
Refinement of Hybrid Systems

from Formal Models to Design Languages∗

Jan Romberg
Systems & Software Engineering, TU München

Christoph Grimm
Technische Informatik, J. W. Goethe-Universität Frankfurt am Main

Abstract

System-level design for discrete-continuous embedded systems is a complex and error-
prone task. While existing design languages like SystemC and its extension to the mixed-
signal domain, SystemC-AMS, are well supported by a wealth of tools and libraries, they
lack both mathematical precision and intuitive, abstract design notations. Graphical design
notations with formal foundations such as HyCharts suffer from the lack of tool support and
acceptance in the developer community. To overcome the deficiencies of both approaches, we
present a design flow from graphical HyCharts to SystemC-AMS designs. This design flow
uses a formally founded refinement technique to ensure the overall consistency of the design.

1 Introduction

Embedded control systems are frequently characterized as a mixture of continuous and discrete
behaviors. We call such systems discrete-continuous or hybrid systems. Because the discrete
part of a hybrid system introduces discontinuities in the system’s evolution, the behavior of
hybrid systems tends to be more difficult to predict and analyze than, for instance, systems of
linear differential equations. For the task of high-level design of a control system, it is highly
desirable to use representations that accurately reflect both continuous and discrete behavior.
In the early stages of a design, this frees the developer from considering implementation details
like quantization and sampling, and allows designers to concentrate on the essential features of
the functional design.

In our view hybrid formalisms like Hybrid Automata [1], or HyCharts [12] are well suited
for precisely capturing the continuous/discrete behavior of a hybrid system. A major advan-
tage of these formalisms is that, being based on a formal semantics, models are susceptible to
automated analysis and formal verification. However, as most designs are implemented using
digital hardware, there is currently a gap between the capturing and verification of an abstract
design in mixed discrete-continuous time, and the discretized design and implementation of such
systems. For the later design phases, discrete approximations of the hybrid model that explicitly
consider quantization and sampling effects are more appropriate.

Hybrid systems combine continuous behavior specified by differential equations with dis-
continuities introduced by discrete switching logic. With discrete hardware being pervasive in
embedded systems, the prevalent way of simulating and implementing hybrid systems is based on
discrete-time or discrete-event algorithms. Numerical solvers are one example for such discrete
∗This work was supported with funds of the Deutsche Forschungsgemeinschaft under reference numbers Br

887/9 and Wa 357/14-2 within the priority program Design and design methodology of embedded systems.

1

algorithms; a variety of variable- and fixed-step algorithms are successfully used for continuous-
time simulation, and their capabilities and limitations are well-understood [10]. For implemen-
tation or large simulations, simple fixed-step algorithms like Euler forward with quasi-constant
performance are widespread.

The effects that introduce deviations to the ‘ideal’ behavior of a realization (or simulation)
can be roughly characterized as:

• Quantization and limitation of the variable’s values.

• Quantization of the time. Modeling smooth changes of analog functions would require
an infinite number of events/process activations. This is approximated by activation at a
finite number of discrete time steps.

It has been recognized by numerous authors [10] that simulation or real-time computation
of hybrid system across discontinuities may cause large errors when the design is discretized
ad-hoc. For component-level simulation, variable-step algorithms offer good results; however,
simulation performance is generally inacceptable for larger (system-level) designs.

SystemC-AMS [5] offers support for mixed solvers for continuous, hybrid, and discrete de-
signs. Cyclic dependencies between different solver kernels are broken into acyclic structures
by introducing a sufficiently small delay. The resulting acyclic structure is then ordered in the
direction of the signal’s flow. After that, the outputs can be computed successively from already
know inputs by executing a step in each solver kernel separately. This model of computation is
called static dataflow, and the delay determines the frequency with which the signals between
the signal processing blocks are sampled.

We’d like to employ the approach in the sense that formal systems specifications in HyCharts
are translated to fixed-step discrete part in the SystemC-AMS model, and SystemC-AMS’s sup-
port for mixed-mode simulation is employed for simulating the system along with, for instance,
a model of the system’s environment.

In this paper, we define a design flow from a formal model of a hybrid system to its discrete
realization. We use HyCharts for modeling the hybrid system, and SystemC(-AMS) with static
dataflow model of computation for simulation, and as a starting point for hardware/software
co-design. Figure 1 gives an overview of the proposed design flow. Starting from a HyChart
model, a discretized HyChart is derived and shown to be a time refinement of a relaxed version of
the original HyChart. The discrete HyChart can then be mapped to an equivalent discrete-time
SystemC model. This model, in turn, is used for simulation and synthesis of both analog and
discrete HW/SW components.

Related work Refinement methodologies are known in different domains: In an informal
context [6, 4] an executable specification is augmented with further design details in a series
of successive design steps. After each step, the design is evaluated by simulation. We call
this design refinement. E.g. in [6, 5], a SystemC model of a block diagram is refined from a
continuous time block diagram to a mixed-signal architecture. The effect of each discretization
can be validated by a simulation.

Formally, behavior refinement may be defined as the containment of the input/output relation
of one (concrete) component in the corresponding relation of another (more abstract) component.
[3] describes refinement involving a change of the underlying time model. Much of the work in
this paper is based on [12] which discusses time refinement, relaxation, and discretization in the
context of HyCharts. A related approach for the hybrid formalism Charon is described in [2].

This paper is structured as follows: Section 2 gives an overview of the HyCharts formalism
used for specification of hybrid systems, and presents a method for relaxation and time refine-
ment within this framework. Section 3 briefly describes the design and simulation of signal

2

Figure 1: Design flow and translation between HyCharts and SystemC

processing systems using SystemC. Section 4 explains the translation from a discrete HyCharts
model to SystemC. In our view, the methodology is not necessarily restricted to the combi-
nation HyCharts/SystemC; a similar method may be derived for other formalisms and design
frameworks.

2 HyCharts

HyCharts [7] were developed as a graphical notation for hybrid systems, similar in some respect to
graphical design notations like UML-RT/ROOM [11], yet formally precise like hybrid automata
[1] or related formalisms.

Hierarchical graphs. As a common syntactical representation both HyACharts and HySCharts
are based on hierarchical graphs. Each hierarchical graph is constructed with the following oper-
ators: ? (independent composition of nodes), ; (sequential composition of nodes), ↑ (Feedback),
•< (identification), >• (ramification), and /\ (transposition). The semantics of both structural
and behavioral description is defined by associating a meaning with the graph operators.

Structural description with HyACharts. A HyAChart (Hybrid Architecture Chart) con-
sists of a hierarchical graph whose nodes represent components, and whose arcs represent chan-
nels. The semantics of the hierarchical graph is multiplicative: all the nodes in the graph are
concurrently active. Being a hierarchical graph, each node, in turn, may have sub-nodes.

Figure 2 shows an example of a HyAChart of an electronic height control system (EHC). The
purpose of the EHC, which was taken from an automotive case study, is to control the chassis
level of an automobile by means of a pneumatic suspension. A chassis level sH is measured by
sensors and filtered to eliminate noise. The filtered value fH is read periodically by control.
control outputs a target chassis level aH encoding the rate of change due to the operation of
two actuators, a compressor and an escape valve.

The basic operations of control are: (1) if the chassis level is below a certain lower bound,
a compressor is used to increase it, (2) if the level is too high, air is blown off by opening an
escape valve, (3) whenever the car is going through a curve, the EHC is turned off, (4) whenever

3

Filter

Control

resetEHC dReset

ENV
aH

sH

D

bend

fH

Figure 2: HyAChart of the EHC system

the chassis level is back in the tolerance range, the filter is reset.
For the remainder of this paper, we will concentrate on the Control component as it

contains the essential functionality. Extension of our approach to the other system parts is
straightforward.

Behavioral description with HySCharts. HySCharts are also based on hierarchical graphs;
the graph used in the semantics is obtained from the specification by a simple syntactic transfor-
mation. Graphs for HySCharts are interpreted additively: Only one node in the graph is active
at a given time.

A HySChart defines the (discrete or continuous) behavior of a component. Nodes (rounded
boxes) represent control states, and arcs represent transitions. Similar to the Statecharts

formalism, HySCharts are hierarchical in the sense that control states may be refined by sub-
states.

As an example, Control’s behavior is specified by the HySChart shown in figure 3.

d2i

outBend
i2di2u

Control

b2o

inBend
a_const

u2i

up

o2b

a_inc
down
a_dec

inTol
a_const

Figure 3: HySChart of the Control component

Control’s HySChart has two levels of hierarchy: The topmost state Control has the sub-
states inBend (car is driving through a curve), and outBend (otherwise). outBend, in turn,
is decomposed into sub-states inTol (chassis level within tolerance), up (raise chassis level),
and down (lower chassis level).

Transitions in HySCharts are labeled with actions. Actions are a conjunction of a precondi-
tion on the component’s latched state and current input (guard) and a postcondition determining
the next data state. We use left-quoted variables v‘ for current inputs, right-quoted variables
v′ for the next data state, and plain variables for the latched data state. For variables with
discontinuous changes, discontinuities are detected using timestamps. We write v.val‘ for the
current value, v.t‘ for the current timestamp, and v.t for the latched timestamp of v. The special
variable now refers to a global clock evolving continuously with time.

As an example for an action, u2i shown in table 1 expresses that the chassis level must be
greater or equal to the lower bound plus some constant (fH.val‘ ≥ lb+c), and that a reset event
is to be emitted (reset!).

4

States in HyCharts are labeled with invariants. Operationally, a transition exiting can be
taken iff its action guard evaluates to true, and a HySChart cannot be in a state whose invariant
evaluates to false, therefore “forcing” it to take an outgoing transition. In order to avoid time
deadlocks, invariants are required to be sound : for each state, there is always either an emerging
transition which is enabled, or the invariant evaluates to true, or both.

Control states may be labeled with activities specifying the continuous part. Activities
describe the continuous evolution of the component’s variables when control is in the respective
state. Note that the time derivative of a variable v is written as v̇.

In our example, activity a const associated with control states inBend and inTol specifies
that variable aH remains constant.

Note that the input/output relation Com resulting from the HySChart is required to be total
for all states and inputs. This ensures that a HySChart cannot “reject” certain inputs.

Table 1, middle column, shows the actions, invariants and activities for the HySChart of
Control. The ε values are introduced by the transformation rules explained in the“Relaxation”
paragraph below.

HySChart DiSChart
Actions:
b2o bend?
o2b b2o
i2u fH.val‘ ≤ lb
i2d fH.val‘ ≥ ub
u2i fH.val‘ ≥ lb+ c ∧ reset!
d2i fH.val‘ ≤ ub− c ∧ reset!
Invariants:
inBendinv bend.t = bend.t‘ ∨ now −

bend.t‘ < εbend

bend.t = bend.t‘ ∨
nowmodT 6= 0

inTolinv fH.val‘ ∈ (lb− εi1, ub+ εi2)
∨ now − fH.t‘ < εfH

fH.val‘ ∈ (lb, ub)
∨ nowmodT 6= 0

upinv fH.val‘ < lb+ c+ εu
∨ now − fH.t‘ < εfH

fH.val‘ < lb+ c
∨ nowmodT 6= 0

downinv fH.val‘ > ub− c− εd
∨ now − fH.t‘ < εfH

fH.val‘ > ub− c
∨ nowmodT 6= 0

Activities:
a const ˙aH = 0 with εdis.aH = 0 aH ′ = aH

a inc ˙aH = cp
with εdis.aH = 0

aH ′ = aH + cp·T

a dec ˙aH = ev
with εdis.aH = 0

aH ′ = aH + ev ·T

Output relaxation constants: εint.aH

Table 1: Actions, invariants and activities for Control

Semantics. The behavior of a HyChart is specified by the combined behavior of its compo-
nents. Each of them is formally specified by the hybrid machine model. Figure 4, left, shows
the machine model of a HySChart. It is constituted of a combinational part (Com†), an analog
part (Ana), a feedback loop with an infinitely small delay (Limz), and a projection (Out†).
The feedback loop, combined with Limz, models the state of the machine. At each point in

5

HySChart DiSChart

DAna

DCom+

s

Com

∆Out+

Ana

Limz

+

+Out

Figure 4: HyAChart of the hybrid machine model

time t, the component can access the received input and the output “exactly before” t. Com†

controls the analog part, and allows discrete manipulations of state variables, but does not have
a memory. Depending on the current input and the fed back state, Com† computes the next
state. The analog part uses this next state to select an activity which specifies the continuous
flow of the component’s variables. The next state may also assert an initial value for the activity.
Note that Com† may alter the component state only for isolated points in time. Between these
points in time, Com† idles. For global composition of HyChart models, HyACharts specify the
data flow between components, and HySCharts describe the hybrid machines.

Time Refinement. When discretizing HyCharts, two deviations from the original behavior
are introduced: (1) due to sampling, transitions in the discretized model are taken some time
after they would have been enabled in the idealized model, (2) sampling in the discretized
analog part introduces discretization errors and intersample errors. Our notion of error refers
to the deviation of the discretized signals from the original signals. Discretization errors at
sampling instants, while intersample errors are deviations in between samples, assuming that
the discretized signal remains constant.

For a tractable design flow, the notion of behavior refinement is helpful: A (more concrete)
component A is a refinement of a (more abstract) component B if A’s input/output relation
is contained in B’s input/output relation. As it preserves universal safety properties, this kind
of refinement is also called property refinement. The property refinement considered here is a
change of the underlying time model from mixed continous/discrete to discrete. The (possibly)
continuous evolution of a value in A is approximated by a series of discrete value changes in B.

Relaxation. While mathematically precise, the semantics of HyCharts or other non-relaxed
hybrid formalisms is too ”sharp” for discrete-time refinement. Relaxed HyCharts accomodate
for these uncertainties in the system’s behavior: A relaxed HyChart is constructed from a
regular HyChart by relaxing its state invariants, analog dynamics, and outputs using a set of
transformation rules. The relaxed HyChart therefore allows a larger set of behaviors.

Informally, the transformation proceeds along the following scheme:

Construction of relaxed invariants. In regular HySCharts, state invariants are implicitly
associated with each control state. The invariant is constructed as the conjunction of the
negated guards of outgoing transitions. This results in eager taking of the transitions; we
therefore call such invariants exact invariants. The relaxation weakens the exact invariants
so that some time passes between an action guard becoming true and the corresponding
part of the invariant becoming false. We associate a relaxation constant εx with each

6

discrete and hybrid variable x. The HySChart may remain in the node for εx time units
after the last change of x. For continuous and hybrid values, threshold crossings are relaxed
with a similar constant εa, so transitions must be taken only if the value is significantly
above the threshold.

Relaxation of analog dynamics. The relaxation introduces another relaxation constant: For
each real valued variable controlled by an activity, εdis.v specifies the allowed deviation of
relaxed from non-relaxed behavior. For refinement, this relaxation accomodates for the
discretization error.

Relaxation of output variables. The output relaxation is introduced by inserting an addi-
tional relaxation component at the HySChart’s output interface. The relaxation compo-
nent ensures that for each output variable x, all behaviors with a maximum deviation εint.x
are included in the HySChart’s behaviors. Note that the relaxation may also introduce
discontinuous jumps in the evolution of x. In our refinement technique, this relaxation
accomodates for the intersample error.

Table 1, middle column, already shows the relaxed invariants and activities. A more detailed
and formal treatment of the transformation rules can be found in [12].

Discrete HyCharts. Discrete HyCharts were developed for describing the discrete-time re-
finements of HyCharts models. Both regular and discrete HyCharts use HyACharts for structural
description; for behavioral description, DiSCharts are introduced. Like HySCharts, DiSCharts
are hierarchical, sequential control-flow graphs, but in contrast to HySCharts the underlying
time model is discrete only. The DiSCharts machine model is similar to HySCharts (Figure 4,
right): the infinitely small delay Limz is replaced by a unit delay ∆s, and the order of Ana and
Com is reversed so that Com can immediately react to state changes caused by Ana.

Construction of the DiSChart from HySChart. Table 1, right column, shows the invari-
ants and activities for the DiSChart of Control (as the control flow is generally not modified
when going from HySCharts to DiSCharts, the graphical representation is equivalent). T s the
fixed sampling period for the discrete HyChart. The DiSChart was derived using a discretization
method from [12]. In principle, other (fixed-step) discretization methods are possible.

The method makes the following assumptions on the chart’s inputs and variables: (1) All
variables which change continuously with time must be Lipschitz constrained with constant l,
that is, there exists an l such that the time derivative is within ±l.For the Control example,
we assume a Lipschitz constant fl for variable fH. (2) For all continuously changing variables, a
maximum error e is given. In the example, fH has a maximum error of fe. (3) For each hybrid
and discrete input channel, a minimum event separation m has to be provided.

It can then be shown [12] that the derived discrete HyChart of the EHC system is a discrete-
time refinement of the relaxed HyChart if the sampling period T is chosen such that the following
inequality holds:

T ≤ min{εbend,
εi1 − 2·fe

fl
, εfH ,

εint.aH

cp
,
εint.aH

|ev|
}

With the discretized HyCharts model, we are now ready to introduce SystemC-AMS as the
target format for the translation in the next section.

3 Modeling Hybrid Control Systems with SystemC

For the realization of hybrid control systems, continuous functions are realized by discrete hard-
ware/software systems. The design of such systems starts with an executable specification, e.g.

7

in Matlab/Simulink or SystemC. SystemC is a C++ library which supports the executable spec-
ification and design of complex, embedded hardware/software systems. In the following, we give
a brief overview of means to model discrete systems in SystemC, and methods to model signal
processing systems in SystemC(-AMS).

Modeling and Simulation of Components In SystemC a component is an object of the
class sc_module. Discrete behavior of components is specified by methods or threads. For
example, we can model the behavior of a PI controller by a process as follows, provided the
signal clk activates the process at constant time steps:

double state, k_i, k_p;
class pi_controller: public sc_module
{

sc_in<double> input; // in port
sc_in<bool> clk; // clock
void do_step { state += k_i*input.read();

output.write(state+k_p*input.read());};

SC_CTOR(pi_controller) {
SC_METHOD(do_step) sensitive << clk;
// executes do_step at each event on clk

}
}

Of course, the continuous behavior of analog components such as the above integrator is only
approximated. In the same way as above, one can model components used in section 4, such as
unit delay, multiplexer or arithmetic functions.

Modeling and Simulation of Block Diagrams If a number of blocks with discrete or con-
tinuous behavior, that communicate is combined to an architecture we must introduce a model
for communication and synchronization. In SystemC, the communication between processes
respectively modules is modeled by channels (signals). For example, we can specify a structure,
where the controller gets an input from a system s1 as follows:

sc_signal<double> a, clk; // instanciate channels
pi_controller ctrl1(); // instanciate pi controller module
system s1(); // yet another module
ctrl1.input(a); ctrl1.clk(clk); // connect modules via channels
s1.output(a); s1.clk(clk);

In the above example the method ctrl1.input(a) is called before simulation starts. The method
notifies the simulation manager about a connection between an abstract port (which is only an
interface) and a signal, which realizes this interface.

For system level design of signal processing systems the static dataflow model of computation
as introduced in section 1 is more appropriate that discrete event simulation. It is actually
implemented in prototypes of SystemC-AMS ([15]).

In SystemC-AMS clusters of signal processing blocks are controlled by a cluster manager or
coordinator as shown in figure 5. The coordinator determines a schedule of the modules in the
data flow’s direction using the information of ports and directed signals. Then the coordinator
simulates all blocks in constant time steps in this order. For example, in figure 5, for a given
input of the SystemC kernel and a known delayed value, the coordinator would first ask block

8

sigproc1 to compute his outputs, then sigproc2, and finally sigproc3. After a delay the same
procedure would start again, and so on.

Discrete
S ystemC

P rocesses

s ig_proc (1) s ig_proc (2)

s ig_proc (3)

delay

C luster of s ignal process ing blocks

C oordinator

Figure 5: SystemC-AMS simulation of a signal processing cluster

In the following, we assume a realization in SystemC-AMS. For visualization, we use the
Simulink block diagram editor.

4 Translation of discrete HyCharts to SystemC

In this section we show how a discrete HyChart can be translated into an equivalent composition
of SystemC blocks. For the current lack of a suitable block diagram tool in the SystemC context,
we chose Simulink as a block diagram editor in order to demonstrate the translation. We assume
some kind standard block library exists with a set of arithmetic, boolean comparison, unit delay,
and signal routing blocks. Signal routing includes multiplex and demultiplex, switch (given some
n and a vector ~v as input, output the n-th component of ~v), and selector (given some vector ~v
as input, output a vector ~v′ with some of ~v’s components) blocks. We furthermore assume that
simple expressions as in the discrete HyChart’s actions and activities are directly encoded as
SystemC-AMS blocks.

The discrete HyChart has to meet the following criteria in order to be translatable: (1) it is
deterministic, i.e. its internal state and its outputs are completely determined given an input,
(2) there are no delayless loops in the component network, (3) the identification connector •< is
not used in HyACharts (identification has not been used in any HyChart model so far). (4) it
is total on all inputs and states, hence inputs cannot be rejected. The latter condition is always
fulfilled by our refinement procedure, as totality of the discrete Com part’s input/output relation
follows directly from totality of the original (non-relaxed) HyChart’s Com part. Each HyChart
operates on a data state σ ∈ S, an input ι ∈ I, and a control state κ ∈ N. S is composed of the
product of the types of all variables accessed in the HyChart’s activities. The control state κ
is some natural-number encoding of the HyChart’s control states. Extension of the encoding to
hierarchical states by shifting namespaces is described in [13].

Translation of multiplicative and additive graphs. As a useful prerequisite for the trans-
lation, the multiplicative (parallel) composition operators in HyACharts naturally reflect com-
position in dataflow-oriented design languages like Simulink or SCADE/Lustre [8]. We therefore
do not show an explicit example for HyAChart translation, and concentrate on HySCharts in-
stead. The additive (sequential) composition of m nodes in HySCharts is generally translated as
m parallel blocks, with a switch block choosing the appropriate output according to the current
control state. We’ll see examples for the translation below.

Machine model. The top-level translation of a HySChart follows directly from the discrete-
time hybrid machine model sketched in Figure 4, right: The discrete-time variation of the analog

9

1
Out1

1/z
Unit Delay1

1/z
Unit Delay

Selector

LatchedControl

LatchedState

InputState

NextControl

NextState

Com

LatchedControl

LatchedState

InputState

LatchedControl1

LatchedState1

Ana

1
In1

Figure 6: Block diagram translation for Control

2
LatchedState1

1
LatchedControl1

LatchedState

InputState
LatchedState1

a_inc

LatchedState

InputState
LatchedState1

a_dec

LatchedState

InputState
LatchedState1

a_const

Switch

 1-D T[k]

Direct Look-Up
Table (n-D)

3
InputState

2
LatchedState

1
LatchedControl

Figure 7: Block diagram translation for Ana

part, Ana, computes the next state (σ.fH(kT), σ.reset(kT), σ.bend(kT)) from the current in-
puts (ι.aH(kT), ι.bend(kT)), the latched control state κ((k − 1)T), and the latched data state
(σ.fH((k − 1)T), σ.reset((k − 1)T), σ.bend((k − 1)T)). The combinatorial part Com then com-
putes the next control and data state from the current input and Ana’s outputs. The chart’s
output o ∈ O is computed by projecting the data state onto O using a selector block (Figure 6).
The unit delay in the feedback loop, finally, is realized with unit delay (1

z) blocks.

Analog part. Specification of the discrete evolution law is typically done with difference
equations, such as the activities in table 1. In the translation, each single activity in the discrete
HyChart corresponds to a SystemC-AMS block computing the corresponding difference equation.
The currently active activity is then selected by an m-ary switch block based on the current
control state. Note that the control state is not controlled by Ana and simply fed through.
Figure 7 illustrates the translation.

Combinational part. In HyCharts, the semantics of the combinational part is given in terms
of a syntactical transformation of primitive control states (additive nodes) to hierarchic graphs.
Each node of the hierarchic graph is entered through one of its m entry points, executing their
entry actions, or through an explicit wait entry point if there is no change in control state. The
appropriate action is chosen by evaluating the guards associated with each action. Hierarchical
control states are transformed in a similar manner. In our translation, the m action guards are
translated to m parallel SystemC-AMS blocks which compute the guards. The next control state
is then chosen using, for instance, an m-ary look-up table block; determinism of the chart ensures
that only one guard at a time evaluates to true. If none of the guards evaluates to true, the
chart remains in the same control state, corresponding to the invariant guard in the hierarchic
graph. Figure 8 shows the translation for the EHC system’s Com block. Note that the control
state hierarchy has been flattened so that inBend, up, inTol and down are on the same level
of hierarchy.

10

2
NextState

1
NextControlLatchedState

InputState

NextControl

NextState

up

LatchedState

InputState

NextControl

NextState

inTol

LatchedState

InputState

NextControl

NextState

inBend

LatchedState

InputState

NextControl

NextState

down
Multiport
Switch

emu

3
InputState

2
LatchedState

1
LatchedControl

Figure 8: Block diagram translation for Com

Actions and activities. In this translation, evaluation of assignments, arithmetic expressions,
and boolean predicates in actions and activities is handled at the block level. In SystemC-AMS,
such expressions are simply encoded as equivalent C language statements within blocks. Note
that in the C language translation, the term nowmodT 6= 0 is removed from each of the
DiSChart’s invariants as the simulator enforces discrete steps anyway.

As mentioned above, extension of the above translation to parallel composition of discrete
HyCharts is straightforward as multiplicative composition in HyACharts is naturally represented
in block diagrams.

5 Conclusion and Future Work

Conclusion. We have presented an integrated approach for the design and synthesis of hybrid
systems using a formal, graphical design notation to capture abstract designs of hybrid systems.
Based on a relaxed version of the model, the design is discretized and translated to a model in
a design language. Correctness of the translation is ensured by evaluating a set of constraints,
ensuring that the discretized model is a time refinement of the relaxed model.

Future Work. In principle, the above approach may be extended towards other discrete-time
languages used for synthesis of HW/SW systems. Synchronous languages like Lustre [8] or
AutoFocus[9] would be natural targets for our translation. As yet, HyCharts are not directly
supported by design tools. More tool support for editing and for applying transformation rules,
for instance in the MaSiEd environment [14], would clearly be desirable at this point.

Acknowledgements. Thanks to Thomas Stauner for commenting on a draft version of this
manuscript.

11

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis,
and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138(1):3–
34, 1995.

[2] R. Alur, R. Grosu, I. Lee, and O. Sokolsky. Compositional refinement of hierarchical hybrid systems.
In Proceedings of HSCC 2001, LNCS 2034. SpringerVerlag, 2001.

[3] M. Broy. Refinement of time. In Th. Rus M. Bertran, editor, Transformation-Based Reactive System
Development. ARTS’97, Lecture Notes in Computer Science 1231, pages 44–63, 1997.

[4] D. Gajski, F. Vahid, and S. Narayan. A System-Design Methodology: Executable-Specification Re-
finement. In The European Design Automation Conference (EURO-DAC’94), Paris, France, Febru-
ary 1994. IEEE Computer Society Press.

[5] Ch. Grimm. Modeling and Refinement of Mixed Signal Systems with SystemC. In Methodologies
and Applications, Boston/London/Dordrecht, 2003. Kluwer Academic Publishers.

[6] Ch. Grimm, W. Heupke, Ch. Meise, and K. Waldschmidt. Refinement of Mixed-Signal Systems with
SystemC. In Design and Test in Europe 2003 (DATE ’03), Munich, Germany, 2003.

[7] R. Grosu, T. Stauner, and M. Broy. A modular visual model for hybrid systems. In Proc. of
FTRTFT’98, LNCS 1486. Springer-Verlag, 1998.

[8] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-flow programming
language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, September 1991.

[9] F. Huber, B. Schätz, and G. Einert. Consistent Graphical Specification of Distributed Systems. In
J. Fitzgerald, C.B. Jones, and P. Lucas, editors, Industrial Applications and Strengthened Founda-
tions of Formal Methods (FME’97), LNCS 1313, pages 122–141. Springer Verlag, 1997.

[10] P.J. Mosterman. An overview of hybrid simulation phenomena and their support by simulation
packages. In Proceedings of HSCC 1999, LNCS 2034, pages 165–177. SpringerVerlag, 1999.

[11] B. Selic, G. Gullekson, and T. Ward. Real-Time Object-Oriented Modeling. John Wiley & Sons,
New York, 1994.

[12] T. Stauner. Systematic development of hybrid systems. PhD thesis, Technische Universität München,
2001.

[13] T. Stauner and C. Grimm. Übersetzung von HyCharts in HDFG. In ITG/GI/GMM-Workshop Meth-
oden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen,
Berlin, Germany, 2000. VDE-Verlag.

[14] T. Stauner, A. Pretschner, and I. Péter. Approaching a discrete-continuous uml: Tool support
and formalization. In Proc. UML’2001 workshop on Practical UML-Based Rigorous Development
Methods, pages 242–257, Toronto, October 2001.

[15] A. Vachoux, Ch. Grimm, and K. Einwich. SystemC-AMS Requirements, Design Objectives and
Rationale. In Proceedings of Design, Automation and Test in Europe (DATE’03), 2003.

12

	Introduction
	HyCharts
	Modeling Hybrid Control Systems with SystemC
	Translation of discrete HyCharts to SystemC
	Conclusion and Future Work

