A Call-by-Need Strategy for Higher-Order
Functional-Logic Programming

Christian Prehofer
Technische Universitat Minchen
prehofer@informatik.tu-muenchen.de

Abstract

We present an approach to truely higher-order functional-logic programming
based on higher-order narrowing. Roughly speaking, we model a higher-
order functional core language by higher-order rewriting and extend it by
logic variables. For the integration of logic programs, conditional rules are
supported. For solving goals in this framework, we present a complete calcu-
lus for higher-order conditional narrowing. We develop several refinements
that utilize the determinism of functional programs. These refinements can
be combined to a narrowing strategy which generalizes call-by-need as in
functional programming, where the dedicated higher-order methods are only
used for full higher-order goals. Furthermore, we propose an implementa-
tional model for this narrowing strategy which delays computations until
needed.

1 Introduction

We present a novel approach towards the integration of higher-order func-
tional and logic programming (for a survey see [6]). The goal was to design
a simple language, in contrast to a language that subsumes both. The pri-
mary feature we support is higher-order programming, which is common in
functional languages, but not in (functional-)logic programming [6].

Roughly speaking, we extend a higher-order functional core language by
logic variables as in Prolog. These logic variables may be higher-order, which
is hard to avoid in this context. Thus we need higher-order unification,
as e.g. in AProlog. The language is based on higher-order rewrite rules,
which model functional programming (and actually more). To support logic
programming, we allow conditions with extra variables.

Our higher-order setting allows for highly expressive constructs, e.g. sym-

bolic differentiation. The function dif f(F, X), defined by

dif f(Ay.F, X

dif f(Ay.y, X

dif f(Ay.sin(F(y)), X
dif f(Ay.In(F(y)), X

0

1

cos(F(X))«xdif f(Ay.F(y), X)
dif f(Ay.F(y), X)/F(X),

—
—
—
—

P N N N

computes the differential of a function F at a point X. With these rules, we

can not only evaluate, as e.g.,
dif f(Ay.sin(sin(y)), X) — cos(sin(X)) * cos(X)

but also solve goals modulo these rules, as shown later.
On the technical side, we contribute the following;:

e Completeness results for conditional higher-order narrowing.

o A call-by-need narrowing strategy, motivated by call-by-need in func-
tional programming, which utilizes properties of functional programs.

o A simpler operational model with leads to decidable higher-order uni-
fication in the second-order case, i.e. a program may not diverge only
due to unification.

We use directed equational goals of the form the form s —% ¢, where @ is
a solution if §s —— @¢. Intuitively, the computation in such goals proceeds
from left to right. Our approach admits higher-order rules [— r < ¢ — ¢,,,
where ¢,, is a ground (or closed) term in normal form and ¢ may have extra
variables not occurring in [. Then for solving conditions of rules, as well as
for queries, oriented goals suffice. The restriction to ground right-hand sides
in the conditions also simplifies the technical treatment and helps to establish
confluence/termination (see e.g. [7]). We argue that these restrictions do not
impede programming applications. In our higher-order functional setting,
extra variables on the right are not needed, since we may use functional let
or where constructs, as shown later.

2 Preliminaries

We briefly introduce simply typed A-calculus (see e.g. [8]). We assume the
following variable conventions:

e FG,H,X,Y denote free variables,
e a,b,c, f,g (function) constants, and
e z,y,2 bound variables.

Type judgments are written as ¢t : 7. Further, we often use s and ¢ for terms
and u, v, w for constants or bound variables. The set of types for the simply
typed A-terms is generated by a set of base types (e.g. int, bool) and the
function type constructor —. The syntax for A-terms is given by

t = F | a]c| Xt] (tta)

A list of syntactic objects si,...,s, where n > 0 is abbreviated by 3.
For instance, n-fold abstraction and application are written as AZ,.s =
Ay .. Az,.s and a(3;) = ((---(a s1)--+) s,), respectively. Free and bound
variables of a term ¢ will be denoted as FV(¢) and BV(t), respectively. Let
{z — s}t denote the result of replacing every free occurrence of x in ¢ by
s. Besides a-conversion, i.e. the consistent renaming of bound variables, the
conversions in A-calculus are defined as:

o [-conversion: (Az.s)t =g {z — t}s, and
o y-conversion: if x ¢ FV(t), then Az.(tz) =, t.

The long fn-normal form of a term ¢, denoted by tlg, is the p-expanded
form of the fn-normal form of ¢. It is well known [8] that s =.4, ¢ iff
SIZ =4 tlg As long fBn-normal forms exist for typed A-terms, we will in
general assume that terms are in long gn-normal form. For brevity, we may
write variables in n-normal form, e.g. X instead of AT, . X (7). We assume
that the transformation into long gn-normal form is an implicit operation,
e.g. when applying a substitution to a term.

A substitution @ is in long Sn-normal form if all terms in the image of
are in long fn-normal form. The convention that a-equivalent terms are
identified and that free and bound variables are kept disjoint (see also [4])
is used in the following. Furthermore, we assume that bound variables with
different binders have different names. Define Dom(0) = {X | §X # X} and
Rng(0) = Uxepom(s) FV(0X). Two substitutions are equal on a set of
variables W, written as 8 =y 6, if e = 8’ for all & € W. A substitution
f is idempotent iff § = 6. We will in general assume that substitutions
are idempotent. A substitution #' is more general than 8, written as 6’ < 8,
if # = 06’ for some substitution o.

We describe positions in A-terms by sequences over natural numbers.
The subterm at a position pin a A-term ¢ is denoted by t[,. A term ¢ with
the subterm at position p replaced by s is written as ¢[s],.

A term ¢ in S-normal form is called a (higher-order) pattern if every
free occurrence of a variable F' is in a subterm F(w,) of ¢ such that the @,
are p-equivalent to a list of distinct bound variables. Unification of patterns
is decidable and a most general unifier exists if they are unifiable [13]. Also,
the unification of a linear pattern with a second-order term is decidable and
finitary, if they are variable-disjoint [16]. Examples of higher-order patterns
are Az,y.F(z,y) and Az.f(G(Az.2(2))), where the latter is at least third-
order. Non-patterns are for instance Az, y.F(a,y) and Az.G(H(z)).

A rewrite rule [15, 12] is a pair [— r such that [is a pattern but not
a free variable, [and r are long gn-normal forms of the same base type, and
FV() 2 FV(r). Assuming a rule [— r and a position p in a term s in long
fn-normal form, a rewrite step from s to ¢ is defined as

s—t & s|, =60l At =s[fr],.

For a rewrite step we often omit some of the parameters [— r,p and 6. We
assume that constant symbols are divided into free constructor symbols
and defined symbols. A symbol f is called a defined symbol, if a rule
f(...) — t exists. Constructor symbols are denoted by ¢ and d. A term
is in R-normal form for a set or rewrite rules R if no rule from R applies
and a substitution @ is R-normalized if if all terms in the image of § are in
R-normal form.

Notice that a subterm 5|p may contain free variables which used to be
bound in s. For rewriting it is possible to ignore this, as only matching of a
left-hand side of a rewrite rule is needed. For narrowing, we need unification
and hence we use the following construction to lift a rule into a binding
context to facilitate the technical treatment.

An 7i-lifter of a term ¢ away from W is a substitution o = {F —
(pF) (@) | F € FY(t)} where p is a renaming such that Dom(p) = FV(1),
Rng(p)NnW ={}and pF : 7y — -+ =7, = 7ifa; : 7, ..., 3 : 7} and
F 7. A term t (rewrite rule | —) is ZTg-lifted if an ZT;-lifter has been
applied to ¢t (I and r). For example, {X — X’'(x)} is an a-lifter of g(X)
away from any W not containing X'

3 Conditional Lazy Narrowing

In this section, we propose a class of conditional higher-order rewrite rules
which are tailored for functional programming languages. Then we introduce
a system of transformations for this class of rules. Further optimizations are
developed in later sections.

Definition 3.1 A normal conditional higher-order rewrite system
(NCHRS) R is a set of conditional rewrite rules of the form | — r <
l, — r,, where [— r is a rewrite rule and 7, are ground R-normal forms. A

l=reln=re ¢ iff s —1=" and

conditional rewrite step is defined as s — 7 oo

*
ol, — fr,.

Notice that rewrite rules are restricted to base type, but the conditions may
be higher-order. Also, oriented goals suffice for proving the conditions as
6l, < Or, is equivalent with 81, —— r,,.

The rules of System CLN for lazy higher-order narrowing are shown in
Figure 1. The rules are split into standard (first-order) rules, plus higher-
order rules. These consist of a rule for narrowing at variables, needed to com-
pute functional objects, and rules for higher-order unification. The higher-
order rules will only be needed if truly higher-order free variables occur (in
non pattern terms, to be precise). For brevity, some type constraints of the
rules, which particularly restrict the higher-order rules, are left implicit.

Let s < ¢ stand for one of s —7 ¢ and ¢ —7 s. For goals of the form
s & t, the rules are intended to preserve the orientation of L. We ex-
tend the transformation rules on goals to sets of goals in the canonical way:
{s ="1}US = {s, ="t,JuU8S5 if s ="t =% {s, =" 1,}. For a sequence
=% .. =% of CLN steps, we write = ¢, where § = 6,...6,. Goals of
the form AZj.F(...) < A\T5.G(...), called flex-flex, are guaranteed to have
some solution and are usually delayed in higher-order unification.

The main ingredient for completeness of conditional narrowing is to as-
sure that solutions for fresh variables in the conditions are normalized. This

Decomposition

ATro(t,) =" ATpo(t)) = {A\Tpt, =7 AT}
Elimination
Fat =% {}if Fé¢ FV(t) and
where 6 = {I' — t}

Conditional Narrowing with Decomposition

Mo f(T,) =" ATt = { ATt =" ATpd,, ATl —T ATy,
ATp.r =" ATt}
where f(l,) —r <1 — 7]
is an T;-lifted rule

Truly Higher-Order Rules

Conditional Narrowing at Variable

Mo H (1) =" ATt =0 {7 H,.(01,) =" A\Tr.l, ATl —7 AT,
ATr.r —7 ATt}
if \zy.H(t,) is not a pattern,
f(ly) — r < I, — rl is an Tp-lifted rule,
and 0 = {1 v Xo f(T, (7))

with fresh variables H,,
Imitation

-— 7

AT F(T) & MAep f(T) = {AT5.H,(01,) < ATt}
where 0 = {F' — A\T,.f(H(T2))}
with fresh variables H,,

Projection

AT F(T) & Amp(T) =0 {AZ5.06(H,(T,)) < Azmo(T))}
where § = {F' — AT,.2;(H,(T,))}.
o,

piTp,and z; T, = T
with fresh variables H,

Figure 1: System CLN for Conditional Lazy Narrowing

is possible for extra variables on the left if the system is convergent or at least
confluent and weakly normalizing (which means that normal forms exist) as
above. This is the reason for disallowing extra variables on the right.

Theorem 3.2 [Completeness of CLN] Assume a confluent and weakly nor-
malizing NCHRS R. If s —" t has solution 0, i.e. s —— T 0t, 0t and 6 are
R-normalized, then {s =" t} =4,y F such that § is more general, modulo
the newly added variables, than 8 and F is a setl of flex-flex goals.*

3.1 Refinements Using the Determinism of Functional Lan-
guages

We mention briefly some important refinements that have been established
in the higher-order setting [18, 19].

e Simplification, i.e. (partial) functional evaluation, has shown to be
complete for convergent systems.

¢ Binding variables via variable elimination is a very natural rule, but
in general its completeness is an open problem. In our context, elimi-
nation on goals X —7 ¢ is complete.

o It is useful to add some refinements for constructors. First, decompo-
sition on constructors, e.g. on ¢(...) =" ¢(...) is deterministic. Corre-
spondingly, goals of the form ¢(...) =7 v(...), where v is not a variable
and v # ¢ are unsolvable, since evaluation proceeds from left to right.

4 Left-Linear Programs and Simple Systems

In this section we examine a particular class of goal systems, Simple Sys-
tems [17], which suffice for programming and have several interesting prop-
erties. We assume in the following NCHRS with left-linear rules. A rule
| —r <1, —r,is left-linear, if no free variable occurs repeatedly in /.

Definition 4.1 We write s —" s’ <t =" ¢, if FV(s') N FV(t) # {}.

This order links goals by the variables occurring, e.g. t =" f(X) < X —7 s.
Now we are ready to define Simple Systems:

Definition 4.2 A system of goals G,, = s, —7 ¢,, is a Simple System, if

e all right-hand sides #,, are patterns,

o G, is cycle free, i.e. the transitive closure of < is a strict partial
ordering on G, and

e every variable occurs at most once in the right-hand sides ,,.

We show next that this class is closed under the rules of CLN.

Theorem 4.3 Assume a left-linear NCHRS R. If G, is a Simple System,
then applying CLN with R preserves this property.

The following results on solved forms from [17] will be crucial later.

!Detailed proofs can be found in [19].

Theorem 4.4 A Simple System 5 = {X; & tiyeo, X, & t,} has a solu-
tion if all X,, are distinct.

The following corollary is needed for the new narrowing strategy developed
later.

Corollary 4.5 A Simple System of the form {t, —7 X, } is solvable.

In the second-order case unification never leads to divergence, as shown
in [17], extending results in [16]:

Theorem 4.6 Solving a second-order Simple System by the unification rules
of CLN, i.e. without the narrowing rules, terminates.

5 Variables of Interest

In the following, we classify variables in Simple Systems into variables of
interest and intermediate variables. This prepares the narrowing strategy
presented in the next section.

We consider initial goals of the form s — ¢, and assume that only the
values for the free variables in s are of interest, neither the variables in ¢

nor intermediate variables computed by CLN. For instance, assume the rule
fla, X) — g(b) and the goal f(Y,t) —" ¢(b), which is transformed to

Y = a,t =" X,g(b) -7 g(b)

by Lazy Narrowing. Clearly, only the value of Y is of interest for solving the
initial goal, but not the value of X.

The invariant we will show is that variables of interest only occur on the
left, but never on the right-hand side of a goal. We first need to define the
notion of variables of interest. Consider an execution of CLN. We start with
a goal s —" t where initially the variables of interest are in s. This has to be
updated for each CLN step. If X is a variable of interest, and an CLN step
computes 6, then the free variables in 6. X are the new variables of interest.
With this idea in mind we define the following:

Definition 5.1 Assume a sequence of transformations {s —’ t} =%,
{s, =7 t,}. A variable X is called a variable of interest if X € FV(és)
and intermediate otherwise.

Now we can show the following result:
Theorem 5.2 Assume a left-linear NCHRS R, a Simple System G, =

{8, =" t,} and a set of variables V with V N FV(,) = {}. If G, =N
{s1, =" 1.}, then (V — Dom(8)) U Rng(8))NFV(t,,) = {}.

Then the desired result follows easily:

Corollary 5.3 (Variables of Interest) Assume a left-linear NCHRS R
and assume solving a Simple System s —" t with system CLN. Then vari-

ables of interest only occur on the left, but never on the right-hand side of a
goal.

6 Call-By-Need Narrowing

We show that for Simple Systems a strategy for variable elimination leads
to a new narrowing strategy, coined call-by-need narrowing. In essence, we
show that certain goals can safely be delayed, which means that computa-
tions are only performed when needed.

As we consider oriented equations, we can distinguish two cases of vari-
able elimination and we will handle variable elimination appropriately in
each case. In the first case, X —’ ¢, the variable X can be a variable of
interest. Thus the elimination of X is desirable for computational reasons
and is deterministic (Sec. 3.1). Notice that elimination is always possible on
such goals, as X ¢ FV(¢) in Simple Systems.

In the other case of variable elimination, i.e.

t—"X,

elimination may not be deterministic. Thus such goals will be delayed. This
simple strategy has some interesting properties, which we will examine in
the following.

First view this idea in the context of a programming language. Let
us for instance model the evaluation (or normalization) f(#1,t2)|g = ¢ by
narrowing, assuming the rule f(X,Y) — g(X, X):

{f(tite) =" 1} =cn {ti = Xt =" YV, g(X, X) =" 1}
Now we can model the following evaluation strategies:

Eager evaluation (or call-by-value) is obtained by performing normaliza-
tion on the goals ¢; and t,, followed by eager variable elimination on
t1lr —" X and t5]p —" Y. The disadvantage is that eager evaluation
may perform unnecessary evaluation steps.

Call-by-name is obtained by immediate eager variable elimination on #; —*
X and on t, —" Y. It has the disadvantage that terms are copied, e.g.
t, here as X occurs twice in g(X, X). Thus expensive evaluation may
have to be done repeatedly.

Needed evaluation (or call-by-need) is an evaluation strategy that can be
obtained by delaying the goals t; —* X and t, —" Y, thus avoiding
copying. Then ¢; and ¢y are only evaluated when X or Y are needed
for further computation.

In the latter, we model equationally lazy evaluation with sharing copies
of identical subterms, i.e. the delayed equations may be viewed as shared
subterms. The notion of need considered here is similar to the notion of
call-by-need in [2], but not to optimal or needed reduction [9].

Let us now come back from evaluation to the context of narrowing. Con-
sider for instance the narrowing step with the above rule

{f(ti,ts) =" gla, 2)} =crn {1 =" X, 6o =" YV, 9(X, X) =" g(a, 2)}

In contrast to evaluation as in functional languages, solving the goals ¢; —"
X,ty, —7 Y may have many solutions. Whereas in functional languages, ea-
ger evaluation can be faster, this is unclear for functional-logic programming.
Thus we suggest to adopt the following “call-by-need” approach:

Definition 6.1 Call-By-Need Narrowing is defined as Lazy Narrowing
with System CLN where goals of the form ¢t —" X are delayed.

For instance, in the above example, decomposition on g(X, X) —" g(a, Z)
yields the goals X —" a,X —’ Z. Deterministic elimination on X —7 «
instantiates X, thus the goal ¢, —” @ has to be solved, i.e. a valued for ¢, is
needed. In contrast, t, — Y is delayed.

This new notion of narrowing for Simple Systems and left-linear NCHRS
is supported by the following arguments: Call-By-Need Narrowing

is complete, or safe, in the sense that when only goals of the form ¢, —7 X,
remain, they are solvable by Corollary 4.5. Since the strategy is to
delay such goals, this result is essential.?

delays intermediate variables only. As shown in the last section, we can
identify the variables to be delayed: a variable X in a goal t —" X
cannot be a variable of interest.

avoids copying, as shown above, variable elimination on intermediate vari-
ables possibly copies unevaluated terms and duplicates work. Thus
intermediate goals of the form ¢ —7 X are only considered if X is
instantiated, i.e. if a value is needed.

The important aspect of this strategy is that the higher-order rules are only
needed if higher-order free variables occur; goals with a first-order variable on
one side are either solved by elimination, as the occurs check is immaterial,
or simply delayed.

The analogy to call-by-need in programming languages leads to another
simple improvement. On a goal of the form X (¢) —" ¢’ the higher-order rules
have to be applied in general. However, if a goal s —" X exists, then it is
advantageous to compute a value for X from this goal before attempting the
higher-order rules. This case is particularly easy to detect if delayed goals
are viewed as a context, which we show next.

2This may conflict with flex-flex pairs in some special cases [19].

6.1 Implementation Considerations

This section discusses more operational and implementational aspects of
call-by-need narrowing. In the following abstract model for call-by-need
narrowing, goals are delayed in a context after Decomposition and Lazy
Narrowing and are possibly reactivated by Elimination. The idea is to handle
intermediate evaluations effectively and to detect deterministic operations
on-the-fly.

The important step is to view the delayed goals for call-by-need narrow-
ing as a “context” and to consider an intermediate variable as a pointer to
a delayed term. This is possible for the following two reasons: intermediate
variables can be characterized and, more importantly, variables can occur
only once on the right and can thus be seen as a pointer to a (single!) term.
Thus we get contexts for free, i.e. we do not need any extra machinery.

Assume a set of delayed goals, or a context,

CTYd =1y —7 Xn7
where X, are guaranteed to be distinct, and a set of active goals
Gy=58, =" 8.

For an implementation, we assume that the intermediate variables {5} N
{X,} have a “pointer” to their delayed goal in G4 (Unfortunately the
artow in a delayed goal t —” X gives the wrong direction for viewing this as
a pointer.)

With this model in mind, we first examine the first-order rules from CLN
on a goal from ;. The idea of the following is to scan newly generated goals
on-the-fly for deterministic operations.

Elimination on a goal X —7 ¢ performs a “wake-up” on a delayed goal

Decomposition on a goal v(7,) —" v(#)) creates the new goals , — /.

Conditional Narrowing on a goal f(f,) —' s with a tule f(I,) — r <
I, — r, creates the new goals ¢, —" [,,l, =" r,,7 =" s.

For a set of new goals (,, = 1, —" 1/, created by the Decomposition or Nar-
rowing rule, we examine if a deterministic operation is possible (see Sec. 3.1)
and if the goal is to be delayed. A goal from G, can be of one of the following
forms:

When creating these goals, we check for deterministic simplification as fol-
lows. For the first form, we only check if a deterministic decomposition or if
a constructor clash applies. Elimination is performed on goals of the second
form. This may reactivate a delayed goal which is added to the new goals
G, and is checked as well. In the remaining case, goals of the third form
are delayed. This (recursive) simplification procedure must terminate, as we
only perform unification rules.

For the higher-order rules, we cannot hope for much preprocessing as
above. Imitation and Conditional Narrowing at Variable on a goal create
new goals with variable heads where in some cases Projection is the only
operation that applies.

7 Examples

This section presents examples for higher-order functional-logic program-
ming; more example can be found in [19].

Strict equality on first-order data types is common in functional(-logic)
programming languages. With strict equality =, two terms are equal, if they
can be evaluated to the same (constructor) term. It is interesting to see how
strict equality can be encoded in our setting. For instance, the rules

s(X)=,s(Y) - X=Y
0=,0 — true
suffice for the constructors s and 0. With strict equality, we can avoid

full equality on higher-order terms, similar to current functional(-logic) lan-
guages. Recall that full equality entails undecidable second-order unification.

7.1 Computing Ancestor Relations

This example computes ancestor relations from a simple database. In the
first-order case, such examples are used to find persons that are related in
some way, here we can also compute the relation explicitly as a A-term.

map(F, [X|Y]) — [F(X)[map(F,Y)]
map(F,[]) —]

father(mary) — john
father(john) — art

With these rules, the query
R(mary) —" art
has the solution R — Axz.father(father(z)) and the goal
map(F,[mary, john]) —" [john, art]
is solved by F'+— Az.father(z).

7.2 Symbolic Differentiation

Using the rules for differentiation of Section 1, we can solve the following
goal by call-by-need narrowing. For simplicity, we also use functional evalu-
ation [18] in this example.

Da.dif fAydn(F(y)),z) —" Az.cos(z)/sin(x)} = Evaluation for dif f
{Ae.dif f(Ay.F(y),x)/F() =7 Az.cos(x)/sin(x)} = Decomposition
{Az. dsz(/\y F(y),z) =" Az.cos(w),

M. F(z) =" Az.sin(x)} = Elimination
{Az.dif f(Ay.sin(y),z) —" Az.cos(z)} = Evaluation
{Az.cos(z)* dif f(Ay.y,x) —" Az.cos(x)} = Evaluation
{A\z.cos(z) =" Az.cos(z)} = Decomposition

U

Compared to [17], there is no search necessary to find the solution F' +—
Az.sin(z) by the call-by-need strategy.

8 Discussion and Related Work

In this section, we briefly discuss some important aspects of this approach:
the restrictions imposed on conditions and, secondly, a comparison to an
optimal first-order strategy.

We argue that in the higher-order case extra variables in right side
of the conditions are not needed for programming purposes. Whereas in
(functional-)logic programming such extra variables are often used as local
variables, we prefer the more suitable constructs of functional programming
here. Consider for instance the function unzip, splitting a list of pairs into
a pair of lists, which we write in a functional way:

unzip([(z, y)|R]) — let (xs,ys) = unzip(R) in ([z]2s], [y|ys])

This is usually written as unzip([(z,y)|R]) — ([z|xs], [y|ys]) < unzip(R) —
(zs,ys) in first-order languages, which requires extra variables on the right.
The above notation for a let-construct corresponds to

let (zs,ys) = X in F(zs,ys) =% let X in A\vs,ys.F(zs,ys)
which can be defined by a higher-order rewrite rule
let (Xs,Ys)in Aes,ys. F(zs,ys) — F(Xs,Ys).

On the other hand, we use existential logic variables in conditions for rela-
tional programming, e.g. a grandmother predicate:

grand_mother(X,Y) < mother(X, Z), mother(Z,Y)

Next we compare this approach to some advanced first-order ones. For
a restricted class of rewrite rules, i.e. inductively sequential, an optimal
narrowing strategy, called needed narrowing, has been presented in [1]. Asin
other first-order approaches to functional-logic programming, an alternative
definition of narrowing is used: we write ¢ ~ ' for a narrowing step if
some subterm t|, is unified with the left-hand side of a rule such that 6t
can be rewritten to ¢’. For this notion of narrowing many refinements have
been developed, but in the general higher-order case this approach has some
principal problems with bound variables [17]. It is thus not clear how to
compare these two approaches. Generally, needed narrowing in [1] is optimal
wrt the length of the reduction steps performed (modulo sharing; for a precise
definition see [9]).

One difference is that we have a clear model to prefer deterministic op-
erations. For instance, with the following rules

f(0) — 0
ones(0) — s(0)
ones(s(X)) — ones(X)

the goal f(ones(X)) —" s(0) obviously has no solution. This is detected here
by a constructor clash during simplification (see Sec. 6.1). On the other hand,
a strategy driven purely by optimal reductions, such as in [1], attempts nar-
rowing steps at the inner ones(.X) redex and diverges. Although it is difficult
to compare these approaches for practical applications, notice that Prolog,
when coding the above into predicates, performs the same simplification, i.e.
unification fails.

A disadvantage of the outside-in approach of lazy narrowing is that re-
dundant computations in different search trees are possible. For instance,
consider the goal ones(t) —" s(Y), where ¢ is an arbitrary term. In this
example, for each of the two rules, the term ¢t has to be evaluated, i.e. in two
goals t —7 0 and ¢ —" s(X). This can be avoided by needed narrowing [1].
Again, a naive translation into Prolog may exhibit the same inefliciency, de-
pending on the order of the literals. Also, this may not be a problem for
mostly functional programs with little branching.

9 Conclusions

We have presented an effective model for the integration of functional and
logic programming. We have shown that the restrictions in our setting,
motivated by functional programming, lead to operational benefits and to
a call-by-need narrowing strategy. A particular feature is that truly higher-
order goals with higher-order logic variables are solved by distinguished rules.

In contrast to many other works on higher-order functional-logic pro-
gramming [5, 11, 21], we cover the full higher-order case. The work in
[20] on higher-order narrowing considers only a restricted class of A-terms,

higher-order patterns with first-order equations, which does not suffice for
modeling higher-order functional programs. The approach to higher-order
narrowing in [3] aims at narrowing with higher-order functional programs,
but restricts higher-order variables in the left-hand sides of rules and only
permits restricted goals.

Compared to higher-order logic programming [14], higher-order program-
ming as in functional languages is possible directly here. Our results may
also contribute to (operational) semantics of the language Escher [10], which
pursues similar goals as done here.

Acknowledgements The author is grateful to the helpful comments of the
anonymous referees. This research was supported by the DFG under grant
Br 887, Deduktive Programmentwicklung and by ESPRIT WG 6028, CCL.

References

[1] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In
Proc. 21st ACM Symposium on Principles of Programming Languages,
pages 268-279, Portland, 1994.

[2] Zena Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and
Philip Wadler. A call-by-need lambda calculus. In 22°nd ACM Sympo-
stum on Principles of Programming Languages, San Francisco, Califor-
nia, 1995.

[3] J. Avenhaus and C. A. Lorfa-Sdenz. Higher-order conditional rewrit-
ing and narrowing. In Jean-Pierre Jouannaud, editor, Ist International
Conference on Constraints in Computational Logics, Miinchen, Ger-
many, September 1994. Springer LNCS 845.

[4] Hendrik Pieter Barendregt. The Lambda Calculus, its Syntax and Se-
mantics. North Holland, 2nd edition, 1984.

[5] J.C. Gonzalez-Moreno, M.T. Hortald-Gonzalez, and M. Rodriguez-
Artalejo. On the completeness of narrowing as the operational seman-
tics of functional logic programming. In . Borger, G. Jager, H. Kleine
Biining, S. Martini, and M.M. Richter, editors, CSL 92, Springer LNCS,
San Miniato, Italy, September 1992.

[6] M. Hanus. The integration of functions into logic programming: From
theory to practice. Journal of Logic Programming, 19&20:583-628,
1994.

[7] M. Hanus. On extra variables in (equational) logic programming. In
Proc. Twelfth International Conference on Logic Programming. MIT
Press, 1995.

[8] J.R. Hindley and J. P. Seldin. Introduction to Combinators and -
Calculus. Cambridge University Press, 1986.

[9]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Gérard Huet and Jean-Jacques Lévy. Computations in orthogonal
rewriting systems, I. In J.-L. Lassez and G. Plotkin, editors, Com-
putational Logic: Essays in Honor of Alan Robinson, pages 395-414.
MIT Press, Cambridge, MA, 1991.

John Wylie Lloyd. Combining functional and logic programming lan-
guages. In Proceedings of the 1994 International Logic Programming
Symposium, ILPS5°94, 1994.

Hendrik C.R Lock. The Implementation of Functional Logic Languages.
Oldenbourg Verlag, 1993.

Richard Mayr and Tobias Nipkow. Higher-order rewrite systems
and their confluence. Technical report, Institut fir Informatik, TU
Miinchen, 1994.

Dale Miller. A logic programming language with lambda-abstraction,
function variables, and simple unification. J. Logic and Computation,
1:497-536, 1991.

Gopalan Nadathur and Dale Miller. Higher-order logic programming.
In C. Hogger D. Gabbay and A. Robinson, editors, Handbook of Logic in
Artificial Intelligence and Logic Programming, volume 5. Oxford Uni-
versity Press. To appear.

Tobias Nipkow. Higher-order critical pairs. In Proc. 6th IEFE Symp.
Logic in Computer Science, 1991.

Christian Prehofer. Decidable higher-order unification problems. In
Automated Deduction — CADE-12. Springer LNAT 814, 1994.

Christian Prehofer. Higher-order narrowing. In Proc. Ninth Annual
IEFEE Symposium on Logic in Computer Science. IEEE Computer So-
ciety Press, July 1994.

Christian Prehofer. Higher-order narrowing with convergent systems. In
A4th Int. Conf. Algebraic Methodology and Software Technology, AMAST
’95. Springer LNCS 936, July 1995.

Christian Prehofer. Solving Higher-order Equations: From Logic to Pro-
gramming. PhD thesis, TU Miinchen, 1995. Also appeared as Technical
Report 19508.

Zhenyu Qian. Higher-order equational logic programming. In Proc. 21st
ACM Symposium on Principles of Programming Languages, Portland,
1994.

Yeh-heng Sheng. HIFUNLOG: Logic programming with higher-order
relational functions. In David H.D. Warren and Peter Szeredi, editors,
Logic Programming. MIT Press, 1990.

