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Abstract

Perfectly synchronous systems immediately react to the in-

puts of their environment, which may lead to so-called

causality cycles between actions and their trigger condi-

tions. Algorithms to analyze the consistency of such cycles

usually extend data types by an additional value to explic-

itly indicate unknown values. In particular, Boolean func-

tions are thereby extended to ternary functions. However,

a Boolean function usually has several ternary extensions,

and the result of the causality analysis depends on the cho-

sen ternary extension. In this paper, we show that there

always is a maximal ternary extension that allows one to

solve as many causality problems as possible. Moreover,

we elaborate the relationship to hazard elimination in hard-

ware circuits, and finally show how the maximal ternary ex-

tension of a Boolean function can be efficiently computed

by means of binary decision diagrams.

1. Introduction

Synchronous languages [1, 2, 17, 23, 23] follow the

paradigm of perfect synchrony: reactions (outputs) of the

system respond immediately to actions (inputs) of the envi-

ronment. This idealized programming model simplifies the

semantics of the languages and leads to a simpler execu-

tion time analysis. Synchronous hardware circuits, as well

as Mealy and Moore machines also follow the paradigm of

perfect synchrony. However, since synchronous languages

additionally allow programs to read their own outputs, mu-

tual dependencies between actions and their trigger condi-

tions may lead to so-called causality cycles. Such cycles

may lead to inconsistencies so that no code can be gener-

ated. In many cases, however, causality cycles can be re-

solved and deterministic code can be generated. To this end,

compilers have to analyze the causality of cyclic dependen-

cies.

Causality cycles in hardware circuits (also called combi-

national cycles or feedback loops) have already been stud-

ied in the early seventies [19, 20, 32]. Kautz [20] and Rivest

[32] proved that circuits with combinational cycles can be

smaller than the smallest cycle-free implementations. For

this reason, the introduction of combinational cycles has

been recently proposed as a new strategy for logic min-

imization [30, 31]. Furthermore, causality cycles (called

‘false paths’ in this setting) occur in high-level synthesis of

circuits by sharing common subexpressions [41], and are a

major concern in the compilation of synchronous languages

[2, 3, 5, 17, 34–36, 38]. As an example, consider the fol-

lowing equation (taken from [26]) where a system is to be

implemented with large subsystems f and g:

y = if c then f(g(x)) else g(f(x)) end

The cyclic equation system shown in Figure 1 requires only

one instance of f and one instance of g (besides three mul-

tiplexors). In contrast, any acyclic version requires further

instances of f and g.





y = if c then yf else yg end

yf = f(xf )
yg = g(xg)
xf = if c then yg else x end

xg = if c then x else yf end

Figure 1. A Cyclic Equation System

In the above example, x and y may have arbitrary data

types. In the following, however, we restrict our consid-

erations to Boolean data types in order to circumvent ad-

ditional problems concerning the termination of the causal-

ity analysis. Hence, given Boolean-valued input and output

variables ~x and ~y, the problem is to check whether a cyclic

equation system ~y = ~f(~x, ~y) has a unique solution for all

inputs. There are a lot of equivalent views on (and thus ap-

plications of) causality analysis:



• Shiple [37] proved the equivalence to Brzozowski and

Seger’s timing analysis in the up-bounded inertial de-

lay model [11]: Circuits derived from cyclic equa-

tion systems will stabilize for arbitrary gate delays iff

the equation systems are causally correct. The algo-

rithms used to analyze hardware circuits are based on

a ternary interpretation of Boolean logic.

• Berry [3] pointed out that causality analysis is equiva-

lent to theorem proving in intuitionistic (constructive)

propositional logic, since intuitionistic logic may be

viewed in a ternary setting (1:provable, 0:disprovable,

⊥: neither provable nor disprovable). Hence, he intro-

duced the notion of constructive circuits [4, 27, 28, 38].

• By Berry’s observation, the problem is equivalent to

type-checking of certain functional programs due to

the Curry-Howard isomorphism [18].

• Edwards reformulates the problem in that the existence

of dynamic schedules must be guaranteed for the exe-

cution of mutually dependent actions [15].

Malik [26] was the first who presented algorithms for elim-

inating cycles in Boolean equation systems ~y = f(~x, ~y).
He used a ternary extension of Boolean algebra as intro-

duced by Yoeli and Rinon [43] and Eichelberger [16], and

further refined by Brzozowski, Bryant, and Seger [6, 8–11]

to analyze the propagation of signal values in these cir-

cuits. The computation of a solution ~y depending on the

inputs ~x is then reduced to the computation of a fixpoint

of the function f~x(~y) := ~f(~x, ~y), where the inputs ~x are

fixed. The existence of such fixpoints in the ternary do-

main is guaranteed by the Tarski-Knaster theorem [22, 42]

(see also the next section), and the number of iterations is

limited by the number of equations |~y|. Having computed

the fixpoint ~y = f~x(~y) in a symbolical form, i.e., depend-

ing on the inputs ~x, one has an equivalent acyclic equation

system ~y = ~f ′(~x). As this is done in a three-valued set-

ting, it finally remains to check if all equations evaluate to

Boolean values. It can be shown that computing the ternary

fixpoint and checking whether it is a Boolean one is co-NP-

complete [25, 37].

Although the acyclic version may require more opera-

tions than the original cyclic one [19, 20, 30–32], the elim-

ination of cycles is a popular way for generating single-

threaded sequential code from multi-threaded synchronous

programs in that a causal order (i.e. a schedule [15]) to eval-

uate the right hand sides of the equation system is deter-

mined1.

Malik’s approach has been generalized by Shiple et al. to

sequential circuits with cyclic output functions [37–39], and

by Schneider et al. to arbitrary sequential circuits [34]. Be-

sides a complete fixpoint computation, heuristics can be

1In the meantime, alternative compilation techniques [13, 14, 24] were

proposed. However, these approaches still need causality analysis to guar-

antee the existence of a dynamic schedule for mutually dependent actions.

applied in a first instance to solve simple cases more effi-

ciently [36]. Alternatives to the fixpoint computation were

also considered: [12, 29] replaced the causality problem

by the theoretically more difficult satisfiability problem and

proposed new SAT solving techniques and temporal induc-

tion for its solution. However, causality analysis based on

fixpoint computation is not only a heuristic for satisfiability

checking, it moreover establishes a direct relationship be-

tween the causality of a program and its dynamic execution

(stabilization of signals in circuits or existence of dynamic

schedules in software). Hence, causality analysis may be

viewed as a symbolic compile-time simulation of the pro-

gram in order to guarantee its conflict-free execution.

All known procedures for causality analysis that are

based on fixpoint computation require an extension of

Boolean functions to a ternary domain. Although there are

many ways how this can be done, none of the previous ap-

proaches considered the effect of different extensions. In-

stead, only basic Boolean operations like negation, conjunc-

tion, and disjunction are directly extended, and ternary ex-

tensions of other Boolean functions are obtained by com-

position of the ternary extensions of the basic functions. In

[34], however, it has already been remarked that this is not

optimal, and that different ternary extensions yield differ-

ent results in causality analysis. This raises the question

whether there is an optimal way to construct ternary exten-

sions so that causality analysis can resolve as many causal-

ity cycles as possible.

In this paper, we answer this question to the positive: for

every Boolean equation system, there is a (uniquely deter-

mined) maximal ternary extension that allows the transfor-

mation to an acyclic system, if this can be done by fixpoint

computation at all. We show that this maximal ternary ex-

tension corresponds to the disjunction of all prime impli-

cants, which gives a relationship to hazard elimination [16].

By this relationship, we derive a first algorithm for com-

puting the maximal ternary extension, which, however, re-

quires to compute all prime implicants of a Boolean func-

tion. We then present more efficient algorithms for comput-

ing the maximal ternary extension. In particular, we present

an algorithm that can be easily implemented by means of

binary ordered decision diagrams (BDDs).

The outline of the paper is as follows: in the next section,

we formulate the problem of eliminating cycles in Boolean

equation systems by reviewing Malik’s procedure and its

formal foundation based on Tarski’s fixpoint theorem. In

Section 3, we present the construction of the optimal ternary

extension f̂ and prove that it is the maximum of all ternary

extensions of f . Moreover, we prove that an alternative con-

struction of f̂ is obtained by the disjunction of all prime

implicants of f . After presenting our implementation and

experimental results in Section 5, we conclude with a short

summary.



2. Elimination of Causality Cycles

In this section, we review the analysis of cyclic equation

systems due to Malik [26], which is still the key to gen-

eralized algorithms for causality analysis [34, 37–39]. We

describe Malik’s method on a lattice theoretic background

so that its correctness can be easily derived from the well-

known fixpoint theorem of Tarski and Knaster [22, 42].

To this end, Boolean functions are extended to monotonic

ternary functions, so that the existence of their fixpoints is

guaranteed.

2.1. Formulation of the Problem

The problem is to decide for a given Boolean equation sys-

tem of the following form whether it defines unique outputs

for all possible inputs:




y1 = f1(x1, . . . , xm, y1, . . . , yn)
...

yn = fn(x1, . . . , xm, y1, . . . , yn)

The arguments x1, . . . , xm are the inputs of the system, and

y1, . . . , yn are the outputs. In the following, we make use

of the shorthand vector notation ~y = ~f(~x, ~y) for the above

equation system. If we consider for every input ~x the func-

tion ~f~x(~y) := ~f(~x, ~y), it becomes obvious that the prob-

lem is to check whether this function has a unique fixpoint

~y = ~f~x(~y). The Tarski-Knaster theorem as described in

the next section presents an algorithm to decide this ques-

tion. Moreover, it is possible to compute the fixpoint as a

function ~y = ~f ′(~x) depending only on the inputs ~x in order

to generate an equivalent acyclic Boolean equation system

(see e.g. [34]).

2.2. Fixpoint Theory

Fixpoint theory is well understood in theoretical computer

science. In particular, the Tarski-Knaster theorem [22, 42] is

often used to compute fixpoints of monotonic functions. For

example, this theorem is fundamental to nearly all verifica-

tion algorithms [33]. To apply this theorem and its related

fixpoint iteration, we have to consider (complete) lattices.

A partially ordered set (D,v) is a lattice, if all two-

element sets {x, y} ⊆ D have suprema sup ({x, y}) and

infima inf ({x, y}) in D. A function f : D → D is mono-

tonic, if for all x, y ∈ D with x v y, we have f(x) v f(y).
For monotonic functions f : D → D over a finite lat-

tice (D,v), it follows that f(sup (M)) = sup (f(M)) and

f(inf (M)) = inf (f(M)) holds (i.e., monotonic functions

over finite lattices are continuous). Moreover, in a finite lat-

tice, sup (M) and inf (M) exist in D for every set M ⊆ D.

In particular, we write ⊥ := inf (D) and > := sup (D) for

the minimal and maximal element of D, respectively.

Theorem 1 (Tarski/Knaster Fixpoint Theorem [22, 42])

Let (D,v) be a finite lattice and f : D → D be a mono-

tonic function. Then, f has fixpoints and the set of fixpoints

even has a minimum x̌ and a maximum x̂. Moreover, the

least fixpoint x̌ of f can be computed by the iteration

p0 := ⊥, pi+1 := f(pi), and the greatest fixpoint x̂ of f

can be computed by the iteration q0 := >, qi+1 := f(qi).

2.3. Embedding Booleans in a Lattice

In order to apply the above theorem to causality analysis,

we have to embed the Boolean values 0 and 1 in a lattice. In

addition, we have to extend the considered Boolean func-

tions fi(~x, ~y) to monotonic functions over this lattice. This

can be achieved by extending B = {0, 1} with the new el-

ements ⊥ and > to the set F := {⊥, 0, 1,>}. The partial

order v on F is the reflexive-transitive closure of the rela-

tion where ⊥ v 0, ⊥ v 1, 0 v >, and 1 v > holds.

The partial order v naturally extends to vectors over F, i.e.,

(x1, . . . , xn) v (y1, . . . , yn) iff xi v yi holds for all com-

ponents i.

In [34] it was shown that it suffices for causality analysis

to consider least fixpoints. As a consequence, > is never

needed for causality analysis, so that we can restrict our

considerations to the semi-lattice T := {⊥, 0, 1}, which is

also a ternary algebra [11, 34]. This semi-lattice has been

considered in many previous works including [16, 21, 26–

28, 34, 37–39, 43] with different explanations of the third

value. Our intuition is that the partial order is a measure for

the information content, i.e., x = ⊥ means that x could be

either 0 or 1, but we do not yet know the Boolean value and

therefore assign the value ⊥. Causality analysis or ternary

simulation proceeds in exactly this way and thereby com-

putes a fixpoint according to the Tarski-Knaster theorem.

To this end, we have to extend a given Boolean function

f : B
n → B

n to a monotonic function gf : T
n → T

n. In

the following, we use the notion of a ternary extension:

Definition 1 (Ternary Extension) A ternary function g :
T

n → T
m is called a ternary extension of a Boolean func-

tion f : B
n → B

m if the following holds:

• g(~x) = f(~x) for all ~x ∈ B
n, and

• g(~x1) v g(~x2) for all ~x1, ~x2 ∈ T
n with ~x1 v ~x2

By our definition, every ternary extension g : T
n → T

n

is a monotonic function and therefore, every ternary exten-

sion of this form has fixpoints that can be computed via

the Tarski-Knaster iteration. However, a Boolean function

f : B
n → B

n may have many ternary extensions that can,

in principle, all be used for the fixpoint computation. How-

ever, it is essential for causality analysis that the computed

fixpoint is a Boolean one, and this may not hold for all

ternary extensions of a Boolean function.



2.4. Causality Analysis by Fixpoint Iteration

As ternary extensions f : T
n → T

n are monotonic (by

definition), it follows from the Tarski-Knaster theorem, that

these functions have a least fixpoint in T
n that is computed

by the simple iteration ~yi+1 := f(~yi) starting with ~y0 :=
(⊥, . . . ,⊥). If the least fixpoint (y̌1, . . . , y̌n) belongs to B

n,

it follows that the equation system has a Boolean solution.

It is not difficult to see that this also implies the uniqueness

of the solution [34].

Theorem 2 (Causality Analysis) Given a Boolean vector

function f : B
n → B

n and the least fixpoint ~̌y of an arbi-

trary ternary extension g : T
n → T

n of f , then the follow-

ing propositions are equivalent:

• ~̌y ∈ B
n

• ~y = f(~y) has only one solution in T
n

However, if ~̌y 6∈ B
n holds, we know nothing about the exis-

tence of Boolean solutions of ~y = f(~y).

In general, an equation system ~y = f(~y) may have more

than one solution in the three-valued domain. In particular,

it may be the case that the least fixpoint ~̌y does not belong to

B
n, even if unique Boolean solutions ~y exist for all inputs.

Moreover, it even depends on the used ternary extension if

a unique Boolean solution is found. For example consider

f(x) := 0 and two ternary extensions f1 and f2 of f :

x f(x) f1(x) f2(x)
⊥ − ⊥ 0

0 0 0 0

1 0 0 0

The least fixpoint of f2 is 0 which is also the unique

Boolean solution of y = f(y). However, f1 has two fix-

points and the fixpoint iteration yields its least fixpoint,

namely ⊥.

Thus, even if a unique Boolean solution exists, we may

not be able to find this Boolean solution via fixpoint com-

putation. While this is certainly a drawback of the proce-

dure, the advantages are predominant: instead of checking

(unique) satisfiability of the equation system, which is more

difficult, we can compute the fixpoints with at most n it-

erations (this is the diameter of T
n, i.e., the length of the

largest chain in T
n), and each iteration can be computed in

linear time with respect to the size of the equation system.

However, after this, we have to check whether the obtained

fixpoint belongs to B
n, which is a coNP-complete problem

[25]. Checking whether an equation system ~y = ~f(~x, ~y)
has a unique solution ~y for all inputs ~x, requires to prove

the validity of the formula ∀~x.∃1~y.~y = ~f(~x, ~y), which is

probably more difficult than coNP-complete (currently, we

do not know a precise complexity class of the problem).

3. Maximal Ternary Extensions

3.1. Standard Ternary Extension

In the previous section, we showed that more than one

ternary extension of a Boolean function may exist and that

the success of causality analysis depends on the chosen ex-

tension. However, there is only one possible extension ¬̃ for

the negation ¬, and there are four extensions for conjunction

and disjunction. Usually, the following ternary extensions

¬̃, ∧̃ and ∨̃ of ¬, ∧ and ∨ are chosen:

∧̃ ⊥ 0 1

⊥ ⊥ 0 ⊥
0 0 0 0

1 ⊥ 0 1

∨̃ ⊥ 0 1

⊥ ⊥ ⊥ 1

0 ⊥ 0 1

1 1 1 1

x ¬̃x

⊥ ⊥
0 1

1 0

The above three-valued operations have already been used

by Kleene [21] and in many other publications [11, 16, 21,

26–28, 34, 37–39, 43] with different interpretations of the

third value. In [34], it was argued that these ternary ex-

tensions are maximal, and therefore they are best suited for

causality analysis (since their fixpoints are also maximal,

and thus more probably Boolean).

As every Boolean function f : B
n → B can be repre-

sented by a propositional formula with n variables with the

operators ¬, ∧, and ∨, it follows that we can represent every

Boolean function as a composition of these basic Boolean

functions. Moreover, as monotonic functions are closed un-

der function composition, a ternary extension gf : T
n → T

of a Boolean function f : B
n → B is directly obtained by

replacing ¬, ∧, and ∨ with the above ternary extensions ¬̃,

∧̃, and ∨̃, respectively.

The ternary function gf : T
n → T that is thereby ob-

tained is called the standard ternary extension of f . Note,

however, that gf depends not only on the Boolean func-

tion, but also on its representation by a particular proposi-

tional formula. However, the representation of f by propo-

sitional formulas is not unique: It can be easily shown (see

example in Section 3.5), that different ternary extensions

are obtained for different propositional representations of

f . Moreover, these different choices influence the success

of causality analysis. Hence, this definition makes causality

a syntactical property [34]: There are logically equivalent

Boolean equation systems where one is causally correct, but

the other one is not. In [35], we therefore showed how code

generation can be improved so that more programs can be

successfully handled in causality analysis. Having a closer

look at the improvements that are discussed in [35] shows

that they are all special cases of the maximal causality anal-

ysis presented in this paper. Their advantage is, however,

that they can be implemented more efficiently.



3.2. Maximal Ternary Extension

In this section we will show that among the ternary exten-

sions, there always is a best choice: the maximal ternary

extension. We show that every Boolean function f : B
n →

B
m has a maximal ternary extension. Using this extension,

we obtain the best results for causality analysis in that as

many cyclic equation systems as possible can be solved. As

the maximal ternary extension is moreover defined w.r.t. the

semantics, causality in this sense is no longer a syntactic is-

sue. This means that the causality does no longer depend on

the syntax of a propositional formula that is used as the rep-

resentation of a Boolean function f .

Definition 2 (Maximal Ternary Extension) A ternary ex-

tension g : T
n → T

m of a Boolean function f : B
n → B

m

is called the maximal ternary extension of f if h(~x) v g(~x)
holds for all ternary extensions h : T

n → T
m of f and for

all ~x ∈ T
n.

Obviously, there is at most one maximal ternary extension

of a Boolean function. Since the partial order v on T
n is de-

fined component-wise, the function g : T
n → T

m with g =
(g1, . . . , gm) is a maximal ternary extension of the function

f : B
n → B

m with f = (f1, . . . , fm), iff gi : T
n → T is

the maximal ternary extension of fi : B
n → B (for all i).

Therefore, it is sufficient to consider only maximal ternary

extensions of Boolean functions f : B
n → B.

Theorem 3 (Maximal Ternary Extension) Let g : T
n →

T
n be the maximal ternary extension of a Boolean function

f : B
n → B

n and let h : T
n → T

n be an arbitrary ternary

extension of f . If causality analysis by fixpoint iteration

using h succeeds, causality analysis using g also succeeds.

Proof. Let ~yh be the least fixpoint of h. Then, there exists an

i ∈ N with hi(⊥, . . . ,⊥) = ~yh. As g is the maximal ternary

extension, ~yh = hi(⊥, . . . ,⊥) v gi(⊥, . . . ,⊥) =: ~yg

holds. We know that ~yh is Boolean, since causality analysis

using h succeeds. Hence, ~yh v ~yg implies ~yh = ~yg . Thus,

~yg is Boolean and causality analysis using g succeeds. ¤

3.3. First Algorithm to Compute the Maximal
Ternary Extension

In this section, we present a first algorithm for the construc-

tion of a ternary extension f̂ for a Boolean function f . After

that, we will prove that f̂ is the maximal ternary extension

of f . To define f̂ , the following definition is useful:

Definition 3 (Degree of a Ternary Vector) The degree

degree(~x) of a ternary vector ~x = (x1, . . . , xn) ∈ T
n is the

number of non-Boolean components xi, that is the number

of xi’s which are ⊥.

Note that ~x v ~y holds iff for all i ∈ {1, . . . , n}, we have

xi = yi or xi = ⊥. Hence, it follows that ~x v ~y implies

degree(~x) ≥ degree(~y) (the reverse is not the case). Note

that the ternary vectors of degree 0 are the Boolean vectors.

This property is used in the following definition of the max-

imal ternary extension f̂ of a Boolean function f :

Definition 4 (Maximal Ternary Extension) For every

Boolean function f : B
n → B, we define a ternary function

f̂ recursively as follows:

• for ~x ∈ T
n with degree(~x) = 0, define f̂(~x) = f(~x)

• for ~x ∈ T
n with degree(~x) = m + 1, define

f̂(~x) = inf
(
{f̂(~y) | ~x v ~y ∧ degree(~y) = m}

)

Note that ~x v ~y and degree(~x) = degree(~y) + 1 imply that

the vectors ~x and ~y differ in exactly one component xj , i.e.,

we have xi = yi for all i ∈ {1, . . . , n} \ {j} and yj = ⊥

and xj ∈ B. Hence, to determine f̂(~x), we have to inspect

all previously determined function values f̂(~y) where ~x and

~y are as described above.

Because of the construction of f̂ , it is obvious that

f̂(~x) = f(~x) holds for all Boolean valued ~x. We can also

prove the monotonicity: consider ~x, ~y ∈ T
n with ~x v ~y.

It follows that degree(~x) ≥ degree(~y) holds, which implies

by definition of f̂ that f̂(~x) v f̂(~y) holds. Using this, it is

easily seen that we could alternatively define for ~x 6∈ B
n:

f̂(~x) = inf
(
{f̂(~y) | ~x v ~y}

)

However, this does not directly yield an algorithm for the

construction of f̂ . For this reason, we decided to use the

refined version above (which only has to inspect already

available function values). By the above results, we already

conclude that f̂ is a ternary extension of f . It can moreover

be seen that it is the maximal one:

Theorem 4 The ternary function f̂ is the maximal ternary

extension of f .

Proof. Let g be an arbitrary ternary extension of f . We

must show that g(~x) v f̂(~x) holds for all inputs ~x ∈ T
n.

We prove this by induction on the degree of ~x. In case

degree(~x) = 0 the input ~x is Boolean and therefore g(~x) =

f(~x) = f̂(~x) holds. So let degree(~x) = n+1 hold. Since g

is a ternary extension, g(~x) v g(~y) holds for all ~y with ~x v

~y. We already know g(~y) v f̂(~y) for all ~y with degree(~y) =

n by induction hypothesis. Thus, g(~x) v g(~y) v f̂(~y) for

all ~y with ~x v ~y and degree(~y) = n follows. Therefore

g(~x) v inf
(
{f̂(~y) | ~x v ~y ∧ degree(~y) = n}

)
= f̂(~x)

holds. ¤



standard ternary extension

f(α, β, γ) := α∧̃β ∨̃ ¬̃α∧̃γ

α ≡ ⊥ α ≡ 0 α ≡ 1

β, γ ⊥ 0 1

⊥ ⊥ ⊥ ⊥
0 ⊥ 0 ⊥

1 ⊥ ⊥ ⊥

β, γ ⊥ 0 1

⊥ ⊥ 0 1

0 ⊥ 0 1

1 ⊥ 0 1

β, γ ⊥ 0 1

⊥ ⊥ ⊥ ⊥
0 0 0 0

1 1 1 1

maximal ternary extension

f̂(α, β, γ) := α∧̃β ∨̃ ¬̃α∧̃γ ∨̃ β∧̃γ

α ≡ ⊥ α ≡ 0 α ≡ 1

β, γ ⊥ 0 1

⊥ ⊥ ⊥ ⊥
0 ⊥ 0 ⊥

1 ⊥ ⊥ 1

β, γ ⊥ 0 1

⊥ ⊥ 0 1

0 ⊥ 0 1

1 ⊥ 0 1

β, γ ⊥ 0 1

⊥ ⊥ ⊥ ⊥
0 0 0 0

1 1 1 1

Figure 2. Standard and Maximal Ternary Extensions of the ‘if-then-else’ Function.

3.4. Second Algorithm to Compute the Maximal
Ternary Extension

Eichelberger considered ternary extensions in [16] in order

to eliminate hazards in hardware circuits. To define ternary

extensions, he distinguished between basic gates and com-

bined circuits. His construction for basic gates is different

to the one given above, but it yields the same ternary exten-

sion, which can be seen by the following lemma (which is

Eichelberger’s definition):

Lemma 1 (Eichelberger’s Ternary Extension) Given a

Boolean function f : B
n → B and its maximal ternary

extension f̂ : T
n → T. Then, abbreviate for ~x ∈ T

n:

Cube(~x) := {~y ∈ B
n | ~x v ~y}

Using this abbreviation, the following holds for all ~x ∈ T
n:

• f̂(~x) = 0 iff we have f(~y) = 0 for all ~y ∈ Cube(~x).

• f̂(~x) = 1 iff we have f(~y) = 1 for all ~y ∈ Cube(~x).

• f̂(~x) = ⊥ iff there are ~y1, ~y2 ∈ Cube(~x) with f(~y1) =
0 and f(~y2) = 1.

Hence, f̂(~x) = inf ({f(~y) | ~y ∈ Cube(~x)}).

Eichelberger used the above facts to define f̂ without hav-

ing the wish to construct a maximal ternary extension in our

sense. Instead, a vector ~x ∈ T
n is identified with Cube(~x).

Thus, Eichelberger used ⊥ as a place-holder for the Boolean

values, while we use it as a measure of information con-

tent. Of course, the above lemma tells us that both intu-

itions yield the same ternary function. Therefore, we can

list another characterization of f̂ :

Theorem 5 (Prime Implicant Theorem) The maximal

ternary extension f̂ : T
n → T of a Boolean function

f : B
n → B is obtained by replacing ¬, ∧, and ∨ by ¬̃, ∧̃,

and ∨̃ in the disjunction of all prime implicants of f .

Proof. Prime implicants can be represented by minimal

vectors ~x ∈ T
n so that Cube(~x) contains the assignments

that satisfy the prime implicant. In this role xi = ⊥ means

that the value of xi does not care. Once this is seen, the

above theorem follows almost from the previous lemma:

In particular, if a prime implicant is missing, we can find

~y1, ~y2 ∈ Cube(~x) with f(~y1) = 0 and f(~y2) = 1, and thus

would have f̂(~x) = ⊥. ¤

The above result gives us a second algorithm to compute the

maximal ternary extension f̂ of a given Boolean function f .

3.5. Example

As we have seen, the choice of a ternary extension for a

given Boolean function matters for causality analysis, and

the maximal ternary extension is the best choice to solve as

many problems as possible. In this section, we will illustrate

this by an example that often occurs in the compilation of

synchronous programs. To this end, consider the ‘if-then-

else’ operator as a simple Boolean function f(α, β, γ) with

three arguments. It can be represented with the following

propositional formula:

f(α, β, γ) :≡ α ∧ β ∨ ¬α ∧ γ.

Figure 2 shows the standard and maximal ternary extensions

of this Boolean function. According to the results of the pre-

vious section, the maximal ternary extension is the standard

ternary extension of the disjunction of all prime implicants

of f , i.e., the standard extension of α∧ β ∨¬α∧ γ ∨ β ∧ γ.

As can be seen, the two possible extensions of f differ in

(α, β, γ) = (⊥, 1, 1). This allows f̂ to select β if β = γ

holds, regardless of the value of α. As a consequence, the

causality analysis given in Figure 3 depends on the ternary

extension (note that ⊥∧̃x∨̃⊥ ≡ ⊥ and ⊥∧̃x∨̃x ≡ x holds).



standard extension maximal extension


y = y ∧ x ∨ ¬y ∧ z

z = x



y = y ∧ x ∨ ¬y ∧ z ∨ x ∧ z

z = x

0 1 2

y ⊥ ⊥ ⊥

z ⊥ x x

0 1 2 3

y ⊥ ⊥ x x

z ⊥ x x x

Figure 3. Causality Analysis Depends on
Ternary Extension.

4. Implementation by Dual-Rail Encoding

In this section, we show how causality analysis can be

implemented symbolically, e.g. by means of BDDs. The

method used here has been proposed by Bryant for ternary

simulation of MOS transistor circuits [6]. For reasons of

efficiency, we directly encode the fact that input and state

variables are always Boolean values. This fact can be en-

coded easily, which saves a lot of propositional variables

and makes our analysis more efficient.

Similar to Bryant’s work, we start with a dual-rail encod-

ing where sets over the lattice F are encoded by a pair of

propositional formulas. This representation is based on the

following encoding of F by B
2:

Definition 5 (Dual-Rail Encoding) For the encoding of

the values of F by values of B
2, we use the following

bijective mapping ε : B
2 → F:

x ∈ B
2 ε(x) ∈ F

(0, 0) ⊥
(0, 1) 0

(1, 0) 1

(1, 1) >

Using dual-rail encoding, we can encode the values of F

and all desired operations on F by corresponding Boolean

values and operations, respectively. In particular, we can

represent a ternary function f : T
n → T by two Boolean

functions (g(~u,~v), h(~u,~v) if the following equation holds:

ε(g(~u,~v), h(~u,~v)) := f(ε(~u,~v))

For example, the maximal ternary extensions ¬̃, ∧̃ and ∨̃ of

¬, ∧ and ∨ discussed in Section 3 are encoded by ¬2, ∧2,

and ∨2, that are defined as follows:

• ¬2(x1, x2) := (x2, x1)

• (x1, x2) ∧2 (y1, y2) := (x1 ∧ y1, x2 ∨ y2)

• (x1, x2) ∨2 (y1, y2) := (x1 ∨ y1, x2 ∧ y2)

Thus, canonical normal forms for propositional logic like

binary decision diagrams (BDDs) [7, 40] lead to canoni-

cal normal forms for functions on T. To obtain an efficient

implementation, we can therefore easily use BDDs for rep-

resenting and manipulating these formulas.

4.1. Standard Ternary Extension

In the following, we are especially interested in representa-

tions of ternary extensions. Recall that the Boolean func-

tions we are interested in are given by an equation system

of the following form





y1 = f1(x1, . . . , xm, y1, . . . , yn)
...

yn = fn(x1, . . . , xm, y1, . . . , yn)

As motivated in Section 3.2, it is sufficient to consider all

fi individually in order to build a ternary extension of ~f .

Furthermore, it is advantageous to exploit the fact that in-

put variables xi are always Booleans. Figure 4 shows the

function Railsstd that computes the standard ternary exten-

sion of a propositional formula f : B
m+n → B and a set of

output variables Y (containing y1, . . . , yn): Railsstd(Y, f)
yields two propositional formulas (g, h) that are the rails of

f . For notational convenience, we encode a variable y ∈ Y
by the two Boolean variables (y.r1, y.r2) denoting the two

rails of y. The correctness of Railsstd is obvious, since the

standard ternary extension is defined by replacing ¬, ∧ and

∨ with ¬̃, ∧̃ and ∨̃, and we have already seen encodings of

¬̃, ∧̃ and ∨̃.

Note that for variables x 6∈ Y , we return the pair (x,¬x)
which means that we have got a Boolean value. This is how

we encode the knowledge that inputs and state variables are

Booleans. As a result, we only have to generate copies of

the output variables, and therefore save a lot of variables to

minimize the BDD sizes.

4.2. Maximal Ternary Extension

It is also possible to directly define the rails g, h of the max-

imal ternary extension f̂ in terms of the Boolean function

f : B
m+n → B:

• InCube(~y, ~u,~v) :=
∧n

i=1
(ui → yi)∧

∧n
i=1

(vi → ¬yi)

• g(~x, ~u,~v) := ∀~y. InCube(~y, ~u,~v) → f(~x, ~y)

• h(~x, ~u,~v) := ∀~y. InCube(~y, ~u,~v) → ¬f(~x, ~y)

The correctness of this encoding follows from Lemma 1.

InCube(~y, ~u,~v) holds iff the Boolean vector ~y belongs to

the set of ternary vectors that are greater than or equal to the

ternary vector encoded by (~u,~v) (i.e., if ε(~y,¬~y) v ε(~u,~v)
holds.)



function Railsstd(Y, f)
case f of

¬f1 : (g, h) := Railsstd(Y, f1);
return (h, g);

f1 ∧ f2: (g1, h1) := Railsstd(Y, f1);
(g2, h2) := Railsstd(Y, f2);
return (g1 ∧ g2, h1 ∨ h2);

f1 ∨ f2: (g1, h1) := Railsstd(Y, f1);
(g2, h2) := Railsstd(Y, f2);
return (g1 ∨ g2, h1 ∧ h2);

0 : return (0, 1);
1 : return (1, 0);
x : if x ∈ Y then

return (x.r1, x.r2)
else return (x,¬x) end;

end case

end function

Figure 4. Computing the Dual-Rails of the
Standard Ternary Extension

function Railsmax(Y, f)
C :=

∧n
i=1

(ui → yi) ∧
∧n

i=1
(vi → ¬yi);

g := ∀~y. C → f ;

h := ∀~y. C → ¬f ;

return (g, h)
end function

Figure 5. Computing the Dual-Rails of the
Maximal Ternary Extension with BDDs

According to the dual-rail encoding, it follows that

g(~x, ~u,~v) = 1 holds iff f̂(~x, ε(~u,~v)) = 1 holds, which

is according to Lemma 1 equivalent to f(~x, ~y) = 1 for

all Boolean vectors ~y with InCube(~y, ~u,~v). Analogously,

h(~x, ~u,~v) = 1 holds iff f̂(~x, ε(~u,~v)) = 0 holds, which is

according to Lemma 1 equivalent to f(~x, ~y) = 0 for all

Boolean vectors ~y with InCube(~y, ~u,~v).

Hence, it is possible to directly implement the maximal

ternary extension f̂ of a given Boolean function f in terms

of two Boolean functions g, h via dual-rail encoding and

Boolean quantification. In practice, a slightly improved

method is used to get smaller BDDs: Instead of consider-

ing all output variables ~y of f , only output variables that

are used in f are taken into account. Further optimizations

result from the fact that the value > can never occur .

4.3. Fixpoint Iteration

Using dual-rail encoding, it is straightforward to implement

the fixpoint computations as known from symbolic model

checking (see [33]). This can be done for the computa-

tion of the acyclic equation system (cf. Figure 6) as well

as for reachability analysis, which is a standard problem in

model checking. For the latter, we must verify that for all

paths starting in an initial state, the rails of each output vari-

able are always complementary. In this case, the outputs are

Booleans, and we can use their first rails for code genera-

tion.

function MakeAcyclic(~y = ~f(~x, ~y))
Y := {y1, . . . , y|~y|};

(~g,~h) := Railsmax(Y, ~Φ);
~gnew := (0, . . . , 0);
~hnew := (0, . . . , 0);
do

~gold := ~gnew;
~hold := ~hnew;

~gnew := [~g]
~gold,~hold

~u,~v ;

~hnew :=
[
~h
]~gold,~hold

~u,~v
;

while (~gnew 6= ~gold) ∨ (~hnew 6= ~hold)

return (~gnew,~hnew)
end

Figure 6. Causality Analysis with BDDs

5. Experimental Results

In order to evaluate the impact of maximal ternary exten-

sions, we randomly generated equation systems with n out-

put and 2n input variables for particular numbers n. The

right-hand sides of the equations were formulas built of

¬, ∧, and ∨ with at most 20 symbols. Limiting the size

of the formulas this way, and choosing twice as many in-

put variables as output variables gave a reasonable setting

for finding solvable acyclic equation systems. Then, we

used the standard and maximal ternary extensions to check

whether the equation systems have unique Boolean solu-

tions. For this purpose, we used the implementations as

described above. Values measured in each case were:

• the number of resolvable equation systems

• the number of iterations and the required runtime

• the average size of the BDDs encoding the equation

systems.



var. tested uniquely standard maximal
n examples solvable solved iterations time (ms) size solved iterations time (ms) size

10 5000 604 539 23866 5081 109 567 23584 8393 122

15 5000 443 397 30500 27956 172 414 30204 39409 195

20 5000 281 256 36931 254631 237 266 36643 329478 270

Table 1. Experimental Results

Table 1 lists the results of the experiments for 5000 equa-

tions for n ∈ {10, 15, 20}. Additionally, we list in the third

column how many examples had a unique Boolean solution.

As expected, the maximal ternary extension allows us to

solve more examples than the standard extension. Further-

more, it needs less iterations, since it converges faster. How-

ever, causality analysis with the maximal ternary extension

requires more computation time: Firstly, the computation

of the maximal ternary extension requires additional time,

and secondly, the BDDs encoding the maximal ternary ex-

tension are bigger than those encoding the standard ternary

extension.

Figure 7 compares the efficiency of both extensions. In

the diagram, each cross represents one example, where the

coordinates are the runtimes for the causality analysis with

the maximal and standard ternary extensions, respectively.

As can be seen, the overhead due to the maximal ternary

extension is acceptable.

The experiments show that the maximal ternary exten-

sion needs about 33.5% more time than causality analysis

with the standard extension (see Figure 7). Thus, the ben-

efits of the maximal ternary extension (in solving more ex-

amples) outweigh the worse execution time.

6. Conclusions

In this paper, we considered a fundamental problem [3, 5,

36, 38] that appears in the compilation of perfectly syn-

chronous systems [2, 17], namely the analysis and elimina-

tion of cyclic dependencies between actions and their trig-

ger conditions. State of the art techniques solve this prob-

lem by computing the least fixpoint of the ternary extension

of the Boolean equation system that is obtained by replac-

ing ¬, ∧, and ∨ by their ternary extensions ¬̃, ∧̃, and ∨̃. In

this paper, we improved this causality analysis by showing

that every Boolean function has a maximal ternary exten-

sion that should be chosen for the fixpoint iteration. More-

over, we revealed the relationship to hazard detection, and

therefore were able to present several algorithms to com-

pute the maximal ternary extensions. The additional effort

to compute the maximal ternary extension is acceptable, but

allows one to compile more programs.
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Figure 7. Time Using Maximal and Standard
Ternary Extensions
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