Model-Based Test Instantiation
for Applications with User Interfaces

Benedikt Hauptmann
Technische Universitat Minchen, Germany
benedikt.hauptmann@in.tum.de

ABSTRACT

Scripts for automated system tests often contain technical
knowledge about the user interface (UI). This makes test
scripts brittle and hard to maintain which leads to high
maintenance costs. As a consequence, automation of sys-
tem tests is often abandoned.

In this paper, we present the goals of our research project
and discuss a model-driven approach to ease instantiation of
tests on the system level. Tests are defined on an abstract,
functional level, abstracting away Ul usage. During test ex-
ecution, abstract tests are enriched with Ul information and
executed against the system.

1. INTRODUCTION

Testing is a central activity for quality assurance. The sys-
tem under test (SUT) is executed with the intention to find
errors as well as to gain confidence that it works as intended.

System tests execute the whole system to check whether it
fulfills its functional requirements. The focus is on the ob-
servable input/output behavior rather than on the structure
or the internal state of the system or on timing aspects [1].
For systems with user interfaces (UI) this usually means that
system tests are executed against the Ul

The execution of Ul-based tests is easy to perform by hu-
mans. Their brainpower, experience and intuition facilitate
them to interpret high level descriptions (e.g., activate the
human resource module) without the need of detailed UI
specific information.

If system tests have to be executed repeatedly, for exam-
ple for regression testing, test automation can be very ef-
ficient [6, 9, 3]. To automate system tests, Ul specific in-
formation has to be included in the test scripts. As such
knowledge may change when the software evolves (e.g., a
button is moved to a different dialog), automatically exe-
cutable test scripts tend to be fragile and need to be main-
tained often [2, 18]. This causes considerable costs and the

decision whether and when tests should be automated highly
depends on the maintenance effort for the test scripts [6, 5].
The following problems motivate an efficient and flexible way
of test instantiation and execution for systems with Uls.

1. Maintenance of tests: If it comes to changes of the UlI,
test scripts tend to be fragile because of their mixture
of functional (e.g., providing a certain input value) and
technical aspects (e.g., clicking on a specific button).
This makes it difficult to adapt test scripts when the
SUT changes.

2. Reuse between tests: The same functionality is nor-
mally tested with different inputs or in different vari-
ants. Furthermore, different tests may use the same
parts of the user interface. A main obstacle for main-
tainable tests is redundancy, or put differently, the low
level of information reuse within tests.

In this research project, we propose a model-driven approach
to separate tests from Ul related information. Tests are
defined on the functional level, abstracting from UI inter-
actions. During test execution, abstract tests are enriched
with UI information and executed against the system.

The remainder of this paper is structured as follows. In
Section 2, we introduce our conceptual idea to address the
mentioned problems. In Section 3, we present the expected
outcomes and contributions of our research project. In Sec-
tion 4, related work is reviewed. In Section 5, a plan for
the evaluation of this project is presented. The final Section
describes the project’s current status and gives an outlook
on the next steps planned.

2. PROPOSED SOLUTION

To describe our solution, we introduce a model of a generic
mediator acting as a broker between the user and the ac-
tual application. After that, we present our approach to a
solution referring to this model.

2.1 Problem Analysis

To analyze the problems mentioned, we make use of a con-
ceptual UI model introduced in [21] (see Figure 1). The
model separates an interactive system into two logical parts:
the application and a mediator. The application realizes the
desired functionality of the system and is independent from
any Ul related concepts. The mediator is the intermediary

Interactive System

control actions function calls

A4

>
>

User Mediator

< <
<€ <€

Application

feedback application messages

Figure 1: Conceptual UI Model (based on [21])

between the functionality and the user and forms the in-
terface at the system boundary. It is built to be used by a
certain type of user and therefore optimized for it. A system
may also have several mediators for several types of users.

A telephone answering device, for example, typically has a
UI containing a display and several buttons to be used in a
physical way. The same machine may also be used remotely
by voice control. Both Uls (mediators) will trigger the same
functionality (the application) even though they have to be
used in totally different ways.

In the sense of this model, an automated test is a special case
of a user. However, the mediator is normally not optimized
to be used by a test. An easy solution would be to extend
the system with another mediator, optimized for automated
testing (e.g., a special testing interface). This is in conflict
with the paradigm of acceptance testing which is to test the
complete system in a black box way including the mediator.

2.2 Approach
Since the SUT cannot be adapted for automated testing, a

way to ease automated communication with the SUT has to
be found.

Our approach aims to separate tests into functional and me-
diator specific concepts to improve their reuse and make
them insusceptible to changes of the system’s UI. We split
tests into two artifacts:

1. Pure test logic (the actual test cases) which has no
dependency to any information of the Ul, and

2. the pure UI knowledge which is necessary to execute
the tests (see Test Cases and Ul Model in Figure 2).

For the latter, we suggest a descriptive model. To execute
these UI independent test cases, we reconstruct the neces-
sary information by using a generic test adapter which in-
stantiates test cases using the UI information stored in the
UI model for a given Ul (see Test Adapter in Figure 2).

To handle the complexity of sophisticated Uls, we divide
the test instantiation into several parts. We propose a pro-
ceeding which is oriented towards multi-layered communi-
cation abstraction [15] as in network communication stacks
(e.g., the ISO/OSI reference model). We introduce several

Requirements

Test Cases

....................

s g %) Test

UI Model Adapter

Figure 2: Overview of the approach.

abstraction layers stepwise reducing mediator specific de-
tails by abstracting the mediator’s usage. Every layer re-
duces typical UI concepts (for example widgets and dialogs
in graphical Uls or speech signals in voice Uls), and pro-
vides a more abstract view of the system’s interface (see
System Interface, System Interfaceiayers, - . .in Figure 3).

These virtual, more abstract SUT interfaces are the base
for the next layers which will reduce further UI concepts.
This is repeated until all Ul related concepts are removed
and a virtual, completely Ul independent SUT interface has
been created. Test cases are defined on this, most abstract
layer using the interactions provided by this Ul indepen-
dent SUT interface. To execute tests, on each layer, models
hold the extracted Ul information. The adapter uses these
models to concretize tests respectively abstract the system’s
response from one layer to another and finally executes the
tests against the actual SUT (see ..., Testiayers, TeStiayert,
Test in Figure 3).

3. EXPECTED CONTRIBUTIONS

Based on our approach to separate tests from UI related
information, we expect the following outcome of our research
project:

1. A method to describe abstract test cases. We envision
a description technique that largely uses natural lan-
guage. However, as the abstract test cases will focus
on input and output, tabular notations may be suit-
able for certain contexts as well. In order to reach
our goal of enabling reuse, the language has to contain
mechanisms to reuse test-fragments.

2. Suitable UI models containing the information used
for concretizing abstract test. The formalism should
be abstract enough to allow to intuitively model the
aspects of the Ul that are relevant for testing using

i

System Interface |, [€——tests—>| Test e

A
P 0% concretization/
abstraction
UI Model ‘
System Interface e, [€—tests—> Test ,ye
A
P 0% concretization/
abstraction
UI Model ‘

System Interface ~ [«——tests—> Test

Figure 3: The introduced Approach

different Uls as well as powerful enough to allow mod-
eling of sophisticated Uls and serve as an adapter to
test-automation tools.

3. A procedure that integrates the two artifacts above in
order to obtain executable test cases. In this proce-
dure, abstract tests are therefore interpreted and en-
riched with information of the UI specification.

4. RELATED WORK

Improving maintainability of test scripts has been discussed
repeatedly. Two popular concepts are data-driven testing
(DDT) and keyword-driven testing (KDT) [6]. In the lat-
ter, to write abstract tests, action words are used which are
mapped to test scripts. Our approach is similar to KDT but
models the relevant parts of the Ul instead of defining exe-
cutable scripts. With this, we expect simpler maintenance
and better reuse.

In [8], tool-support is used to ease the maintenance of test
scripts for graphical Uls (GUIs). Differences between GUIs
are automatically analyzed and the affected parts of the test
scripts are detected. However, this approach still focuses on
low level test scripts and does not exploit the full potential
for test reuse.

Model-based testing (MBT) is concerned with testing soft-
ware using models. However, the focus of most work is on
test case generation, which we do not target. To generate
test cases for GUIs, many approaches exist [12]. For ex-
ample, [16, 13] use variants of finite state machines (FSMs)
which are very detailed and complex to create and maintain.
In our work, we want to keep the effort for the test designer
as low as possible, by reducing the necessary models to just
that information required for test execution.

Although it is acknowledged that the gap between abstract
test cases and the system needs to be bridged [19], test in-
stantiation in MBT is not covered in detail in most works.
Most MBT approaches in literature are applied to systems
with simple Uls, for example, embedded systems or chip
cards. Mostly, there is a direct mapping between abstract

actions and the code that implements that action. This is
true, for example, for approaches that build on SpecExplorer
[20, 13, 14]. Katara et al. [11] implement a layered approach
for test case execution.

In [7] a model-driven approach which stepwise enriches tests
with Ul information is presented. However, since they focus
only on infotainment systems of cars, they are limited in
their field of application.

5. EVALUATION PLAN

To evaluate our research results, we conducted the following
phases:

1. Literature study: Right now, we study related work
in the area of MBT, automated test instantiation and
execution, and model-based Ul design (MBUID) [17,
4, 10] and evaluate existing tools for UI testing.

2. Prototypical implementation and proof-of-concept: To
gain a better insight into suitable abstraction levels
and to define a language for abstract tests, we build a
prototypical implementation of our approach and ap-
ply it on a medium size open-source software. With
this, we improve the UI modeling language as well as
show the feasibility of our approach.

3. Real world case study: Once we have analyzed abstrac-
tion levels according with meta-models, we will per-
form a case study with an appropriate company. With
this, we will improve the definition language for ab-
stract tests as well as its integration in our UI modeling
language. Furthermore, this will show the practicality
of our approach.

6. CURRENT STATUS AND
FUTURE WORK

To demonstrate the feasibility of our approach, we created
a prototypical implementation of our approach. We built a
test adapter acting as a generic abstraction/concretization
framework which can be parameterized using UI models.

Borrowing from MBUID, we created a meta-model to create
UI models for graphical Uls (GUIs). MBUID makes use of
a set of interconnected models, putting down the different
aspects of GUIs on various abstraction levels (by using for
example dialog, navigation, and task models). Using these
models, we perform a traceable, stepwise abstraction from
UI information such as concrete Ul widgets up to abstract
interactions like input, output, or action.

As test object, we have chosen the open-source application
Bugzilla®, a web-based general-purpose bug tracking system.
It is a grown system and many old versions are still available
with which we can simulate an evolving system. Bugzilla
started as a web application, however, there exists an Eclipse
integration that offers (at least parts of) the same function-
ality. With this, we can validate the hypothesis that our
approach is applicable to multi-frontend systems.

"http://www.bugzilla.org

As system specification, we used the official Bugzilla man-
ual®?. Even though the manual contains many GUI related
details, the functional concepts are clearly recognizable. We
modeled the relevant parts of both Uls and wrote several
tests based on the functional specifications given by the of-
ficial Bugzilla manual.

Based on the first experiences, we evaluated several abstrac-
tion levels for GUIs. We created a suitable meta-model
based on the concepts from MBUID. Since the Ul concepts
of rich clients and web applications are alike, the abstrac-
tions we performed so far fit for both Bugzilla Uls equally
well. We are able to run the same tests on both systems.

Based on our evaluation plan, the proof-of-concept has to be
continued to improve the Ul modeling language. The num-
ber of test cases has to be extended to create a reasonable
coverage of both, Bugzilla’s Web and Eclipse Ul. Further-
more, to start a case study, an industry partner has to be
found to apply our approach on a real world project. With
this, we want to improve the test definition language, its
integration in our Ul modeling language. Furthermore, this
allows to validate the practicality of our approach.

7. ACKNOWLEDGMENTS

The author thanks Maximilian Junker, Elmar Juergens, Ste-
fan Wagner, Sebastian Eder and Andreas Vogelsang from
Technische Universitdt Miinchen for their support and in-
sightful comments.

References
[1] IEEE Standard Computer Dictionary. A Compilation
of IEEE Standard Computer Glossaries. IEEE Std 610,
1991.

[2] S. Berner, R. Weber, and R. K. Keller. Observations
and lessons learned from automated testing. In Proceed-
ings of the 27th international conference on Software
engineering (ICSE 05), 2005.

[3] A. Bertolino. Software testing research: Achievements,
challenges, dreams. In Future of Software Engineering
(FOSE °07), 2007.

[4] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg,
N. Souchon, L. Bouillon, M. Florins, and J. Vanderdon-
ckt. Plasticity of user interfaces: A revised reference
framework. In Proceedings of the First International
Workshop on Task Models and Diagrams for User In-
terface Design, 2002.

[5] E. Dustin, J. Rashka, and J. Paul. Automated software
testing: introduction, management, and performance.
Addison-Wesley, 1999.

[6] M. Fewster and D. Graham. Software test automation:
effective use of test execution tools. Addison-Wesley,
1999.

[7] H. Grandy and S. Benz. Specification based testing of
automotive human machine interfaces. In GI Jahresta-
gung, 2009.

’http://www.bugzilla.org/docs/3.6/

[8] M. Grechanik, Q. Xie, and C. Fu. Maintaining and
evolving gui-directed test scripts. In Proceedings of the
31st International Conference on Software Engineering
(ICSE °09), 2009.

[9] M. J. Harrold and A. Orso. Retesting software during
development and maintenance. In Proceedings of the
Frontiers of Software Maintenance (FoSM ’08), 2008.

[10] H. Hussmann, G. Meixner, and D. Zuehlke, editors.
Model-Driven Development of Advanced User Inter-
faces. Springer, 2011.

[11] M. Katara, A. Kervinen, M. Maunumaa, T. Paakko-
nen, and M. Satama. Towards deploying model-based
testing with a domain-specific modeling approach. In
Proceedings of the Testing: Academic & Industrial Con-
ference on Practice And Research Techniques, 2006.

[12] A. M. Memon and B. N. Nguyen. Advances in auto-
mated model-based system testing of software applica-
tions with a GUI front-end. In M. V. Zelkowitz, editor,
Advances in Computers, volume 80. 2010.

[13] A.C.R. Paiva, N. Tillmann, J. C. P. Faria, and R. F. A.
M. Modeling and testing hierarchical guis. In Proceed-
ings of the 12th International Workshop on Abstract
State Machines, 2005.

[14] A. Pimenta. Automated Specification Based Testing of
Graphical User Interfaces. PhD thesis, Engineering
Faculty of Porto University, Department of Electrical
and Computer Engineering, 2006.

[15] W. Prenninger and A. Pretschner. Abstractions for
model-based testing. FElectron. Notes Theor. Comput.
Sci., 116, January 2005.

[16] R. K. Shehady and D. P. Siewiorek. A method to au-
tomate user interface testing using variable finite state
machines. In Proceedings of the 27th International Sym-
posium on Fault-Tolerant Computing (FTCS ’97), 1997.

[17] P. A. Szekely. Retrospective and challenges for model-
based interface development. In Proceedings of the Sec-
ond International Workshop on Computer-Aided De-
sign of User Interfaces (CADUI’96), 1996.

[18] M. Utting and B. Legeard. Practical Model-Based Test-
ing: A Tools Approach. Morgan Kaufmann, 2006.

[19] M. Utting, A. Pretschner, and B. Legeard. A taxonomy
of model-based testing. Technical report, The Univer-
sity of Waikato, April 2006.

[20] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte,
N. Tillmann, and L. Nachmanson. Model-based testing
of object-oriented reactive systems with spec explorer.
Formal methods and testing, 2008.

[21] S. Winter. Modellbasierte Analyse wvon Nutzer-
schnittstellen. Dissertation, Technische Universitit
Miinchen, Miinchen, 2009.

