes over R»
Ry
t——m> 12 t
I I R
R1 1 R1 Rll 1 l
; -
R 2]
- s tl ----c- > s
R1 quasi-commutes over Ro Modularity of Normalization

Fig. 1. Definitions of Commutation Properties

For an ARS R = R+ Rs we call R| C R;|Rs| modularity of normalization
(see also Figure 1).

We assume the standard notation of term rewriting, see e.g. [7]. Positions
in terms are described by sequences over natural numbers. The subterm of s at
position p is written as s|_. A term ¢ with the subterm at position p replaced by
s is written as ¢[s],. Substitutions are finite mappings from variables to terms.

Define Var(s) as the set of all variables occuring in a term s. A rewrite rule
is a pair of terms written as [— r. As in [9], we do not generally assume that [
is a not a variable and that Var(r) C Var(l). A rewrite step from a term s to
t 1s defined as

l—r
s —1

P9
where s|, = 0l and ¢ = s[0r], for some substitution §. For such a rewrite step we

often leave some of the parameters implicit. We write ¢ . sort R s to denote
a rewrite step with some rule r» € R.

A rewrite rule [— r is variable-preserving if Var(l) = Var(r), and col-
lapsing if » € Var(l). We write tvi,;rs for a narrowing step from ¢ to s if
o is a most general unifier of ¢| and [and s = ¢t[r],. We also write t~+fis to
describe a narrowing step with some rule from R.

A term is linear if each variable occurs at most once in it. A rewrite rule
l — r is left-linear if [is linear and right-linear if r is linear. Two positions
in a term are independent if none is below the other. Let parallel reduction
from s at independent positions with rules from R be written as s #%¢ or as

sRllt.

A TRS R is confluent, if for all reductions SLRsl and SLRSQ the two
terms are joinable, i.e. s;——%s’ and so—%s'. A TRS is convergent if 1t is
terminating and confluent.

Notice that in our setting, an (R, R2) critical pair (s,?) is defined such that

Ju.s £ £2 ¢ where u = 61 for some rule I — 7 and one of the two reductions
is at the root with [— r and the other is with a rule I’ — r’ at position p such
that 6 is a most general unifier of {|, and /'.

3 Commutation-over vs. Modular Normalization

In this section, we review known criteria for commutation-over. These will pre-
pare the results on modularity of normalization. In the following, we assume
a modular term rewriting system R = R; 4+ R», where Ry and R» may share
function symbols.

In general, modularity of normalization and commutation are orthogonal
(and similarly for commutation-over, if By terminates): commutation only shows
that an equivalent R} R} derivation exists for any R reduction, but not how to
find it. Conversely, R] C R;|R-| implies commutation only for normalizing
reductions. For convergent ARS, commutation-over is strictly stronger.

The following criteria for quasi-commutation has been shown in [21].

Theorem 1 (Raoult and Vuillemin). Assume Ry is a left-linear and Ry is
a right-inear rewrite system. If Rz_l has no overlaps with Ry then Ry quasi-
commautes over Ro.

The original work in [21] shows this result for parallel reductions (i.e. with Ry
for each R;-reduction), an extension that will be used later. Note that the over-
lapping restriction implies that Ry is non-collapsing. The above result has been
extended by Geser [9] to allow for overlaps:

Theorem 2. Assume Ry is a left-linear and Ro is a right-linear rewrite system.
If all (Rz_l, Ry)-eritical pairs are in Ry R*, then Ry quasi-commutes over Ra.

It is easy to see that this theorem applies to disjoint TRSs modulo the linearity
and collapse restrictions. The following result was shown independently in [18]

and [2].

Proposition 3. If Ry terminates and Ry quasi-commutes over Ry, then Ry com-
mutes over Ro.

Proposition4. If Ry quasi-commutes over Ro, then termination of R = R1+ Ry
1s a modular property.

Let us see by examples why the linearity restrictions are required for Theorem 1:

— Right-linearity of Rs. Assume
Ri:a—b
Ro:20 —z+x

Then

2a 12 ¢ +a RN +b
but commuting the two reductions gives:

Bop B i

2a
Observe that this counter-example is strong; in most practical TRS, right-
linearity is necessary.?
— Left-linearity of Ry. Assume
Ri:x4+2—2x
Ro:a—b
Then

a+b22 b4+ bt 9
but a + b is not Ri-reducible.

In many applications, e.g. functional programming, left-linearity is a common
restriction, in contrast to right-linearity. We will see in the next section that
modularity of normalization does not require right-linearity.

To see that commutation-over i1s a very strong criterion, observe that it im-
plies the preservation of normal forms:

Theorem 5 (Stroetmann [23]). Assume Ry and Ra are abstract reduction
systems. If Ry quasi-commutes over Ro, then Ry preserves Ry normal forms.

Also observe that neither preservation of normal forms nor modularity of nor-
malization are necessary for commutation-over, even for convergent TRS. In the
following example, R; commutes over Ry and also R |C Ry | Rs |, but R does
not preserve R; normal forms.

Ry
a ——> b
P

R, Ro
Ry
<« d

Furthermore, it 1s easy to show that termination of R; is not necessary for
commutation-over.

% First notice that the Rj-reduction ¢ — b is just an example for an arbitrary Ri-
reduction. The counter-example works for any such R;-reduction a — b, as long as
R does not contain a reduction b + —a + b.

4 Criteria for Modularity of Normalization

We first review criteria for modular normalization which are based on a similar
proof method as Theorem 4. Recall that commutation-over implies modularity
of normalization for convergent theories:

Theorem 6. Assume R = Ry + Rs is a confluent TRS and Ry terminates. If
Ry commutes over Rs, then R| C R1|Rs].

Proof. Assume s B¢ is not in Ry]Ry]. Then s Fax g B g R| follows

. . R
from commutation-over. Now s ¢ Ri| must hold, i.e. s — s1. From confluence

and since s’ € R], we get s; iR Apply commutation and the same argument
again to this reduction; repeating this gives an infinite Rj-reduction, which is a
contradiction. ad

For convergent TRS, the simplest approach to obtain R| C R1|R2]| is to show
that Rs preserves Rj; normal forms. A necessary criterion has been presented for
this case by Stroetmann [23]:

Theorem 7 (Stroetmann). Assume Ry and Ro are TRSs such that Ry is lefi-
linear. Then Ry normal forms are preserved by Rs iff for all (Rz_l,Rl)-critical

pairs® (s1,1s), i.e. 51 Fa, t1 Fa, to, the term sy is Ry-reducible.
Stroetmann uses the following easy result in [23] without explicitly stating it:

Proposition8. Assume R = Ry + R is a convergent TRS. Assume further
that Ry normal forms are preserved by Ro. Then R| C Ry|Rs]

Using the above theorems, we easily get:

Corollary 9. Assume R = Ry + R ts a confluent TRS and Ry is termunating.
If Ry is left-linear and for all (Ry', Ry)-critical pairs (s,t) the term s is Ri-
reducible, then R| C Ry1|Rs].

4.1 Modular Normalization for Non-Convergent TRS

The above criteria for modularity of normalization have two main limitations.
First, they assume a confluent TRS R. In practice, TRSs are often only ground
confluent or divergent. In this section, we show that in many cases normalization
with a convergent part of the TRS can be safely performed first, followed by
rewriting with the non-convergent part.

Secondly, in the last section Rs had to preserve R; normal forms. This is
clearly not a necessary criterion for modularity of normalization, although it is
difficult to find generalized proofs for this case.

* Called “non-standard reductions” in [23].

The idea of the following criterion is to transform an R-normalization s By

. Ri| R . . Rix Rox .
into an 224224 veduction. For this, we first seek an s —— u —= t-reduction, and

then have to show that u is in Ry normal form.
The following criterion is necessary for modularity of normalization:

Definition 10. Modularity of Rs-normalizations holds if for all s and ¢ with
t in R-normal form

Fal o, FalRal

s —1 — i,

We will show that modularity of Rs-normalizations can be obtained by critical
pair criteria. This is prepared by the following lemmata.

Lemmall. Assume R = Ry+ Ro and Ry is left-linear. If all (Rz_l, Ry)-eritical

pairs are in RTRQ, then for a reduction s Ty B u, either s Bty Be gy o
the following diagram holds:

Proof. If the Rs-rule used in s — ¢ is right-linear, the result follows from an
analysis similar to Theorem 2. The critical case is

R, , Ry
s —t— u,
P2 P1

where position p; is below ps, all other cases are as in Theorem 2. If there is a
proper overlap, then the critical pair assumption immediately yields the result.
Otherwise, p; is in a subterm of ps that is copied by the first Rs-step, and, since

the reductions are independent, s By S9 P2 and u B2 o, a
Next we extend this lemma to parallel reduction:

Lemma12. Assume R = Ry+ Rs and Ry is left-linear. If all (Rz_l, Ry)-eritical

i i i Ry R . Ri+
pairs are in Rle, then for a reduction s —”>t ZLou, either s =% ¢4y or

the following diagram holds:

s —=> 1

Ry, Rll
v

51 (2

Rl*lu Rl*lu

v Rl v

§9g —----- >v

Proof. Recall that the original work in [21] already considers parallel reduction.
Hence if the Rj-reduction is inside of some reduction of s-+2¢ (or parallel to
all of these), we can proceed as in Lemma 11, as the other Ra-reductions are
independent.

Otherwise, some Rs-reductions are below the Rj-reduction. In that case,
we can apply Lemma 11 for each of these Rs-reductions. That is, we have

safeg T2 0 As the Ro-reductions are below the stronger property

s' T 4Bz can be shown similar to Lemma 11. Repeating this yields s ELN
2 u

Lemma 13. Assume two TRS R1 and Ry such that Ry s left-linear. Then there
1s a critical pair proof of s =t or the following diagram holds:

Ry

<

Lemma 14. Assume R = R+ Rs is a TRS such that Ry is left-linear and con-
vergent. If all (Ry, Ry)-critical pairs (s,t) are in RERSRTY and all (R5", Ry)-

eritical pairs are in RlRIZ, then modularity of Ro-normalizations holds.

Proof. Consider a reduction s ol y It sisin Ry-normal form, the case 1s trivial.
Otherwise, we give a proof by induction on the length of the Rs-reduction. The
base case, s — s, is trivial, since s is in R-normal form. For the induction step,
consider the following diagram:

R- Rox

s s i
R, Ri+ Ryl Raol
Ryx R; Ryl
Uo U U 51
Ryl Raol
Uz

. Ri| R . . .
In the above picture, we get s1 Bl B2l 4 from the induction hypothesis, then

up and s; can be joined to u; by Lemma 13 or by assumption on critical pairs.

Then u; Fa, s} is obtained from the confluence of Ry, and finally Fal Uz fal 4

is obtained as in case 3 of the following theorem (this case does not assume this
lemma). O

Finally, we are ready for the counterpart of Theorem 9 wrt. a non-convergent

Ro.

Theorem 15. Let R = Ry + Ry be a TRS such that Ry s lefi-linear and con-
vergent. Assume all (Rz_l,Rl)-critical pairs are in Rle. If modularity of Ro-
normalizations holds, then R| C Ry|Rs].

Proof. Assume s Bt To show s 22524 t, we embed this into a more general
case

Rx* Ryl ,
s i i

bl

. Ri| R . .
where ¢ is in Ri-normal form. We show s Fal Ral by induction on the number

of R» steps in s L ¢, The base case follows trivially from modularity of Rs-
normalizations.

In the remaining case, we reduce this problem to a reduction with fewer Rs-
reductions. For this, we construct in the following a reduction s T g Ban oy
Then by modularity of Rs-normalizations we know that there exists s” with

Ril Ral R Ral
s 22 " 22 ¢ and can reduce the case to s — s === {. There are three
cases:
1.

s s i

Reduce to the case s — s’.

R+ Ry I’y

s s S9 i

This case is a special case of the following. If the reduction from s; to ¢ is
covered by a critical pair, see case 3, otherwise, from Lemma 11 we obtain

Ryx* Rox* . ..
51 — & =% 1, since t is in Rj-normal form.

R+ Ry Ry Ryx

s s S9 S3 i

Here Lemma 12 applies and we obtain:

Rx R Ry*

s s S9 i

R+ Rq*

Ry ||
s ——— s

Since R; is confluent, s 1% 4 follows. Now repeat the same argument to

. R
the reduction s} el sh B t, each time lifting an [2;-reduction leftwise over

an Rg—reduction. This procedure increases the length of the Rj-reduction

starting from s;. Thus it must terminate, otherwise we would get an infinite

. . Rix* Rox . .
R-reduction starting from s1. Hence we get s; — s5 —= ¢ in this case as

well.
Od

We conclude this section with some examples:

Fzample 1. The following TRS is a standard example formalizing natural num-

bers.
Ry e s(z)*s(y) — s(y+ (z *s(y)))
o s(x)+y—s(z+y)
o o4 s(y) — s(z +y)
Ry: o0+ —=
e 0xx —0
e xx(0—0

Here R| C R;|R2] holds, although R; contains collapsing rules.

Ezample 2. This example models integers with lists and assumes a many-sorted
setting; extending our results to this seems straightforward.

Rli

length(empty) — 0

length(cons(z, w)) — s(length(w))
first(cons(x,w)) — &
last(cons(x,w)) — w

Ry: e s(z)*s(y) — s(y+ (z *s(y)))
o s(x)+y—s(z+y)
o r+5(y) — s(z+y)
e 0+z—=x
e 0xx—0
e xx0—0
o p(s(z) — 2
o s(p(2) — ¢
o —5(2) — p(—2)
o —ple) — s(—2)
o p(x)+y—plz+y)
. P(g)*@é*(x*y)ﬂ—y)

Here R| C R1|R2] holds, assuming that lists and integers have different sorts.
Notice that Ry is only ground confluent [19] and non right-linear.

5 Applications of Modular Normalization

We first show two simple results here; applications to equational reasoning by
narrowing are elaborated in the following subsections. A simple consequence of
R] C R1|R2] is the modularity of unique normal forms:

Proposition16. Assume a TRS R = Ry + Ry and R| C Ry|Rs|. Then R has

unique normal forms if Ry and Ro have unique normal forms.

Proof. Assume a term t has two R-normal distinct forms. As for both normal
forms Rj|Rs|-reductions must exist, this easily leads to a contradiction. The
other direction is trivial. ad

This result together with Theorem 15 does not fully answer the open question
in Middeldorp [15]: modularity of unique normal forms (wrt. reduction) for left
linear rules (of disjoint TRSs). Recall that for a disjoint union of two TRSs
with the restriction in the last theorem, there can be no critical pairs. Then
we obtain modularity of unique normal forms directly from the last theorem
and Proposition 16, which is more general than the result by Middeldorp, since
it does not assume disjoint signatures. That is, only one TRS must be non-
collapsing and and the other convergent and left-linear. If both are collapsing,
no counterexample with disjoint signatures is known. Note that it has been
proved for disjoint union of left-linear and non-collapsing TRSs [15].

Modular normalization can also be used as a modular way to guarantee
confluence of terminating TRSs.

Corollary 17. Assume R = R1 4+ Ry terminates and R| C R1|R>|. Then R is
confluent if Ry and R are.

5.1 Modular Normalization and Decidability of Unification

The goal of this section is to show modular properties for termination of narrow-
ing and decidability of unification. We assume here a naive notion of narrowing.
That is, we start with narrowing derivations from some term and assume no
further pruning of the search space.

We first observe the following important fact: termination of naive narrowing
for a certain convergent TRS R not only means that matching is decidable for
R. Tt entails the stronger property that all terms matching an instance of a
certain term ¢ can be finitely enumerated (more precisely, the equivalence classes
can be described, since only maximally general terms are enumerated). Thus,
termination of narrowing is a very strong property.

In particular, unification is decidable for a convergent TRS R, if narrowing
terminates for R. This is easy to verify: enumerate by narrowing all possible
matchers for the instances of two terms to unify and compare these pair-wise.
This is in essence the same as adding a new rule + = © — true to a TRS to
perform unification by narrowing.

Tt is well known that there exist theories with a (ground-)convergent TRS,
for which matching is decidable, but unification is not. For instance, take natural
numbers defined in [8]. Hence we get the following result:

Proposition18. There exist (ground-)convergent TRS such that matching is
decidable, but any complete narrowing strategy cannot terminate.

Proof. If narrowing terminates, then unification would be decidable, as described
above, which is a contradiction. a

A similar result for unification is easy to show. The problem that narrow-
ing enumerates the full (constructor) term algebra has already been noticed by
Bockmayr in [3].> The point here is that any complete strategy must have an
infinite search space.

Proposition19. There exist convergent TRS R such that R-unification is de-
cidable, but any complete narrowing strategy cannot terminate.

Proof. Consider for instance the TRS R:

p(s(@)) =z, s(p(x)) — =

Clearly, unification is decidable, but a term z has infinitely many instances that
are not R-equivalent. Hence narrowing with the additional rule x = # — {rue
must have an infinite search space. a

In the remainder of this section, we apply the results in previous section to decide
unification and matching problems for TRSs with R| C Ry |Rs]. If a term ¢ is
to be matched with s, then it is sufficient to consider only R;|R»]-reductions.
Assuming that narrowing (using any complete strategy) with R; terminates, we
can finitely enumerate all possible matchers for a term ¢ and apply matching (or
unification) to each of these. Hence we get:

® Alexander Bockmayr also provided the example in the following proof.

Proposition20. Assume a convergent TRS R such that R]| C Ri|Rs] and
assume further narrowing terminates for Ri. Then matching for R is decidable
if matching with Ro 1s decidable.

In fact, we can show even more with termination of narrowing:

Proposition21. Assume a convergent TRS R such that R| C Ry Rs] and nar-
rowing terminates for Ry and for Ry. Then there 1s a complete and terminating
narrowing strategy for R.

To show possible applications of the above results, we mention some termination
criteria for narrowing. Their combination using the above results is straightfor-
ward. If all right hand sides are (either constructor terms or) ground terms,
then semantic unification is decidable, i.e. basic narrowing terminates [13]. Let
R be a convergent rewrite system in which every left hand side is of the form
f(t1,...,tn), such that each t; is either a variable or a ground term. Then nar-
rowing terminates [6].

5.2 Modular Narrowing Strategies

We now apply the results of the preceding sections to optimize narrowing strate-
gies. For optimizing narrowing, we cannot naively use similar methods as for
rewriting. It is easy to see that it is rarely sufficient to apply narrowing with
Ry as long as possible and then to use Rs. A naive non-deterministic narrowing
procedure looks as follows:

FUNCTION solve(t,s)
IF t and s unify, THEN success
ELSE
select any narrowing step t~
solve(?', s)

Rt/

Many optimizations have been developed to remove redundancies from the im-
mense search space of this unrestricted notion of narrowing, for an overview
see [11]. With modularity of normalization, we can prune narrowing derivations
that do not yield an R;| Rs|-reduction. Thus we gain the following optimization
for arbitrary narrowing strategies:

Theorem 22. Assume a TRS R with R| C R1|Rs|. Then the following is a
complete (non-deterministic) narrowing strategy:

Input: ¢ and s, where s s in R-normal form.
Output: R-matcher of t and s based on an R1|Ro| derwation, if nar-
rowing 1s successful.

Do the following steps:

1. Use any narrowing strategy that s complete for Ry to compute
tvﬁlnl, where ny 1s in Ry-normal form.

2. Use any narrowing strategy that is complete for Rs on ny.
If any derivation is of the form

MR2 MR2
ny g, - 'N ng,

where 8 = Oy ...01, and Ony is Ry-reducible THEN stop (prune
derivation)

Since the used narrowing strategies are free to compute normal forms, any
complete strategies can be integrated with the above optimizations. For instance,
basic narrowing [13], needed narrowing [1], and LSE-narrowing [4] are possible
candidates.

Ezample 3. Assume
Ri={e4+0—z,24+s(y) = s(z+y),z+(—y) = —(—z+y)}
Ro={-0—0,——2 — 2 s(—s(x)) — —x},

Geser [9] showed that Ry commutes over Rg. Furthermore, it can be shown that
R| C R1|R2|. Now for instance the Ro-narrowing step with the rule —0 — 0

—x + xvf;Ho}O +0

can be pruned since {# — 0}(—z + 2) = —0 4 0 is Ry-reducible.

Lazy Narrowing It should be mentioned that the above techniques can be
used similarly for lazy narrowing [22] or lazy unification [12], but to the latter
only to some limited extent. That is, when performing decomposition with a
defined symbol f, i.e. if f(ti,...,t,) =7 f(t,,...,t,) is transformed to ¢; =7
t),...,tp =" !, the full term structure is lost and reducibility at the root f
cannot be discovered. If only constructors are decomposed as in lazy narrowing,

nothing is lost, as reducibility at constructor positions is impossible by definition.

6 Conclusions

We have presented criteria for modular TRS that are easier to obtain than
most other existing modular criteria, as we only consider normalizing reductions.
Here, our main contribution was to show that neither confluence nor termination
of R» are needed for modular normalization. This allows for applications to

functional or logic programming languages, where only ground confluence and
non-termination are common.

The main applications of modular normalization are solving equations, i.e.
combining and optimizing narrowing strategies. Compared to almost any other
improvements of narrowing strategies, this approach considers the global as-
pects of narrowing. For instance, with the advancement of functional-logic lan-
guages [11], modular aspects may gain importance.

It seems interesting to extend the above results to conditional rules which
may also subsume logic programming [5]. In particular for the latter it seems
interesting to isolate a convergent subset of the rules and to apply these deter-
ministic rules eagerly.

A further aspect of modularity of normalization is incremental computation
or partial evaluation; that is, normalization with R; may be performed safely
before using or before even knowing Ra.

Acknowledgements. The author wishes to thank Alexander Bockmayr for
providing the example for Proposition 19, as well as Alfons Geser for his careful
reading of an earlier version of this paper.

References

1. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In Proc.
21st ACM Symposium on Principles of Programming Languages, pages 268-279,
Portland, 1994.

2. L. Bachmair and N. Dershowitz. Commutation, transformation, and termination.
In Joerg H. Siekmann, editor, Proc. 8th Int. Conf. Automated Deduction. LNCS
607, 1986.

3. A. Bockmayr. Narrowing with inductively defined functions. Technical report,
Univ. Kaiserslautern, 1986. SEKI Memo 25/86.

4. Alexander Bockmayr, Stefan Krischer, and Andreas Werner. An optimal narrow-
ing strategy for general canonical systems. In Michaél Rusinowitch and Jean-
Luc Rémy, editors, Conditional Term Rewriting Systems, Third International
Workshop, LNCS 656, pages 483-497, Pont-a-Mousson, France, July 8-10, 1992.
Springer-Verlag.

5. P. G. Bosco, E. Giovanetti, and C. Moiso. Narrowing vs. SLD-resolution. Theo-
retical Computer Science, 59:3-23, 1988.

6. Jim Christian. Some termination criteria for narrowing and E-narrowing. In Kapur
[14], pages 582-588.

7. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Jan Van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science Volume B: Formal Models and
Semantics, pages 243-320. Elsevier, 1990.

8. Nachum Dershowitz, Subrata Mitra, and G. Sivakumar. Decidable matching for
convergent systems (preliminary version). In Kapur [14], pages 589-602.

9. A. Geser. Relative Termination. PhD thesis, Univ. Passau, 1990.

10. B. Gramlich. Generalized sufficient conditions for modular termination of rewrit-
ing. In H. Kirchner and G. Levi, editors, Algebraic and Logic Programming: Proc.
of the Third International Conference, pages 53—-68. Springer, Berlin, Heidelberg,
1992.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

M. Hanus. The integration of functions into logic programming: A survey. 1994.
To appear in Journal of Logic Programming.

M. Hanus. Lazy unification with simplification. In Proc. 5th Furopean Symposium
on Programming, pages 272-286. Springer LNCS 788, 1994.

Jean-Marie Hullot. Canonical forms and unification. In W. Bibel and R. Kowalski,
editors, Proceedings of 5th Conference on Automated Deduction, pages 318-334.
Springer Verlag, LNCS, 1980.

Deepak Kapur, editor. 11th International Conference on Automated Deduction,
LNAT 607, Saratoga Springs, New York, USA, June 15-18, 1992. Springer-Verlag.
Aart Middeldorp. Modular aspects of properties of term rewriting systems related
to normal forms. In Proc. 3rd Int. Conf. Rewriting Techniques and Applications,
pages 263-277. LNCS 355, 1989.

Aart Middeldorp. Modular Properties of Term Rewriting Systems. PhD thesis,
Free University Amsterdam, 1990.

Aart Middeldorp and Y. Toyama. Completeness of combinations of constructor
systems. In Proc. 4th Int. Conf. Rewriting Techniques and Applications. LNCS
488, 1991.

T. Nipkow and G. Weikum. Operationelle Semantik axiomatisch spezifizierter Ab-
strakter Datentypen. Master’s thesis, TH Darmstadt, 1982. In German.

W. Nutt and P. Réty and. Basic narrowing revisited. In C. Kirchner, editor, Uni-
fication. Academic Press, 1990.

M. R. K. Krisna Rao. Completeness of hierarchical combinations of term rewriting
system. In R.K. Shyamasundar, editor, Foundations of Software Technology and
Theoretical Computer Science, pages 125-138. LNCS 761, 1993.

J. Raoult and J. Vuillemin. Operational and semantic equivalences between recur-
sive programms. J. of th ACM, 27:772-796, 1980.

U. S. Reddy. Narrowing as the operational semantics of functional languages.
In Symposium on Logic Programming, pages 138-151. IEEE Computer Society,
Technical Committee on Computer Languages, The Computer Society Press, July
1985.

K. Stroetmann. The union of rewrite systems. unpublished, 1992.

Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting
systems. Journal of the ACM, 34(1):128-143, 1987.

