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Abstract

System-level design methodologies for embedded
HW/SW systems face several challenges: In order to
be susceptible to systematic formal analysis based on
state-space exploration, a modelling notation with a simple
formal semantics is desired. Architecture-level engineering
practice demands notations which concentrate on certain
aspects of system functionality, while other aspects (such
as communication and scheduling) are implicitly encoded
in the language semantics, and realized using HW/SW
components such as operating systems and protocol stacks.
We describe a system-level design methodology targeted
for automotive control applications. Models in a simple
graphical component-based input language are compiled
into complex system models incorporating abstractions
for hardware, operating systems, and inter-processor
communication. System models are based on the syn-
chronous AutoFocus notation and are used as a basis for
formal analysis such as systematic worst-case response
time analysis. The paper describes a reference architecture
for implementation, the MoDe design notation, and the
translation to system models along with an outlook giving
a perspective for analysis.

1 Introduction

With as many as 80 electronic control units running
distributed applications in modern premium-class ve-
hicles, software engineering for automotive control is
foraying into the complexities formerly reserved to
the business information system and telecommunica-
tion domains. The predominant focus in automotive
development on subsystem-level ECU design is shift-
ing towards an application- and service-oriented per-
spective, where the corresponding functionality is dis-
tributed across several subsystems. However, with
non-functional properties such as timing constraints,

per-unit costs, power consumption, and space as im-
portant requirements, finding an optimized system-
level design is much harder than optimizing a single
subsystem.

The goal of the MoDe (Model Based Deployment)
approach is to give early guidance for design deci-
sions using architectural-level models of the system.
In the following, we will restrict ourselves to those
architecture-level decisions, such as choice of the right
processor to maximize utilization, deployment of soft-
ware components, or examination of bus load, that re-
quire a performance model of the overall system.

The MoDe approach is based on a design notation
with a simple and extensively supported formal se-
mantics, AutoFOCUS. AutoFOCUS is used on two lev-
els: Firstly, the AutoFOCUS formalism is extended for
modeling both the functional aspects of the applica-
tion and the platform aspects of the HW architecture.
Secondly, AutoFOCUS is used in order to represent an
overall model of the system used for detailed analysis.
The use of system models with a clear formal seman-
tics opens MoDe to a wide variety of formal analysis
options based on state-space exploration.

1.1 Deployment

The term deployment in our context denotes the
distribution of system functionality onto physical
components. Model-based deployment uses abstrac-
tions of the deployed system to perform analysis such
as validation and simulation. We have identified
two possibilities of employing AutoFOCUS models for
model-based deployment:

1. Use a given AutoFOCUS model directly as the be-
havioral specification of the system. In this case,
the main difficulty for deployment is ensuring be-
havioral consistency between the model and its
implementation as a combination of hardware,
operating system, and software.



2. Use additional (and possibly nondeterministic)
abstractions for communication and scheduling
in an overall AutoFOCUS model of the system.
The system model is preferably compiled from
separate notations for functionality and HW ar-
chitecture, and standard models for scheduling
and communication are automatically inserted.

For MoDe, we choose option 2., using a separate in-
put language and AutoFOCUS system models. Let
us briefly discuss the reasons for this choice: When
opting for 1. and directly implementing models in
a synchronous language such as AutoFOCUS, the ar-
chitecture must guarantee some assumptions made
by the formalism [2]. These assumption tend to be
rather strong for globally synchronous models. For
distributed communication, strongly deterministic ar-
chitectures such as Time-Triggered Architectures [13]
are definitely be a good candidate for the first ap-
proach, and are already foraying into safety-critical
automotive applications.

On the other hand, the majority of applications to
this date are based on event-triggered, weakly deter-
ministic architectures such as the Controller Area Net-
work (CAN) protocol for inter-processor communica-
tion, queued events and shared variables for intertask
communication, and preemptive scheduling with in-
tertask synchronization primitives.

When a design is in its architectural stage, much
of the detailed performance characteristics of the im-
plementation are not known. If one wants to analyze
a design with formal models, one possible abstraction
is to drop timing altogether, and an asynchronous sys-
tem model results. When unwinding the possible ex-
ecutions of asynchronous models, e.g. for checking
safety properties, a large number of interleavings of
single process executions has to be considered. As
a consequence, methods based on state-space explo-
ration quickly become impractical, despite some en-
couraging progress in the area [9].

In MoDe, functional models of the system are en-
riched with actual platform and implementation in-
formation; the system model which is subjected to
analysis incorporates these informations to improve
analyzability. Consequently, system models are tied
to properties of the platform: the possible executions
of the model closely reflect possible executions in
the implementation in order to ensure the validity of
model-based analysis. By offering automated support
for compiling platform abstractions into the system
model, MoDe still retains the flexibility with respect
to implementation choices that motivate the abstrac-
tion from timing properties described above.
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System Model
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Verification
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Figure 1. Design Flow

In the remainder of this paper, we will give an
overview of our methodology and the design flow.
The application domain is characterized in terms of
the supported reference architecture. We will then
give a definition of the visual notation used to de-
scribe HW/SW architectures. An application example
is presented and the currently available analysis tech-
niques are described. Finally, we present an outlook
discussing future extensions of our method.

2 Overview

2.1 Design Flow

Figure 1 shows the design flow for the MoDe ap-
proach. The designer starts out with a functional view
on the application, the logical model, a view on the tech-
nical architecture of the system, the technical model,
and an additional synthesis descriptor. The MoDe Sys-
tem Model Generator reads the input representations
and generates an AutoFOCUS system model used for
simulation, verification, and performance analysis.

Logical model

The logical model captures the software architecture
in terms of software components, component interfaces,
and communication dependencies between components.
Each component is specified in terms of its functional
and temporal behavior, the latter of which depending
on properties of the technical model described below.
The logical model abstracts from the actual deploy-
ment, i.e. communication protocols and scheduling
are not part of the logical specification.

Technical model

The characteristics of the platform are specified within
the technical model. The technical model captures the
structure of the underlying hardware, the characteris-
tics of the different nodes of the platform, the charac-
teristics of the links between nodes, and parameters
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of the operating system such as supported schedul-
ing policies and I/O drivers. In a way, the technical
model fills the behavioral and structural “blanks” left
unspecified by the logical model. Note that the tech-
nical model is intended to be an independent and self-
contained view of the platform that is reusable across
several designs. The concepts of the technical model
are supported by component libraries which define the
components required to generate the system model.

Synthesis descriptor

As the logical and technical models alone are not ex-
pressive enough to perform an automated synthesis
of system models, some additional mapping informa-
tion has to be provided by the developer in the form
of a synthesis descriptor. It is required to ensure an
unambiguous translation from logical and technical
models to system models. The synthesis descriptor
captures information that depends both on the logi-
cal and technical models; this typically includes the
mapping from logical components to technical nodes,
and additional information required for scheduling
such as static schedules or priorities, depending on the
scheduling policy.

The separation into three distinct descriptions en-
sures, to the greatest possible extent, a separation of
concerns between application and platform aspects,
and enables the developer to separately focus on de-
sired functionality and technical realization. We will
refer to the combination of logical model, technical
model, and synthesis descriptor as the deployment
model in the remainder of this paper.

System Model

The AutoFOCUS System Model Generator compiles
the logical and technical models into an AutoFOCUS
system model. The synthesis step uses the mapping
from logical to technical components in the synthesis
descriptor to synthesize the system model as a com-
plete representation of the system behavior relevant
to analysis. All analysis is based on the system model;
if several different deployments are evaluated, a cor-
responding number of analysis cycles are required.

2.2 Analysis and Iterative Development

The system model is used to perform analysis of
the system. There is a wide variety of analysis options
supported by AutoFOCUS which are all applicable to
MoDe system models: a visual simulation interface
using precompiled test vectors or user interaction as
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Figure 2. Iterative Development

input [10], formal verification using either the sym-
bolic BDD-based model checker SMV or the bounded-
depth solver SATO [18], and automated test case gen-
eration using a Constraint Logic Programming (CLP)
environment [15].

For architecture evaluation, the analysis capabil-
ity which is currently of main interest is system-
level response time analysis. The current frame-
work supports this kind of analysis both through the
AutoFOCUS simulation interface, and by systematic
quantitative analysis sketched in the “Results” sec-
tion. The results of the analysis serve as a basis for
modifications of the deployment model in the next it-
eration (Fig. 2).

3 Reference Architecture

3.1 Inter-processor communication

The reference architecture for MoDe consists of a
number of single-processor boards (nodes) commu-
nicating over a number of communication links. In
MoDe system models, properties of the processor are
modeled by service timing functions (see below). For
modeling inter-processor communication, MoDe sys-
tem models incorporate abstractions for drivers and
synchronization:

Drivers. In a layered communication architecture, the
logical model typically specifies the application
layer. For distributed communication, models of
drivers are required to specify the behavior of lay-
ers between the application layer and the layer
modeling the actual link in the system model.
Note that this layer is not necessarily the the
physical layer. The choice depends on the level
of detail required for the analysis.
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Transport medium and synchronization. This in-
cludes synchronization between multiple nodes
(e.g. for buses), potential message loss, etc. For
instance, a synchronization component for a bus
with priority-based arbitration yields the bus to
the requesting driver with the highest priority
for a given arbitration cycle.

Models for drivers and synchronization are imported
through a library mechanism. The MoDe communica-
tion library currently supports two types of links:

RS232 serial communication. RS232 is a simple uni-
directional serial protocol. In the MoDe library,
RS232 is modeled with comparatively simple
driver components; a separate synchronization
component is not necessary for point-to-point
links if the physical communication is assumed
to be reliable.

CAN bus communication. CAN is a Local Area Net-
work protocol with priority-based arbitration
geared at real-time and automotive applications.
The MoDe library includes both a driver model
representing the sub-application-layer function-
ality, and a synchronization component modeling
arbitration.

3.2 Inter-Task Communication

Nodes are assumed to run a real-time operating
system with support for multitasking, mutual exclu-
sion protection, and I/O drivers. The mapping of soft-
ware components to nodes is assumed to be fixed dur-
ing run-time, i.e. migration of software components is
not considered.

The MoDe approach imposes some constraints on
the OS services used for implementation:

• The OS primitives used are threads, message
queues, and shared resources.

• All computations are done by threads. Threads
are assumed to share memory with other threads,
and inter-thread communication is performed ei-
ther via message queues, or by shared-variable
communication through protected memory re-
sources. A thread may keep some of its internal
state between consecutive activations.

• Queues realize FIFO queues of unbounded size.
Messages are never lost.

• Access to protected resources is restricted to one
thread at a time (mutex protected). A running

thread may acquire a free resource or release a
locked resource at any time.

The abstractions currently used for scheduling and
inter-task communication correspond to the OSEK OS
2.2 standard [14]. OSEK OS is an open operating sys-
tem standard for statically defined applications with
small system resources, and was developed by a con-
sortium of European automobile manufacturers.

Scheduling

OSEK defines two task models: basic and extended
tasks. Basic tasks can be either in suspended, ready,
or running state, while extended tasks have an addi-
tional fourth state, waiting, similar to the ready state,
in which the stack context is saved. MoDe currently
supports two options for scheduling:

• Static (offline) Scheduling, no waiting states.
Threads are activated according to a fixed cy-
cle. Static scheduling can be enforced in OSEK’s
fixed-priority framework by ensuring a deter-
ministic cyclic sequence of task activations.

• Fixed priority scheduling, no preemption, ba-
sic task model. Threads are dynamically sched-
uled according to their priorities. Scheduling is
restricted to the OSEK basic task model and non-
preemptive scheduling.

3.3 The Mine Pump Example

For the following explanations, we will use an ex-
ample mine pump system whose specification was
taken from [11]. Though not from the automotive do-
main, the example exhibits some typical properties of
automotive control applications, namely real-time re-
quirements, safety requirements, distribution, and resource
constraints.

The mine pump is used to pump water out of
the bottom of a mine. It is equipped with water
level (high, low) and gas sensors. A pump controller
switches the pump on when the water reaches the
high water level and turns it off when the water is
below the low water level. As an additional opera-
tional requirement, the mine pump may only operate
if the methane level is below a critical threshold. If a
methane alarm occurs, the operator has to be notified
by the system. If the methane sensor fails, the mine
pump has to be transferred to a fail-safe state. This
leads to the following requirements:

1. A high methane value reading by MethaneSen-
sor shall cause an emergency shut down of the
mine pump within 30 milliseconds.
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2. A methane sensor failure shall lead to a shutdown
of the pump within 65 milliseconds.

In the following section, we will illustrate how the
MoDe approach allows flexible modeling of the mine
pump system and how different architectural alterna-
tives can be evaluated using MoDe.

4 Design Notation

This section presents the models used as the input
for the MoDe system model generator.

4.1 Logical model

The visual notation for logical models is loosely
based on the AutoFOCUS notation. In AutoFOCUS,
systems are specified as hierarchical component net-
works, where components communicate via typed
and directed channels. Similar to UML-RT and some
Architecture Description Languages (ADLs), compo-
nents networks are specified in System Structure Di-
agrams (SSDs). Rectangles represent components, ar-
rows between components represent channels, and in-
terface of a component to a channel is called port.
Outgoing ports may be connected to several channels,
while incoming ports are connected to one channel.
Components may be defined by other SSDs, and the
leaf components in the hierarchy are defined by a state
machine-like formalism. All visual elements may be
extended by UML-like stereotypes of the form «ID» ,
and tags of the form {KEY=VALUE}. AutoFOCUS
models may be extended by datatype and function
definitions in a functional language. The correspond-
ing text documents are called Data Type Definitions
(DTDs).

Figure 3 shows the SSD for the logical model for
the mine pump example. Ignoring the stereotypes for
now, the system is decomposed into the following log-
ical components:

• A pump controller (Controller )

• An operator panel (OperatorAlarm )

• Two components handling high and low wa-
ter events, respectively (WaterLowComponent ),
WaterHighComponent )

• One component monitoring the methane level
(MethaneSensorComponent )

A component may be refined by a network of
sub-components defined in another SSD. In the mine

Controller

«active»«periodic»
HighSensor
Component

«active»«periodic»
LowSensor
Component

«active»«periodic»
MethaneSensor

Component

LowOnOff:Bool HighOnOff:Bool

«active»«periodic»
OperatorAlarm

MethaneValue:Int

PumpStatus:
OnOff

Figure 3. SSD for Logical Model

«active»«periodic»
SafetyComponent

MethaneValue:Int

StartStop:
Bool

«passive»
PumpController

LowOnOff:Bool HighOnOff:Bool

«passive»
MethaneValue

Component

MethaneValue:Int

PumpStatus:
OnOff

Figure 4. SSD for Controller

pump example, the Controller component is re-
fined by a sub-SSD (Fig. 4). The interface ports of
Controller appear as external ports; there are three
components refining Controller ’s behavior:

• A safety component acting as a watchdog
(SafetyComponent )

• A component managing the state of the pump
(PumpController )

• A component holding the current methane level,
and putting timestamps on incoming new values
(MethaneValueComponent )

Leaf components in AutoFOCUS component hierar-
chies are defined by State Transition Diagrams (STDs),
which are basically an FSM dialect extended by local
variables and message send/receive statements. Each
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Figure 5. Simplified STD for PumpController

STD has a number of locations and transitions between
locations. Transitions are labeled; the syntax of tran-
sition labels is PRE:IN:OUT:POST, where PRE is the
precondition, IN is an input statement, OUT is the output
statement, and POST is the postcondition (action). The
input statement is of the form IN_PORT_ID ? EXPR,
where EXPR is a functional language expression over
(free) temporary variables and (bound) local vari-
ables. An empty EXPR tests for absence of a mes-
sage. The guard is a boolean expression over local and
temporary variables. The transition is chosen (and
the temporary variables are bound to the correspond-
ing values in the input) if the input matches the in-
put expression, and the guard evaluates to true. An
output statement of the form OUT_PORT_ID ! EXPR
sends the message EXPR to an output port, and post-
conditions perform assignments to local variables.

Figure 5 shows a simplified STD for the PumpCon-
troller without timing annotations. The pump con-
troller’s STD has three locations: the pump is turned
off (initial locations, marked by a dot), the pump is
turned on, and the pump has been stopped by the
safety component. The controller switches between
the PumpOn and PumpOff locations whenever the
high and low water levels are reached, respectively.
If either Stop message on the StartStop channel or
a high methane value is encountered, the controller
switches to the PumpStopped location. It is switched
back to PumpOff when a Start message is encoun-
tered.

In logical models, as opposed to standard
AutoFOCUS models, leaf components are further
differentiated along their mode of activation as active
or passive components.

In the mine pump example (Fig. 3), the PumpCon-
troller and the MethaneValueComponent are
stereotyped as passive, while all other components,
such as the safety component or the sensor monitor-
ing components, are active.

Active components

Active components are triggered by external events
such as interrupts or periodically elapsing timers.
Each active component corresponds to a lightweight
task (thread) on the implementation level. The addi-
tional stereotype «periodic» defines that the activa-
tion is periodic, i.e. time-triggered, while the stereo-
type «sporadic» indicates that the activation of a
component is triggered by incoming messages. Note
that in combination with a static (offline) schedul-
ing policy, the «periodic» and «sporadic» stereo-
types are ignored, and a cyclic activation results.

The behavior of an active component is specified
by an STD. The STD defines an initial location and a
number of final locations. Well-formed STDs for ac-
tive components have at least one final location; this
is checked by the generator. The active component
keeps its local control and data state between subse-
quent activations.

Messages passed to other active components will
be queued and processed in FIFO order by the re-
ceiving component, while messages to passive com-
ponents are immediately processed (see below).

Passive components

Passive components are activated whenever the com-
ponent receives a message from another component.
The activation ends whenever a final state is reached.

In terms of real-time programming, the implemen-
tation of a passive component is best described as
a number of mutual exclusion protected procedures
performing reads and updates on a central memory
resource.

Passive components are mutual exclusion pro-
tected, that is, no two active components may access
the same passive component at the same time. In an
OSEK-based implementation, for instance, this would
be ensured by using the default priority ceiling policy
for shared resources.

Like an active component, each passive component
is defined by an STD. An STD of a passive compo-
nent is well-formed if all outgoing transitions from fi-
nal locations have exactly one input statement with a
nonempty expression, and all other transitions do not
have input statements.

Because messages sent to passive components
causes their sequential activation, the calling compo-
nents may not take advantage of some aspects of par-
allelism allowed in the basic AutoFOCUS model: The
calling component may not have a transition with
more than one nonempty output statements, and the
call may not be distributed to more than one port.
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Timed STDs

MoDe system models are interpreted as discrete-time
models where each system step corresponds to a fixed
time period. A logical component delays the overall
computation by remaining in a non-final state for a
number of steps. In principle, the expressiveness of
STDs is sufficient for modeling delays; however, the
resulting models tend to be somewhat clumsy. The
MoDe tool provides two extensions of the basic STD
notation, clocked STDs and timed STDs [16].

Clocked STDs allow local variables to be qualified
as clocks. Clocks are of (nonnegative) integer type and
are increased by one with each system step; the value
of clocks may be modified by the STD in the same way
as local variables, i.e. resetting and comparison of a
clock’s value is possible. Each of the locations is op-
tionally labelled with an additional invariant over the
component’s clocks; the invariant defines which clock
valuations are permissible for the respective location.
For those system states in which the both the invariant
and some outgoing transitions evaluate to true, the re-
sulting behavior is nondeterministic. In combination
with preconditions over clock valuations for outgo-
ing transitions, invariants allow for the specification
of counting locations modeling execution time for com-
putations. Note that the current generator does not
check whether time is allowed to progress to infinity
by the clocked STD. In principle, this requires that for
each location and each state, either the invariant eval-
uates to true, or one of the outgoing transition’s pre-
conditions.

Timed STDs have the same syntax as basic STDs;
in addition, transitions may have timing labels of the
form «time(MIN;MAX)» or «time(VAL)» , where
MIN, MAX, and VAL are expressions of integer type.
The (MIN;MAX) notation specifies a nondeterministic
interval, while the (VAL) syntax refers to a determin-
istic delay.

Figure 6 shows the timed STD of the component
SafetyComponent . The safety component may per-
form one of the following two actions:

• If the methane value is within a safe range
(x <= DangerMethaneValue ), a Start com-
mand is issued to the pump controller

• If the methane value exceeds the maximum
(x > DangerMethaneValue ), or if no
methane value has been available for a certain
time interval (t - lastTime > TMaxSi-
lent:MethaneValue?:: ), then a Stop com-
mand is sent to the pump controller.

We assume that the execution time for either of

Figure 6. Timed STD for SafetyComponent

the three transitions is between tCheckingMin and
tCheckingMax , which are predefined constants. The
generator will translate the timed STD to a clocked
STD. In the translation step, a new clock c is added
to the component. Each timed transition δ with label
PREδ : INδ : OUTδ : POSTδ :«time(MIN;MAX)» is
replaced with

• a counting location with invariant c < MAX mod-
eling the ongoing computation,

• a transition labeled PREδ : INδ :: POSTδ ∧ (c = 0)
from the source location to the counting location,

• and a transition labeled c ≥ MIN :: OUTδ : from
the counting location to the destination location.

4.2 Technical model

The properties of the technical platform are speci-
fied in the technical model. The technical model is an
independent and self-contained view of the system.

Technical models consist of networks of nodes, links
between nodes, and connectors on nodes. Nodes rep-
resent physical computers with their associated I/O
interfaces and their operating system. Specification of
node-specific properties like scheduling policy, oper-
ating system, etc. is done by a number of tags on the
respective nodes. In our example, all three nodes use
the OSEK operating system with a (nonpreemptive)
Fixed Priority Scheduling policy.

Links denote communication links between nodes
which can be either directed or undirected. Every di-
rected link may be connected with a source connector
and arbitrarily many destination connectors (broad-
cast). For undirected links there is no inherent restric-
tion on the number of connectors, but restrictions on
the number of connectors may be part of the associ-
ated link type definition. The behavior of the link is
defined by associated library components. The cor-
responding drivers are also identifed by link types. In
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task=basic}RS232Link1:

RS232

RS232Link2:

RS232

Figure 7. Technical model

the mine pump example, both links are of type RS232,
and the corresponding driver components are taken
from the MoDe communication library.

Connectors denote those "access points" of a node
where links can be attached. Connectors, like links,
are typed; for directed link types, the connector car-
ries an additional source/destination flag. Naturally,
the connectors of a given node are restricted to those
protocols that are supported by libraries for the com-
ponent.

Fig. 7 shows the technical model for the mine pump
example in a simple graphical notation. The technical
model consists of the following entities:

• Three nodes for processing signals from the water
high/low sensors (WaterSensorProcessor ),
processing signals from the gas sensors
(GasSensorProcessor ), and a central con-
trol unit (ControlUnit ), respectively.

• Additional OS specifications for the nodes. Each
OS specification is shown as a tag in the graphi-
cal notation. The os key selects the library used
for OS abstractions, while the policy key is set
to the desired scheduling policy (fixed priority
scheduling for the example).

• Two directed links of type RS232 from the two
signal processing units to the control unit.

• Four connection points defining the interfaces
from nodes to links - not shown in the diagram.

4.3 Synthesis descriptor

The third element of the deployment model is the
synthesis descriptor. The synthesis descriptor cur-
rently consists of two parts: a mapping part, and a

syntdesc{
mapping {

{PumpController, MethaneValueComponent,
SafetyComponent} mapsto ControlUnit

MethaneSensorComponent mapsto GasSensorProcessor
{HighSensorComponent, LowSensorComponent}

mapsto WaterSensorProcessor
}
schedule {

priorities {
{SafetyComponent, 1}, {MethaneSensorComponent, 1},
{HighSensorComponent, 2}, {LowSensorComponent, 1}

}
}

}

Figure 8. Synthesis Descriptor

schedule part. Figure 8 shows the example synthe-
sis descriptor in a pseudo language. Though concep-
tually the synthesis descriptor is considered a sepa-
rate document, the MoDe tool facilitates navigation
within the model by supporting direct annotations to
diagrams of the logical and technical models.

Note that if the Fixed Priority option is chosen in
the technical model, each leaf component must be as-
signed a priority. In the example, only the two wa-
ter sensor tasks need priorization, and all other prior-
ities are set to 1. Priorities for passive components re-
main without effect in this case as OSEK implements
the Priority Ceiling convention for shared resources,
so the run-time priorities can be inferred from the pri-
orities of the active components.

4.4 Service Timing Functions

MoDe models the timing of complex computations
in terms of the delay of simple computations (basic
blocks). Assuming that these basic blocks can be de-
fined so that the result is sufficiently precise for analy-
sis, then basic blocks will in most cases correspond to
basic HW services such as processor operations, and
the timing of complex algorithms running in HW or
SW may be described as some function of these basic
blocks, possibly varying with additional parameters.
In MoDe, these mutual timing dependencies are ex-
pressed with service timing functions (STFs).

An STF is a function in AutoFOCUS’s built-in func-
tional language yielding a nonnegative integer for a
timing estimate. STFs may be passed a number of
parameters that express some data-dependence of the
delay. An STF is either associated with a component
in the logical model, or a node in the technical model.
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Figure 9. Timed STD for MethaneSensorCom-
ponent

STFs may compute their result by calling other STFs;
in particular, component STFs may refer to the STFs
of the corresponding node. This is indicated by the
prefix $Node$ .

In the mine pump example, component Methane-
SensorComponent reads a value from an external sen-
sor port ActualMethane and forwards its value to
the MethaneValue port. MethaneSensorComponent
filters the sensor signal in order to eliminate noise.
The STF tFilter is used to derive an estimate for
the worst case execution time of the filter; note that
the model abstracts from the actual filter operation.

The component’s STF tFilter models the worst
case execution time for a discrete Butterworth filter of
order n:

MethaneSensorComponent_tFilter: Int -> Int;
fun MethaneSensorComponent_tFilter(n:Int) =

$Node$_tIntAdd(16) * (2*n)
+ $Node$_tIntMult(16) * (2*n+1);

The corresponding node, GasSensorProcessor ,
defines two service timing functions, tIntAdd and
tIntMult , giving some estimates for the worst case
execution time of integer additions and multiplica-
tions on its processor:

GasSensorProcessor_tIntAdd: Int -> Int;
fun GasSensorProcessor_tIntAdd(16) = 2 |

GasSensorProcessor_tIntAdd(32) = 4;
GasSensorProcessor_tIntMult: Int -> Int;
fun GasSensorProcessor_tIntMult(16) = 13 |

GasSensorProcessor_tIntMult(32) = 22;

The STF tFilter(2) evaluates to 2×(2×2)+13×
(2 × 2 + 1) = 73. Consequently, MethaneSensor-
Component ’s transition will be delayed by the same
number of steps.

4.5 System model

The system model defines the semantics of a de-
ployment model. While components in the basic
AutoFOCUS model are assumed to run in parallel,
each set of logical components mapped to the same
“abstract” node in the technical model are executed
sequentially. Therefore, a logical component is not in

Figure 10. SSD for system model (top level
view)

an activated state during all system steps, so certain
abstractions are necessary to ensure that messages are
not lost.

There are two ways control is passed between com-
ponents running on the same abstract processor: se-
quential and scheduled. Sequential passing of control
closely resembles a procedure call in the implementa-
tion; it applies whenever a message is sent to a pas-
sive component. Scheduled passing of control may
happen at any point in time during execution of the
system.

Active components enforce a scheduled passing
of control whenever one of their final locations are
reached. Note that the passive components may be
accessed by several active components.

After the synthesis performed by the system model
generator, a AutoFOCUS system model with abstrac-
tions for scheduling, drivers, and distributed commu-
nication results. Figs. 10 and 11 show the top-level
structure and a part of the model for the ControlU-
nit node, respectively. Note that the hierarchy in the
logical model is flattened.

5 Results

5.1 Models

We have used our framework to model both the
Mine Pump example and a simplified HW/SW archi-
tecture of a car periphery supervision system by an
automotive supplier.

5.2 System Model Generator

The MoDe method is supported by a tool extension
of the publicly available AutoFOCUS tool. The gener-
ator is implemented in about 12,000 lines of Java code.

As an input notation, the MoDe generator currently
reads annotated AutoFOCUS models. Because of the

9



Figure 11. SSD for ControlUnit (detail)

difference in syntax between deployment models and
basic AutoFOCUS models, the generator applies an
additional well-formedness check on the deployment
model, and automatically generates system models if
the deployment model is found to be correct. The sys-
tem model is used for simulation or quantitative real-
time analysis.

5.3 Analysis

In architecture-level design, the following ques-
tions are of major interest for analysis:

• Are the system-level timing requirements ful-
filled for the given architectural choices?

• What is an optimal scheduling and partitioning
of the system with respect to timing requirements
and robustness?

• How flexible is the system with respect to addi-
tion of further functionality?

From the application point of view, the most inter-
esting real-time analysis capability may be classified
as worst case response time analysis.

MoDe system models have a discrete time in-
terpretation. This abstraction works very well for
systems with tight global synchronization, like syn-
chronous hardware. For the kind of systems consid-
ered here, we do not necessarily assume global syn-
chronization; asynchronous links between nodes are
abstracted with finite FIFO buffers, and it is assumed
that the system model does not underestimate the ra-
tio of production rate to consumption rate. We further
assume that the degree of precision allowed by our ap-
proach is adequate for the architectural-level analysis
desired.

We have subjected the mine pump model to quan-
titative real-time analysis using the NuSMV model
checker [7]. A simplified version of the mine pump
system model was automatically translated to an

equivalent specification in the SMV input language
[18]. For the two timing requirements stated above,
the corresponding pairs of events were characterized
as statements in the temporal logic CTL. Using the up-
per bound algorithm in [5], the maximum delay be-
tween the event pairs was computed by NuSMV. For
the mapping of (conceptual) real time to system steps,
a basic period of 1ms was assumed. For the mine
pump model, the analysis proved to be computation-
ally tractable if abstractions for datatypes were intro-
duced, and if the environment of the mine pump (wa-
ter level) was further characterized by a simple model.
We found our preliminary results encouraging, and
expect quantitative real-time analysis to be a future
cornerstone of our approach.

6 Related Work

The concept of active and passive components is in-
spired by Burns and Wellings’s model as described in
[11]. In contrast to the programming-language and
scheduling-theoretic foundations of the Burns and
Wellings model, MoDe is intended to be susceptible
to formal analysis using assertional methods to prove
real-time properties.

The POLIS [1] approach of UC Berkeley models
systems as an asynchronous composition of compo-
nents defined either by an FSM-like formalism or a
composition of Esterel processes. Verification of tim-
ing properties in POLIS is mainly based on simulation
of models based on C code or discrete event simula-
tion. MoDe models are somewhat closer to the actual
concepts supported by common operating systems, so
a wider spectrum of inter-task communication primi-
tives is supported.

There are several current approaches that compile
distributed implementations from specifications in
synchronous languages [2][6]. As opposed to MoDe,
scheduling and timing is a priori assumed to meet the
synchrony assumptions implicit in the language, so a
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separate timing analysis is not necessary.

7 Conclusion and Future Work

We have presented a concept architectural-level de-
sign and analysis of real-time systems using a formal
notation. Our approach is aligned with the predom-
inant platforms in the domain of automotive control
applications.

A more synthesis-oriented use of MoDe models
is straightforward and can be built on existing tech-
nology. Being a synchronous formalism, AutoFOCUS
leads itself naturally to both software [4] or hardware
synthesis, similar to other synchronous formalisms
such as SpecCharts [17], Esterel [3], or Statecharts [8].

An integrated simulation tool should allow interac-
tive simulation of the system model while instrument-
ing the design with the logical and technical views on
the system. When realized, we expect this option to
help users evaluate models while retaining their orig-
inal abstractions.

Quite obviously, the method described here re-
quires some further experimental evaluation. This
should include combination with existing approaches
for BCET and WCET analysis [12], and a detailed com-
parison of analysis results with the actual timing of an
implementation.

Quantitative real-time analysis is subject to the
same scalability issues as other formal methods based
on full state-space exploration. Though it is too early
at this point for qualified judgement, we feel that
automated techniques for abstraction, or incomplete
searches of the state-space, may improve scalability in
the future.

An extended version of this paper can be found in
[16].
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