Developing Correct Safety Critical, Hybrid, Embedded Systems

*

Alexander Pretschner, Oscar Slotosch, Thomas Stauner
Institut fiir Informatik, Technische Universitdt Miinchen
Arcisstrafie 21, 80290 Miinchen, Germany

www4.in.tum.de/~{pretschn,slotosch,stauner}

{pretschn,slotosch,stauner}@in.tum.de

Abstract

In this paper, we discuss several aspects of the devel-
opment process of correct safety critical discrete and
hybrid embedded systems. We outline the general
process and its support by the CASE tool AuToF0-
cus. This is illustrated along the lines of a simplified
version of NASA’s Mars Polar Lander. We argue
that specific aspects of hybrid systems do require the
modification of classical theories on software develop-
ment and discuss these modifications. At the end we
focus on one part of the development process, namely
testing, and by presenting a novel approach to the au-
tomated generation of test cases for discrete as well
as hybrid systems. The Mars lander’s crash serves
as an example for the derivation of meaningful test
cases.

Keywords. Reactive Systems, Validation, Devel-
opment Process, Automatic Test Case Generation,

CASE

1 Introduction

Safety critical systems. Developing correct safety
critical software for hybrid, embedded systems is a
difficult and error prone task. The functional relia-
bility of the resulting systems is at least as important
as security aspects. High quality of the resulting sys-
tems can only be achieved using a well structured
development process. In this work we present a de-
velopment process that integrates many methods for
quality assurance for discrete systems.! For mixed
discrete-continuous systems (or ”hybrid systems”) we
discuss elements necessary to obtain a similar inte-
grated process, taking into account discrete as well as
continuous aspects. The process for discrete systems
is an extension of the V-model [22]. Tt is based on

*This work was supported with funds of the Deutsche
Forschungsgemeinschaft under reference numbers Br 887/9
and Be 1055/7-2 within the priority programs Design and de-
sign methodology of embedded systems and KONDISK [10],
and by the DASA.

n this paper, discrete systems refer to discrete event sys-
tems. However, those discrete event specification techniques
we consider also have a discrete-time execution model.

system models that are validated using formal tech-
niques.

AutoFocus. We model discrete systems using
graphical description techniques for structure, behav-
ior, and interaction. In this paper we shortly present
AvuTtoFocus, a tool prototype for modeling discrete
embedded systems that we will use to model a hy-
brid system, namely a simplified version of NASA’s
crashed Mars Polar Lander. The models are based
on a common formal semantics and can therefore be
used to support the development process from the
requirements engineering phase throughout the test
phase. The existing features suffice to model dis-
cretizations of hybrid systems. These discretizations,
however, usually alter the model which reduces the
set of properties that can be derived from a system
model.

Hybrid systems. The development of hybrid sys-
tems is an interdisciplinary task. Usually engineers
from different disciplines are involved and must dis-
cuss their designs. Graphical description techniques
are one element very useful to support this commu-
nication. Just as for safety critical discrete systems,
it is furthermore desirable to apply a high degree of
mathematical rigor in the development of safety criti-
cal hybrid systems. Today formal methods for hybrid
systems are still an active area of research, and there
are hardly any tools available which could yet be used
in industrial practice. In this paper we therefore out-
line how formal tools for discrete systems (such as
AvuTtoFocus) can be extended with aspects for con-
tinuous systems in a development process for hybrid
systems that is feasible today. We discuss shortcom-
ings of this method and outline how our work on hy-
brid modeling and validation leads to an integrated
development process for hybrid systems which is close
to the current AUTOF0OCUS approach for discrete sys-
tems.

Testing. Much work has been devoted to check-
ing validity and consistency of a specification. By
now, testing is the only practicable, scalable means
of validating the conformance of an implementation
w.r.t. its specification, even though Dijkstra’s popu-
lar remark that testing can only reveal the presence
but never the absence of errors undoubtedly holds



true. We discuss the role of testing as a comple-
ment to formal methods and present a novel approach
based on Constraint Logic Programming to automat-
ically generating test cases for discrete as well as hy-
brid systems. Experimental results from a case study
of a safety critical system, the Mars Polar Lander, are
discussed. We also take into account the integration
of testing processes into the development process of
safety critical systems and our method’s benefits and
shortcomings.

Overview. The remainder of this paper is orga-
nized as follows. In section 2, we briefly discuss prin-
ciples of a software development process for reliable
discrete systems. Section 3 describes shortcomings
of this classical approach w.r.t. hybrid systems and
suggests modifications that remedy these shortcom-
ings. Specifically, we argue for integrated description
techniques right from the beginning. Section 4 then
describes the case tool AUTOF0CUS and its descrip-
tion elements. Since so far there is no tool support
for the integrated development process of Sec. 3, sec-
tion 5 exemplifies the use of a discrete modeling tool
for a hybrid system, the NASA Mars Polar Lander.
Section 6 discusses the generation of test cases for
discrete as well as hybrid systems along the lines of
our example. Section 7 concludes this paper. Related
work is cited in the respective sections.

2 Notes on the Development
Process

For safety critical systems, we advocate a develop-
ment process that heavily relies on models. In this
process, models are developed in phases known from
conventional software development processes. These
models are then validated, and the last step is to gen-
erate code from them in order to get an executable
implementation. A last validation step consists of
testing the developed systems in interaction with
their environment, for example together with other
components or hardware. Model validation is the
key factor for producing highly reliable programs for
safety critical systems. Useful models should describe
the developed system from different views by means
of various hierarchical diagrams. The diagrams can
be used to capture requirements, architecture, design
and implementation decisions, and to represent test
sequences.

Model validation may be seen as checking consis-
tency. It can be applied at several levels: syntac-
tic consistency (checking names), completeness con-
sistency (checking references and types), semantic
consistency (checking refinement relations), and ade-
quacy [28, 4], i.e., conformance of a model with possi-
bly informal requirements. Many available tools per-
form a syntax check with fixed built-in routines. For
this purpose, modern tools use the object constraint

language OCL [37] of UML which, in principle, could
also be used to check completeness of the models. At
present, CASE tools with useful semantic checks are
not available.? A systematic generation of test se-
quences is also not available. Checking adequacy is
reduced to simulation facilities.

AuTtoFocus, on the other hand, also allows for
semantic validation. These validation techniques are
based on the simple and intuitive semantics of AUTO-
Focus [21], and can be used to support model-based
development steps according to the V-model within
all phases; in particular, testing is supported at the
design, implementation, integration and system re-
quirements levels.

Modeling hybrid systems with AuTOFO0OCUS is done
by a simple discretization of the continuous behavior,
and this approach allows to integrate discrete and
continuous parts in a single model (as will be shown
in the example in Section 5).

3 Hybrid Systems

In this section we outline how a conventional formal
tool for discrete systems, such as AuTOFOCUS, can
be used within the development of hybrid systems.
We discuss advantages and drawbacks of such an ap-
proach, and present a more visionary approach not
yet supported by tools. The new approach is sup-
posed to prevent these drawbacks. It results from
carrying over ideas like graphical specification with
different systems views and model based validation
based on formal methods to hybrid systems. A cen-
tral characteristic of the proposed approach is that
it is based on notations that have a clearly defined
semantics.

A conventional development process. A con-
ventional development process for hybrid systems
builds upon isolated description techniques for purely
discrete and purely continuous components. Pop-
ular in industry are tool couplings such as us-
ing Statemate together with Matrixx or the MAT-
LAB/Simulink/StateFlow environment [11, 9]. For
the development of safety critical systems we advo-
cate the use of formal methods and notations wher-
ever possible. This hinders the use of current com-
mercial tools like Statemate, ObjectGeode, Rational
RoseRT or Stateflow. Their notations only have a
formal syntax, but the semantics remains imprecise
and ambiguous, or very compler. A semantics for
the coupling with continuous tools in not defined
anyway. However, tools like AUTOFOCUS are avail-
able which support the design of discrete systems
based on formal notations such as architecture de-
scriptions, extended automata and MSC dialects [23].
For continuous systems there also are analysis and

2Recently, model checking tools have been connected to
tools based on statecharts or SDL, but due to the complex
semantics of these languages without practical relevance.



requirements,
system environment

conventional
techniques

discrete parts
(SSD,STD,...)

code '

requirements specification,
environment model
(informal text, SSDs, ...)

informal validation
and refinement

enforced early partitioning

conventional
techniques

continuous parts
(block diagrams)

code '

requirements,
system environment

hybrid description
techniques

reguirements specification,
environment model
(HyCharts, HySCs, ...)

formal validation
and refinement

late partitioning

discrete parts
(DiCharts)

conventional
techniques

hybrid parts
(HyCharts)

continuous parts
(block diagrams)
conventional
techniques

code code

code

Figure 1: A conventional development process (top) and an integrated development process with hybrid de-

scription techniques (bottom).

simulation tools based on block diagram notations,
e.g. MATLAB [35]. Note that we regard block di-
agram descriptions of continuous systems as formal
here, because a mathematical model can be associ-
ated with individual blocks and their interconnection
in a straightforward manner.®> As soon as the sys-
tem under development is partitioned into discrete
and continuous parts, a formal specification can be
written down using these existing tools, see Figure
1, top. Well-known techniques from the discrete and
continuous world can then be applied to the respec-
tive parts of the model. For instance, model checking
and automatic test case generation may be used for

3Nevertheless, the user has to keep in mind that the se-
lection of integration algorithms for simulation can have a
great impact on simulation results and can cause them to differ
strongly from the mathematical model.

the discrete part and analysis of eigenvalues for the
continuous part.

Drawbacks. So far, the only currently available
technique for examining properties of the mixed sys-
tem is simulation. There are hardly any analytical
methods regarding the mixed model and there are no
techniques which support design modifications that
affect both parts of the model. In fact such mod-
ifications could necessitate a redesign of the whole
model.

Furthermore, in such a development process a
designer has to perform a number of development
steps informally, i.e., without documenting them
with clearly defined notations, before a clearly doc-
umented process can start, i.e., a process relying on
formal description techniques. In particular, these
steps include partitioning the design into discrete and



continuous parts which may involve an (implicit) dis-
cretization of some parts. This is unsatisfactory since
the partitioning decisions may be difficult to alter
later on. Apart from that, the resulting coupled dis-
crete continuous model often is not natural for some
components of a hybrid system. For example, analog
to digital (AD) and digital to analog (DA) converters,
and in some systems the environment, are inherently
hybrid components.

Recommendation. As no formal hybrid notations
with tool support that is suitable in practice are avail-
able today, there currently is no real alternative to
the outlined conventional development process. We
therefore propose to use informal text coupled with
formal descriptions where possible in this process.
In the context of AUTOF0OCUS we recommend using
architecture descriptions (SSDs, see Sec. 4) already
during the requirements capture phase and to de-
scribe the behavior of system components informally
with text or, where practicable, with mathematical
formulae, until the partitioning into discrete and con-
tinuous components has been performed. Figure 1,
top, outlines the conventional process and its sup-
port by AuToFocus. For the discrete part the model
checking and testing techniques already implemented
in the tool can be employed. They enable a more
rigorous analysis of the discrete part than what is
possible with other tools for discrete systems that do
not have a formal semantics.

Outlook: An integrated development pro-
cess. In a development process with hybrid descrip-
tion techniques, such as the one depicted in Figure 1,
bottom, the designer is able to formally specify mixed
discrete continuous models at early stages of the de-
velopment process. If validation and transformation
techniques, such as simulation and refinement®, are
available for these description techniques, the model
can be systematically designed to meet those system
requirements which affect its discrete as well as its
continuous aspects. Rudimentary versions of such
techniques already exist and are an area of current
research (e.g. [3, 10]). In later steps the model can be
refined into discrete, continuous, and possibly some
remaining hybrid submodels. For the discrete and
continuous submodels conventional techniques can
then be used to realize those properties which only
affect the respective part. Thus, the availability of
formal hybrid description techniques and supporting
methods for them pushes the point at which system-
atic development, i.e. development with formal de-
scription techniques, can begin towards the begin-
ning of the analysis phase. A partitioning into dis-
crete and continuous submodels can be postponed

4Writing down mathematical formulae expressing hybrid
behavior directly is hardly reasonable for bigger systems.

5In the context of formal methods, we refer to “refinement”
as altering (or augmenting) a system’s functionality without
violating properties that have already been established.

towards subsequent development phases. Such a de-
velopment process with hybrid description techniques
allows to obtain greater confidence in the model be-
fore a partitioning. Namely, testing and model check-
ing techniques can be used to analyze requirements
and refinement techniques can be used to guarantee
some requirements by construction. By postponing
implementation related questions changing require-
ments can more easily be taken into account. Thus,
errors made in the initial development phases can be
found earlier and are therefore cheaper to correct.

The development process we propose in Figure 1,
bottom, is based on description techniques devel-
oped within our group in the last years. For re-
quirements specification and environment modeling
it uses the MSC-like notation HySC [15], and the
combination of architecture diagrams and a hybrid
automata variant which is subsumed in HyCharts
[16]. A methodological transition from HySCs to Hy-
Charts is ongoing work (for similar work on discrete
systems see [25]). Succeeding steps in the figure re-
fer to HyCharts rather than to HySCs. As notations
for the discrete and the continuous part we propose
DiCharts [17], a discrete-time variant of HyCharts,
and (continuous time) block diagrams, repectively,
taht can be integrated easily into the HyChart nota-
tion.

Note that the aspect of postponing the partitioning
of a system into discrete and continuous parts is re-
lated to the area of hardware/software codesign [6].
There, the decision on which parts of a system are
implemented in hardware and software is postponed
to later phases. However, unlike hardware/software
codesign the partitioning into discrete and continu-
ous components proposed here does not yet imply
how the components are implemented. The discrete
part could be implemented in software or on digi-
tal hardware, the continuous part can be turned into
a discrete-time model and implemented in software
(or digital hardware), or it could be implemented in
analog hardware.

While there is hardly any tool support for the in-
tegrated process today, a close coupling of discrete
and continuous notations in the HyChart style is im-
plemented in the MaSiEd tool [1], which also allows
simulation. The HyTech tool® [18] which offers model
checking of hybrid models is another element needed
as support for an integrated development process.
Presently, however, its application is limited due to
scalability problems and deficits of the underlying hy-
brid automata model [29]. Promising tool approaches
for the future should couple analysis algorithms like
those implemented in HyTech with modular graphi-
cal description techniques, e.g. HyCharts, in compre-
hensive tool frameworks, such as accomplished with
AvutoFocus for discrete systems.

Note that the development process for hybrid sys-

6or other tools, e.g., Uppaal or Chronos



tem proposed in [9] can be regarded as an intermedi-
ary between the two processes outlined here. There,
the authors propose to complement block diagrams
and automata-based notations with formal specifica-
tions using Z [33].

4 AvutoFocus

AutoFocus [19, 20] is a tool for graphically speci-
fying embedded systems. It supports different views
on the system model: structure, behavior, interac-
tion, and data type view. Each view concentrates on
a fixed part of the specified model.

Structural view: SSDs. In AuToFocus, a dis-
tributed system is a network of components, possibly
connected one to another, and communicating via so-
called channels. The partners of all interactions are
components which are specified in System Structure
Diagrams (SSDs). Figure 4 shows a typical SSD. In
this static view of the system and its environment,
rectangles represent components, and directed lines
visualize channels between them. Both are labeled
with a name. Channels are typed and directed, and
they are connected to components at special entry
and exit points, so called ports. Ports are visualized
by filled and empty circles drawn on the outline (the
interface) of a component. As SSDs can be hierar-
chically refined, ports may be connected to the inside
of a component. Accordingly, ports which are not re-
lated to a component are meant to be part of unspec-
ified components which define the outside world and
thus the component’s interface to its environment.
Components can have local variables to store values;
these variables can be used to describe the behavior
and the interaction of components.

Behavioral view: STDs. The behavior of an Au-
TOFOCUS component is described by a State Transi-
tion Diagram (STD). Figures 5 and 6 show typical
STDs. Initial states are marked with a black dot.
An STD consists of a set of control states, transi-
tions and local variables. The set of local variables
builds the automaton’s data state. Hence, the inter-
nal state of a component consists of the automaton’s
control as well as its data state. A transition can
be complemented with several annotations: a label,
a precondition, input statements, output statements,
and a postcondition, separated by colons. The pre-
condition is a boolean expression that can refer to
local variables and transition variables. Transition
variables are bound by input statements, and their
life-cycle is restricted to one execution of the tran-
sition. Input statements consist of a channel name
followed by a question mark and a pattern. An out-
put statement is a channel name and an expression
separated by an exclamation mark. The expression
on the output statement can refer to both local and
transition variables. A transition can fire if the pre-

condition holds and the patterns on the input state-
ments match the values read from the input. After
execution of the transition the values in the output
statements are copied to the appropriate ports and
the local variables are set according to the postcon-
dition. Actually the postcondition consists of a set of
actions that assign new values to local variables, i.e.,
the assignments set the automaton’s new data state.

Communication semantics. AUTOFOCUS com-
ponents have a common global clock, i.e., they all
perform their computations simultaneously. The cy-
cle of a composed system consists of two steps: First
each component reads the values on its input ports
and computes new values for local variables and out-
put ports. After the clock tick, the new values are
copied to the output ports where they can be ac-
cessed immediately via the input ports of connected
components and the cycle is repeated. This results
in a time-synchronous communication scheme with
buffer size 1. Values on the output ports are copied
over the channels to the appropriate input ports and
the cycle is repeated. This results in a non blocking
synchronous communication.

Interaction view: MSCs. Message Sequence
Charts (MSCs) are used to describe the interaction
of components. In contrast to Message Sequence
Charts as defined in [23], AuToFocus MSCs refer
to time-synchronous systems. In the following, the
term MSC always denotes these time-synchronous se-
quence charts. Progress of time is explicitly modeled
by ticks which are represented by dashed lines. All
actions between two successive ticks are considered
to occur simultaneously, i.e., the order of these ac-
tions is meaningless. An action in an MSC describes
a message that is sent via a channel from one com-
ponent to another.

MSCs can be used to describe requirements, sim-
ulation traces, counter examples (from model check-
ing), and test sequences. Figures 7 and 8 show a
typical test case specification as well as a satisfying
test case that satisfies it.

Datatype view: DTDs. For the specification of
user defined data types and functions AuTOFOCUS
provides Data Type Definitions (DTDs). Definitions
in DTDs are written in a functional style [24]. For
hybrid systems functions with continuous ranges can
be defined, for instance:

const GMars = 3.73;
fun speed(last:Float,dt:Float)
= last+GMars*dt.

Features of AuToFocuUs. In addition to its model-
ing capabilities, AuTOF0CUS allows for checking con-
sistency between views as well as simulating models
(using OCL). For the German BSI (Federal Agency
for Security in Information Technology) several val-
idation techniques have been integrated into AuToO-



Focus [32]. The result is a model validation frame-
work that supports

e model checking and bounded model checking to
check temporal properties (invariants) [30],

e abstraction techniques to safely reduce complex
models to simpler ones,

e interactive theorem proving techniques to verify
arbitrary security requirements, and

e systematic generation of test sequences and test
cases [38, 27].

All these validation techniques are based on the sim-
ple and intuitive semantics of AuToFocus [21], and
can be used to support model-based development
steps. This framework also allows to generate Java
and C code from the validated models in order to get
executable implementations.

5 The Mars Lander

This section describes our example, a spaceship sim-
ilar to the doomed Mars Polar Lander that allegedly
did not complete its mission due to a faulty design
[8]. The next section then shows how automated test
generation could have helped in avoiding this prob-
lem.

The continuous part. The hybrid system and
its environment may be described by four main dis-
tinct states: The lander is orbiting (orbiting), after
leaving its orbit, the lander is falling freely (Rockets
0£ff), the lander has ignited its rockets (Rockets On)
in order to slow down its vertical movement, and the
lander has landed (Landed). While orbiting, the lan-

ve(t) ~ 0.0 (1)

’Ug(t) — ’l}g(to) ~ / 9Imars dt = 9Imars * (t - tO) (2)

to

Ué(t) ~ /t (gmars - % "Uf)dt + Ue(to) (3)

e & / (c1 - (ve(t) — Vpeq) +C2-00)dt  (4)

to

Figure 2: Mars Lander orbiting/landed (1), falling
without (2) and with (3,4) rockets.

der’s vertical speed, vy(t) is zero (Fig. 2-1). This be-
havior is also exhibited when the lander has landed.
Once it has left its orbit, we assume it is freely falling
without friction. Its behavior can thus be described
by Fig. 2-2 where the planet’s gravity, gmars, iS as-
sumed to be constant. Strongly simplifying, the sys-
tem’s dynamic behavior in state Rockets On may be
modeled as follows. Let Fy(t) & gmars - me(t) be

the lander’s weight force with my(t) being the lan-
der’s mass. Furthermore, let Fy,(t) = 1y - vy be
the rocket’s thrust force where ri, is the lander’s
(negative) change of mass, and vy is the (negative,
approximately constant) rocket’s exhaust speed. By
ignoring friction effects and letting h(t) denote the
lander’s height one derives h & gmars — % - vf
and thus the lander’s vertical speed (Fig. 2-3) from
F(t) ~ my(t) - h = Fy,(t) — Fir(t). For simplic-
ity’s sake, horizontal forces have been ignored. Over-
simplifying again, we furthermore assume a simple
PD controller for the lander, modeled by m;, =
c1 - (Ve(t) — vpeq) + 2 - ¢ for adequate gains ci,co
and the lander’s required speed, vye. This yields the
system’s second descriptive equation (Fig. 2-4) for
this state. The control variable is thus 7, (or g,
respectively) which reflects an increase or decrease in
fuel to be burnt.

In order to model the system with AuTOFocCUSs,
the above equations have to be discretized (i.e., lin-
earized). Being the result of an AuTOFOCUS simu-
lation, the curves in Fig. 3 have been obtained af-
ter discretization with step size At = .01. It shows
height and velocity for two behaviors of the space-
ship. After a certain time, it is caused to start its
landing procedure by leaving the orbit (event “en-
ter”; events are symbolized by long vertical arrows).
When a maximum speed (45 m/s) is reached, the
rockets are ignited (“rocketsOn”). Some time later,
the legs are caused to open. From now on, the behav-
iors differ. The intended behavior is that when the
spaceship actually lands, it should turn off its rockets
(trajectories with annotation “rockets on”). Ground
contact is inferred from a shock in the legs.

If, on the other hand, opening the legs causes the
rockets to be switched off, velocity immediately in-
creases which results in a crash (trajectories anno-
tated with “rockets off”). This is what allegedly hap-
pened to the real spaceship: Opening and adjusting
the legs caused some sensors in the lander to believe
the spaceship had landed for the legs sensed a shock.”

The discrete part. The above equations show that
two main variables are involved, namely the change of
mass, my, and the lander’s vertical speed, v,(t). This
motivates the systems top level structure as described
by the SSD in Fig. 4 that consists of three com-
ponents: a Lander, a Physics, and a Controller
component. All components receive the current time
via channel T from the environment. The value of
T is assumed to be present throughout every time
slice, and to be increased by a constant value. The
controller sends control commands to the other com-
ponents, in order to switch the lander’s rockets on
and off, to enter the landing phase, and to open the

7 According to [8], engineers were well aware of this problem.
When testing the system, they encountered a wiring problem,
fixed it, and did not re-run their tests. Nonetheless, we will use
this example as a motivation for a semi-automated generation
of test cases in Sec. 6.



Rekts | gpenLegs
enter On | (+ RektsOff)

landed (crashed) landed

900 —- T T T
800 “\
700 \

600

400

300

100 |

rockets off

rockets on

T T T

10*velocity (crash)
height (crash)
10*velocity

height

600 T T T

7
time (s)

500 —r——mm————

300

200

100 F /
0

rockets off

1/2*mass (crash)
100*massdot (crash)
1/2*mass
100*massdot

rockets on

-100 - \,

-200

-300 -

-400 L L L

v A v v

40 50 60 7
time (s)

4

Figure 3: Spaceship crashes and lands.

legs for landing. It has a local variable CState to
record the spaceship’s state. The initial value of
this variable is Waiting; the type of this variable
is a DTD data CState = Waiting | Ron | Roff.
When port Sensor receives True, this should (!) in-
dicate that the lander has sensed ground contact, and
in turn its rockets will be switched off.

The differential equations of Fig. 2-3 and 2-4 are
mutually dependent. In order to compute the val-
ues independently, the computation has to be sepa-
rated into two subcomponents, namely Lander and
Physics. The main interaction is between Lander,
and Physics: the environment sends the current ve-
locity to the lander (channel V), and the lander, in
turn, sends its change in mass to the environment
(channel Mdot).® Lander and Physics could have
been grouped together into one hierarchic compo-

8Channel Speed is only necessary for the initial value of the
control process.

nent. This is advisable if systems become more com-
plex. The behavior of component Physics is sepa-
rated into two states (see Fig. 5). State Control Off
just outputs the current speed (and does not react to
changes of mass), whereas in state Control On, the
new speed is computed from the last speed and the
actual change in mass (Eq. 3). Component Physics
has several local variables to store past values, used
for integration, and differentiation, LastT:Float, for
instance, to compute time differences. The denota-
tion of the transition labels in Fig. 5 consists of func-
tional terms computing new values according to the
discretized equations. The behavior of component
Lander is separated into four states (see Fig. 6), each
representing a differential equation or the respective
computation of new values (mainly for the local vari-
ables: LastT, LastV, LastM, LastH, and LegsQut)
and for the output Mdot. In the initial state Orbiting
the lander waits for the command enter from the



(:Control?; T?t:Height!LastH;Speed!LastV:LastT = t

diff. equation (1)

(:Control?enter; T?t:Height!LastH;Speed!LastV:LastT = t )

diff. equations (3,4@

estart Rockets

start landing

diff. equation (2)

Rockets On

((LastH <= 0.0):Speed!0.0; Height!0.0:

totm\x\

no Iegs opening

Landed

Rockets Off free falling

free falling

/"{

shut rockets off

diff. equation (1)

Figure 6: Behavior of Component Lander

Local Variables:
CState S = Waiting

Controller

mands

Height:Float
Sensqr:Bool

Control:Commands
Speed:Float

T:Float

Physics

Figure 4: System Structure Diagram

controller (received at port Control). Unless no
enter command is present, initial values are sent to
the environment. This is done within the transition
labeled flying and the following semantics:

e input pattern Control? denotes no input on

port Control,

e input pattern T?t denotes that the input on port
T is bound to transition variable t,

e output patterns Height!LastH, and
Speed!LastV denote the sending of the current
values of the variables to the output ports,

e action LastT = t stores the value t into the lo-
cal variable LastT.

open legs working @

top control

restarting

:T?t;Control?;Speed?v::LastT=t;LastV=v

Figure 5: Behavior of Component Physics

This last transition has no precondition (since
t>LastT is a general assumption on time).

The states Rockets On and Rockets 0ff control
the lander during the landing phase (with and with-
out boosters); control commands RocketsOn and
Rockets0ff from port Control can be used to switch
between the two respective equations. If the height
is less or equal to zero in one of the states, the lander
reaches the final state landed.

Shortcomings. Suitably discretizing a continu-
ous model is a difficult problem. We chose a simple
piecewise linearization with trapezoidal approxima-
tion. Problems with this approach include a con-
servative determination of At as well as meaningful



error estimations. Thus far, we use the same At for
all components (in accordance with user-defined step
sizes for each component). This approach may re-
sult in efficiency problems, but it solves the problem
mentioned below for communicating components in-
tegrating over a same variable in the case this variable
is t. The automatic generation of discretized systems
from continuous equations is subject of ongoing work.
Especially methods are developed to break systems of
differential equations into single components, to de-
termine appropriate discretization methods, and to
to find good timing rates for the components.

6 Testing

Approaches to ensure a system’s reliability include
validating a model w.r.t. its specification as well as
checking an implementation’s conformance w.r.t. the
specification. Formal methods, such as model check-
ing, allow for determining a system’s correctness in
terms of user defined properties usually formulated in
an (unintuitive) logic, e.g., the Linear time Temporal
Logic LTL. Without suitable (and usually hard to de-
termine) abstractions, model checking is restricted to
finite state spaces which, for instance, typically grow
exponentially with the number of variables involved.
Not surprisingly, industrial applicability has not yet
been achieved. In the following, we describe how a
classical approach to quality assurance, namely test-
ing, is supported by AuToFocus. We advocate an
integration of mathematically complete techniques
(model checking) with testing. In addition to specify-
ing test cases during the design phase, testing should
also be done interactively, for certain errors can only
be revealed by “playing around” with the model.’
This is, in fact, the case for most of the spectacular
software faults the model checking/theorem proving
communities use as a motivation for their work. The
discussion of test management strategies and partic-
ular techniques such as mutation analysis and fault
injection is beyond the scope of this article and thus
omitted.

Applicability and Terminology. We distinguish
between possibly informal requirements, a specifi-
cation which is called model if it is written down
formally (e.g., in AuTOFOCUS), and an implemen-
tation. Testing an implementation is usually done
w.r.t. its specification, e.g., [31, 27]; the specification
is thus considered to be correct. Obviously, this is
a strong and usually unrealistic assumption. How-
ever, we think it is one necessary step. The tech-
niques sketched below and explained in more detail
in [27, 38] allow for the determination of test se-
quences on the grounds of a test case specification.
A test case specification is the formalization of some
test purpose, i.e., reach a particular state or cause

9This kind of testing may be seen as a debugging aid.

the system to throw a particular exception. Test
case specifications can, for instance, be written down
as mathematical formulas [12], formal specifications
[36, 5, 31], as MSCs [13, 27, 38], as partial I/O traces
or constraints over them [27, 7]. A test case is an
artifact that satisfies a given test case specification
and may be formulated in the same forms as test
case specifications. A test sequence, finally, is an ex-
ecutable test case, e.g., an I/O trace. [27] discusses
this terminological framework.

Our work aims at (semi-) automatically deriving
test cases from test case specifications that may be
used for both, interactively white box testing a spec-
ification and (semi-)automatically black box testing
an implementation. As indicated above, the interac-
tive part plays an important role in the development
process. Even though it is undoubtedly true that
a system should be thoroughly thought over before
it is implemented or modeled, we believe that simu-
lation and interactive testing help in understanding
a model. This is related to the rapid prototyping
approach in software engineering; we even see simu-
lation as a specialization of the testing process [27].

However, it is worth emphasizing that most likely
none of the commonly used approaches to quality as-
surance will do it alone. In contrast to formal meth-
ods testing is an inherently incomplete process. As
formal methods yet do not scale to real size applica-
tions, this deficit has to be accepted but borne in
mind. Dijkstra’s popular remark that testing can
only reveal the presence but never the absence of er-
rors also applies to formal methods: One can only
check properties that have been formulated by a hu-
man. This process, however, obviously is also neces-
sarily incomplete.

Test case specification. The specification of
test cases or properties to be checked requires in-
tuitive and, if possible, graphical description tech-
niques. One problem with formal techniques surely
lies in the fact that without an intense formal edu-
cation properties are hard to express in formalisms
such as LTL or the Temporal Logic of Actions TLA
[26]. We hence advocate the use of a variant of Mes-
sage Sequence Charts [23] for the specification of test
cases [13, 38, 27]. MSCs (HySCs) are augmented with
elements for talking about states in condition boxes
[15] as well as constructs for expressing iteration and
the necessity of certain transitions to fire. The iden-
tification of typical test purposes, e.g., causing the
system to output certain values, reaching states, ex-
ecuting transition sequences [38], led to the incorpo-
ration of these language constructs.

An important concept is that of negation (negating
transitions, the reachability of states, or forbidding
certain inputs or outputs). However, a suitable se-
mantics for MSCs in the context of test cases seems
to be incomplete in the sense that between two el-
ements in an MSC, arbitrarily many others may be



present. Apparently the formal definition of a se-
mantics for negation in this context is not obvious
[25] and subject of ongoing work.

In AuToFocus, test cases may be specified by
both LTL formulas and MSCs. In the following,
we focus on the derivation of test cases from sys-
tem and test case specifications. In the remainder
of this section, the system specification should be
thought of as an AuTOFo0CUS model, and the test
case specification is formulated using MSCs. Com-
puted test cases (I/O sequences) are displayed in the
form of MSCs themselves for inspection by a human
(or comparison with expected test results, i.e., corre-
spondence of the model’s output with the output as
described in the test case specification). Note that in
this paper we concentrate on testing a specification
and do not take into account testing implementations
even though computed test sequences can be fed into
an implementation for conformance testing with the
specification.

Testing discrete systems. This paragraph briefly
describes the generation of test cases from test case
specifications by means of Constraint Logic Program-
ming (CLP) as well as of propositional logic. These
methods automatically derive test sequences from
system and test case specifications.

CLP is the result of integrating two declarative
programming paradigms, namely logic and constraint
programming. Distinctive features include inverta-
bility of functions, the use of free (logical) variables
that may be bound during program execution, built-
in search mechanisms — backtracking —, and a seman-
tics based not only on terms but rather on arbitrary
domains. It turned out that AuTOoFocuUS models
can very naturally be translated into CLP languages.
The idea is to feed the executable model with partial
I/O traces and make the test case generation sys-
tem create actual test cases (possibly partial I/O se-
quences subject to certain constraints, e.g. ranges for
variables) by relying on the above mentioned built-in
search mechanism and by using logical variables. By
imposing constraints (e.g., in the forms of MSCs) on
the set of all possible system execution, the search
space can significantly be reduced. Further analyses
such as automated interval analyses or (manually de-
rived) classification trees [14] for variables then allow
for the determination of meaningful test sequences
(taking into account, for instance, range boundaries
that yield equivalence classes to be tested). [27] con-
tains a more detailed description of this approach.

Testing based on propositional logic is suitable only
for finite systems (in particular, for systems with
small, finite variable ranges). AUTOFOCUS models
as well as test case specifications are translated into
propositional logic and combined into a single for-
mula which is fed into a propositional solver. The
results (binding of free variables in traces) are trans-
lated back into MSCs. A detailed description of this

10

Lander Control

I I
Lander: Orbiting

Height'h;h>-10.0

Speed!s; s>0.0

Lander: Landed

Figure 7: Test case spec.: Reach state landed.

approach which is related to bounded model checking
[2] can be found in [38].

Testing hybrid systems. In principle, the above
automatic CLP based generation of test sequences is
also applicable to mixed discrete-continuous systems,
for numerical or algebraic solvers can easily be con-
nected to the CLP system. Yet, assuming that con-
tinuous activities take place within particular states
of the system and that there is a continuous data flow
between components, a number of problems arise.
First of all, it is not clear how a continuous data flow
can be simulated on ordinary computers (in control
systems, however, there indeed is a continuous flow of
data). Secondly, numerical solvers also discretize dif-
ferential equations and solve these equations with dif-
ferent, possibly even dynamic, integration step sizes.
It is not clear how to handle the situation where one
component triggers a transition dependent on, e.g.,
the global time. Assume that two components run at
different speeds, i.e., with different integration step
sizes. If one component integrates over a common
variable and meanwhile receives a value for exactly
this variable that has been determined according to
an earlier time, it has to stop its integration process
and to step back. This results in severe methodical
as well as efficiency problems, both of which are sub-
ject of ongoing work, based on (1) the semantics for
hybrid systems as defined in [34] and (2) a modifica-
tion of the AUTOFOCUS semantics where continuous
activities do not take place on transitions but rather
within states. This applies only to hybrid testing
since real time simulation forbids re-calculating cer-
tain variable boundaries.

Example: Testing the lander. In accordance
with these considerations, so far the methods for de-
riving test cases described above have only been im-
plemented for discrete systems. As AUTOFOCUS is



Lander Control

[ [
Lander: Orbiting

Lander: Rockets On

Height!314.7192

I

Lander: Landed

Height!-0.0112
Speed!67.3899
Mass!863.2130

Figure 8: Test case: Lander crashes.

based on an inherently time-discrete semantics, this
paragraph illustrates the derivation of test sequences
for the discretized model of the Mars lander. Due
to space limitations, we concentrate on just one test
case specification which is, however, sufficient to con-
vey the principal idea. Figure 7 shows the graphical
specification for the test case “find a system run that
makes component lander reach state landed”. A de-
rived corresponding test case specifying this specifica-
tion is depicted in Fig. 8. Note the close relationship
with the State Transition Diagram of Fig. 5. This
system run makes the lander crash for its final ve-
locity when touching the ground is much too high
(approximately 67 m/s). Obviously, this is just one
test case for the given specification. Another suc-
cessful run leaves the rockets ignited until the space-
ship actually has had ground contact. Both possible

11

runs are depicted in Fig. 3 in forms of the respec-
tive variables’ trajectories. Note that in case of the
crash there is no automated means for assessing the
outcome of a test case, nor some help in order to de-
tect the fault. Above, we described two possible test
scenarios, one of which consisted of test case specifi-
cations with verdicts and has been created indepen-
dently of the modeling process. The second scenario
is closer to the area of rapid prototyping, where test-
ing is seen as a debugging aid. In the case of Fig. 8,
both scenarios may apply. However, there obviously
is need for an engineer who derives from the test se-
quence that using a shock in the legs as ground de-
tection mechanism is a bad idea!

7 Conclusion

A central aim of our work is to support the system-
atic design of correct safety-critical hybrid embed-
ded systems. For discrete systems we think that a
number of effective validation and verification tech-
niques has been integrated within the AuTOFOCUS
framework. In this paper we presented an example
of an ad-hoc discretization of a hybrid system, using
discrete formal models. The model allowed an im-
proved validation; in particular, important test sce-
narios have been derived. Secondly, precise require-
ments for dealing with hybrid systems in the con-
text of discrete CASE tools have been obtained: (1)
systematic discretization support, and (2) extending
formal modeling and validation methods with con-
tinuous features to hybrid methods. Thirdly, a new
development process for hybrid systems has been pro-
posed and discussed.

In the future we will further evaluate how AuTo-
Focus can be applied in the development of safety
critical avionic systems and what is necessary to
make it compatible with the certification process re-
quired for such systems.

Acknowledgment. We would like to thank
Michael van der Beeck for helpful comments on this

paper.

References

[1] J. Albert and J. Tomaszunas. Komponen-
tenbasierte Modellbildung und Echtzeitsimulation
kontinuierlich-diskreter Prozesse. In Proc. of
VDI/VDE GMA Kongref Mef- und Automa-
tisierungstechnik, 1998.

A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Sym-
bolic Model Checking without BDDs. In W. Cleave-
land, editor, Proc. TACAS/ETAPS’99, LNAI 1249,
pages 193-207, 1999.

M. S. Branicky. Stability of switched and hybrid
systems. In Proc. 33rd IEEE Conf. Decision and
Control, 1994.

P. Braun, H. Lotzbeyer, B. Schitz, and O. Sloto-
sch. Consistent integration of formal methods. In



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

Proc. 6th Intl. Conf on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’00),
2000.

E. Brinksma. A theory for the derivation of tests.
In S. Aggarwal and K. Sabnani, editors, Proc. 8th
Intl. Conf. on Protocol Specification, Testing, and
Verification, pages 63—74, 1988.

K. Buchenrieder and J. Rozenblit. Codesign: An
overview. In Codesign — Computer-aided HW/SW
Engineering. IEEE Press, 1995.

A. Ciarlini and T. Frithwirth. Using Constraint
Logic Programming for Software Validation. In 5th
workshop on the German-Brazilian Bilateral Pro-
gramme for Scientific and Technological Coopera-
tion, Konigswinter, Germany, March 1999.

CNN News. NASA: Premature engine shutdown
likely doomed Mars lander. 28.3.00, www.cnn.com/
2000/ TECH/space/03/28/lander.report.02/.

M. Conrad, M. Weber, and O. Miiller. Towards a
methodology for the design of hybrid systems in au-
tomotive electronics. In Proc. of ISATA’98, 1998.
DFG. Priority program KONDISK (analy-
sis und synthesis of continuous-discrete systems).
www.ifra.ing.tu-bs.de/kondisk/, 2000.

M. Fuchs, M. Eckrich, O. Miiller, J. Philipps, and
P. Scholz. Advanced design and validation tech-
niques for electronic control units. In Proc. of the
International Congress of the Society of Automotive
Engineers. SAE International, 1998.

M. Gaudel. Testing can be formal, too. In P. Mosses,
M. Nielsen, and M. Schwartzbach, editors, Proc.
Intl. Conf. on Theory and Practice of Software De-
velopment (TAPSOFT’95), LNCS 915, pages 8296,
Aarhus, Denmark, May 1995.

J. Grabowski. Test Case Generation and Test Case
Specification with Message Sequence Charts. PhD
thesis, Universitat Bern, 1994.

M. Grochtmann and K.Grimm. Classification trees
for partition testing. Software Testing, Verification,
and Reliability, 3:63-82, 1993.

R. Grosu, I. Kriiger, and T. Stauner. Hybrid Se-
quence Charts. In Proc. of ISORC 2000. IEEE, 2000.
R. Grosu, T. Stauner, and M. Broy. A modu-
lar visual model for hybrid systems. In Proc. of
FTRTFT’98, LNCS 1486. Springer-Verlag, 1998.
R. Grosu, G. Stefanescu, and M. Broy. Visual for-
malisms revisited. In Proc. International Confer-
ence on Application of Concurrency to System De-
sign (CSD’98), 1998.

T. Henzinger, P.-H. Ho, and H. Wong-Toi. A user
guide to HYTECH. In TACAS 95: Tools and Al-
gorithms for the Construction and Analysis of Sys-
tems, LNCS 1019. Springer-Verlag, 1995.

F. Huber, S. Molterer, A. Rausch, B. Schétz, M. Sih-
ling, and O. Slotosch. Tool supported specification
and simulation of distributed systems. In B. Krédmer,
N. Uchihira, P. Croll, and S. Russo, editors, Proc.
Intl. Symp. on Software Engineering for Parallel and
Distributed Systems, pages 155-164. IEEE, 1998.

F. Huber, S. Molterer, B. Schatz, O. Slotosch, and
A. Vilbig. Traffic Lights - An AutoFocus Case
Study. In 1998 International Conference on Ap-
plication of Concurrency to System Design, pages
282-294. TEEE Computer Society, 1998.

12

[21]

[28]

[37]

[38]

F. Huber, B. Schitz, and G. Einert. Consistent
Graphical Specification of Distributed Systems. In
J. Fitzgerald, C. Jones, and P. Lucas, editors, Indus-
trial Applications and Strengthened Foundations of
Formal Methods (FME’97), LNCS 1313, pages 122—
141. Springer Verlag, 1997.
TABG. Das V-Modell.
modell.iabg.de/, (documents
English), 2000.

ITU. ITU-T Recommendation Z.120: Message Se-
quence Charts (MSC), November 1999.

M. P. Jones. An Introduction to Gofer, Aug. 1993.
I. Kriiger. Using MSCs for design and validation of
distributed software components. PhD thesis, Tech-
nische Universitat Miinchen, 2000.

L. Lamport. The temporal logic of actions. ACM
Transactions on Programming Languages and Sys-
tems, 16(3):872-923, 1994.

H. Lotzbeyer and A. Pretschner. Concurrent Re-
active Systems and Constraint Logic Programming:
A framework for compositional testing and valida-
tion, 2000. Submitted to Principles and Practice of
Declarative Programming (PPDP’2000).

B. Miiller. Unterstitung von Entwicklungss-
chritten auf Objekten mit unterschiedlichen OCL-
Konsistenzanforderungen. Master’s thesis, Insti-
tut fiir Informatik, Technische Universitdt Miinchen,
2000.

O. Miiller and T. Stauner. Modelling and verifica-
tion using linear hybrid automata - a case study.
Mathematical and Computer Modelling of Dynami-
cal Systems, 6(1):71-89, 2000.

J. Philipps and O. Slotosch. The quest for correct
systems: Model checking of diagrams and datatypes.
In Proc. IEEE Asian Pacific Software Engineering
Conference (APSEC’99), pages 449-458, 1999.

S. Sadeghipour. Testing Cyclic Software Compo-
nents of Reactive Systems on the Basis of Formal
Specifications. PhD thesis, TU Berlin, 1998.

O. Slotosch. Overview over the project Quest.
In Proc. of FM Trends 98, LNCS 1641. Springer-
Verlag, 1998.

J. Spivey. The Z Notation: A Reference Manual.
Prentice Hall, 2nd edition, 1992.

T. Stauner and G. Grimm. Prototyping of hy-
brid systems - from HyCharts to Hybrid Data-Flow
Graphs. In Proc. of WDS’99 (satellite workshop to
the 12th International Symposium on Fundamentals
of Computation Theory, FCT’99), Electronic Notes
in Theoretical Computer Science 28. Elsevier Sci-
ence, 1999.

The MathWorks Inc. MATLAB.
http://www.mathworks.com/products/matlab/,
2000.

J. Tretmans. Test generation with inputs, outputs
and repetitive quiescence. Software—Concepts and
Tools, 17(3):103-120, 1996.

J. Warmer and A. Kleppe. The Object Constraint
Language. Addison-Wesley, 1998.

G. Wimmel, H. Létzbeyer, A. Pretschner, and
O. Slotosch. Specification Based Test Sequence Gen-
eration with Propositional Logic, 2000. Submit-
ted to Software Testing, Verification & Reliability
(STVR): Special Issue on Specification Based Test-

ing.

http://www.v-
also available in



