
Integrating Service Specifications on Different Levels of Abstraction

S. Rittmann, A. Fleischmann, J. Hartmann, C. Pfaller, M. Rappl, D. Wild
Software & Systems Engineering
Technische Universität München

85748 Garching b. München, Germany

Abstract
The service-oriented paradigm is a promising ap-

proach to handle the growing complexity of software
systems. This paper introduces a methodology for a
stepwise refinement of service specifications on differ-
ent levels of abstraction. Moreover, it deals with the
integration of service- and architecture-specifications.
Underlying concepts for a formal service specification
are motivated from a methodological point of view and
precisly given in this paper. Furthermore the applica-
tion of these concepts is demonstrated within a case-
example.

The presented methodology stems from the RoFa-
Soft1 project, where both aforementioned development
paradigms are consolidated and integrated.

1 Introduction
The emerging interoperability among software sys-

tems, especially across operational boundaries, results
in challenging problems. The heterogenity of distrib-
uted systems and the complex interactions between
those have to be dealt with. A promising approach to
handle this intricacy is the upcoming service-oriented
paradigm. Here, a service is a piece of functionality
like for example the opening of the power windows of
a car. Therefore, the focus lies on the system behavior,
and not on the system structure (as it is the case with
the traditional component based approach).

Having their roots in the area of telecommunica-
tion, services have started also to conquer other do-
mains, e.g. web-services in the internet, look-up or
naming-services in the field of middleware. However,
most of the work in these areas focus on implemen-
tation technologies like WSDL (cf. [2]), SOAP (cf.
[9]) and CORBA (cf. [3]). The only abstraction is
achieved by defining services by a syntactic list of pro-
cedures which are called by a client. This resembles

1The work is partially funded by the Bavarian Government
under grant number IuK 188/001.

to the idea, that a service simply is a function or (at
least) can be decomposed hierarchically into functions
at the most fine-grained level.

However, simply specifying a service by its syntactic
interface is not sufficient. The problem is that com-
plex interactions and the interplay of functions, which
is necessary to provide a thorough understanding of
the system, are lost sight of. Local views on pieces of
the system functionality do not allow for an overview
of the various relationships between system entities.
This is especially true for domains where systems are
characterized by a high amount of interactions be-
tween functional modules. It is therefore inevitable
to have a service notion that can cope with complex
dependencies between functions. We need an abstract
understanding of the term service that can be used in
the overall development process.

A suitable service-oriented development methodol-
ogy should therefore offer concepts, to start with ab-
stract service specifications, and to refine those spec-
ifications into more concrete ones on various levels
of abstraction (which finally lead to implementation).
Furthermore, modeling techniques should be used to
specify services by clearly stating the modeled service-
aspects and the abstracted aspects on each level, re-
spectively.

In this paper we make following contributions:

• We show how complex interactions between func-
tional system entities are not lost sight of during
the overall development process.

• We provide a service notion that can be used on
different levels of abstraction. Additionally, we
clearly state all modeling aspects.

• We show how an abstract service specification can
be refined into a concrete one by introducing a
service-oriented development methodology.

• We clearly separate the notion of services from the
notion of functions and show, how these parts of
a system specification fit together.

The paper is structured as follows: In the following,
we describe a running example which we use in order
to illustrate our concepts. In section 3 we introduce
the different levels of abstraction starting from the
most abstract and leading to the most concrete one.
Section 4 relates our approach to other work. In
section 5 we give a conclusion and list future work.

2 A Running Example: The Power
Windows System

In order to introduce our concepts of different ser-
vice abstractions, we will make use of a running ex-
ample from the automotive domain - the functionality
of automotive power windows. The considered system
has to fulfill the following requirements:

• Opening and closing. By pressing a tog-
gle switch (open/close), the power windows are
moved into the corresponding direction as long
as the switch is pressed or until the end position
is reached.

• Comfort opening and comfort closing. A
short tap on the switch (open/close) leads to a
complete aperture/closure of the window. The
press or tap of the switch in any direction causes
the windows to stop. If a clamp is detected during
the closure, the window is first stopped and then
moved down for two seconds.

• Child safety lock. The operation of the back
windows can be prohibited by activating the child
safety lock (switch located on the drivers side).

Due to the limitation of space further requirements
such as shut-protection, repetition-lock or block-
detection are not considered in this paper.

3 The Service Methodology
In the following we introduce our service-oriented

methodology. To that end we describe the different
levels of service abstraction that serve as a basis for
our approach. Starting from abstract service specifica-
tions we become more and more concrete on the levels
beneath until we obtain implementation-close specifi-
cations. Notice, that the concretizations made on one
level are also present on the proceeding levels.

The subsections are organized as follows: We first
motivate each abstraction level. Then we give a sur-
vey of concepts used on each level. Additionally, we
present a formal specification of the concepts intro-
duced. The case example illustrates our ideas and

shows how the concepts on each level can be mod-
eled with the help of design techniques. The end of
each subsection summarizes the aspects we abstract
from on the respective level. These abstraction aspects
are: service relationships, time, states (and sys-
tem transitions), additional behavior, and ac-
tors/entities.

For reasons of simplicity, we do not take care of the
aspect data in this paper.

3.1 Abstraction Level 1: Interaction be-
tween System and System Environ-
ment

Motivation. Systems - in particular: multi-
functional systems - can be very complex. In order
to handle the complexity resulting from a high degree
of functions and dependencies between those, we start
our methodology as follows: We first do a scoping of
the system under consideration by capturing its black
box behavior.

This is done by describing exemplary interaction
sequences containing the activites performed between
the system and its environment. It is important that
these sequences are manageable effectively and there-
fore are not too large. They give a first idea of the
main services that are visible to the outside of the
system. Each interaction sequence, or a set of related
interaction sequences, can be seen as a service or a
sub-service (depending on the level of granularity).
Survey of Concepts. On this level of abstraction
we consider actions; to be more precise:

• input actions by a user (where user does not only
refer to human users but to the whole system en-
vironment), and

• output actions of the system which are a response
to the user stimuli and which deliver a visible out-
put to the environment.

Furthermore, we take into consideration both
causal and temporal dependencies between the actions
performed. Also, we look at service relationships.
Formal Specification. For modeling actions we in-
troduce interaction sequences. They are capable of
capturing causal and temporal properties between in-
teractions (alternative and parallel execution, and
abortion of actions). Furthermore, time specifications
can be expressed.

The structure of interaction sequences can be de-
fined by a grammar. In the following we use the
Backus-Naur-Form (BNF, cf. [8]) to represent the
grammar syntactically. We will construct the BNF
for our interaction sequences step by step, bottom-up.

Activities Interaction sequences are based on ac-
tivities (Act) which consist of

• input actions (InAct) performed by a user (which
- as already mentioned - refers to the whole sys-
tem environment) and

• output actions (OutAct) performed by the system
as response to input actions.

In Backus-Naur-Form2:
< Act > ::= < InAct > | < OutAct >
< InAct > ::= Iact1 | Iact2 | ... | IactN
< OutAct > ::= Oact1 | Oact2 | ... | OactN

InAct and OutAct must be disjoint in order to im-
ply which action is performed by the system and which
by a user.

Timed Activities Each activity is performed for
a certain duration which can be arbitrarily short (even
nearly punctual) or arbitrarily long. Consequently, we
introduce timed activities TAct:

< TAct > ::= (< Act >, < Time >) | (1)
(< Op >, < Time >, < Act >) | (2)
< Act > (3)

< Op > ::= < | > | =
< Time > ::= < Real > sec (4)

The semantic interpretation of the derivation rules
is as follows:

• Real is the set of real numbers; sec stands for
”seconds” (cf. (4)).

• (act, [2sec]) denotes that activity act is performed
for 2 seconds (cf. (1)).

• (<, [2sec], act) expreses that activity act starts
less than 2 seconds after the preceeding action
ended (cf. (2)).3

• It is also valid to omit a time specification (cf.
(3)), e.g. when it is of no relevance.

Interaction Sequences Now, we are able to give
the grammar for our interaction sequences (< S >):

< S > ::= < S > 7→< S > | (< S > || < S >) |
< S >:< S > | {< S >, < S >} | < TAct >

Again, we explain the semantic interpretation of
the derivation rules:

2As usual (cf. [8]), nonterminals are put in angle brackets.
3Analogously, (>, [2sec], act) and (=, [2sec], act) express that

activity act starts at least 2 seconds, or exactly 2 seconds after
the preceeding activity, respectively.

• 7→ denotes the (causal and temporal) ordering
of actions. For example, act1 7→ act2 means
that act1 is performed prior to act2. Activ-
ities can be comprised of other activities, e.g.
act1 7→ {act2, act3} 7→ (<, [3sec], act4).4

• act1 : act2 denotes that activity act1 is aborted
by activity act2.

• {act1, act2} denotes that either activity act1 or
act2 is performed.5

• (act1||act2) denotes that activites act1 and act2
are performed in parallel.

Case Example. We illustrate the use of our inter-
action sequences by specifying the interaction behav-
ior of our running example. First we determine the
input and output actions: Our switch has five po-
sitions: open (O), close (C), comfortOpen (CO),
comfortClose (CC) and the rest position. The switch
can be pressed (P) and released (R). We obtain the
following input actions (terminal symbols):

< InAct >::= COP |OP |OR|CP |CR|CCP |Block|Clamp

We do not have to specify the release of the comfort
positions as they do not have any impact on the func-
tionality. Analogously, the rest position is not mod-
eled either.

The output actions of the system can be the closing
(WUP), stopping (WSTOP) and opening (WDOWN) of
the window6. Therefore:

< OutAct >::= WUP |WSTOP |WDOWN

Usually, the input and output actions are not
known from the start but elaborated when develop-
ing the interaction sequences. However, in this simple
example we give them right from the start.

The interaction sequences of our comfort closing
service look like follows:

ComfortClosingBlock: CCP 7→ WUP : Block 7→
(<, [0.1sec], WSTOP). The semantics are: When the
position comfortClosing is selected, the window is
moved up. When a block is detected, the motion of the
window is aborted and the window is stopped (within
less than 0.1 seconds).

ComfortClosingCmd: CCP 7→ WUP :

{CP , OP , COP } 7→ WSTOP . Again, on moving
the switch in the comfortClosing position, the

4Do not confuse our ordering symbol (7→) with the derivation
symbol (→) typically used in grammars (e.g. S → a → bc →
... → Terminals).

5Notice, that we use BNF and not Enhanced BNF (EBNF,
[8]). In EBNF the expression { ... } has another meaning!

6The special case that no action is performed is already cov-
ered by the grammar rules.

Figure 1: Relationships Between Interaction Se-
quences (Modified UML Use Case Diagram)

window is moved up. When another position is
switched, the window stops.

ComfortClosingClamp: CCP 7→ WUP : Clamp 7→
(<, [0.1sec], WSTOP) 7→ WDOWN [2sec] 7→ WSTOP . This
sequence stops the motion of the window (within less
than 0.1 seconds) after a clamp has been detected.
The window is moved down for two seconds and
stopped again.

Here, each sequence describes one variant (or ver-
sion) of the comfort closing service (comfort closing
until a block occurs, another service is called, or a
clamp is detected). The sequences can be seen as ex-
emplary interaction behavior, respectively. The total
of the three variants can be called a service.

For simpler services it might be sufficient to give
one sequence for the service (and not to specify several
ones).

On this abstraction level, we also capture associa-
tions between our interaction sequences. We suggest
the following ones:

• variant : Two interaction sequences are variant if
they contain the same (main) subsequences. (E.g.
the same start and end sequences.)

• exclusive: If two interaction sequences are exclu-
sive, only one can be performed at a time.

• independent : Mutally independent interaction se-
quences.

In Figure 1 the different associations between
our actions are shown graphically by means of
a UML Use Case-like notation. Each oval
circle represents an interaction sequence (except
ComfortClosing which is the union of the service
variant ComfortClosingBlock, ComfortClosingCmd,
and ComfortClosingClamp). The stereotypes
<<variant>> and <<exclusiveOr>> indicate the
relationships. No connection between two sequences
means that they are mutually independent.

Interaction sequences are a powerful, yet simple,
way to specify the interaction behavior of a system
under consideration. However, they have to be en-
hanced in the future to also capture system behavior
in a more elaborate fashion.

Abstraction Aspects. The aspects time and ser-
vice relationships are considered right from the start.
On the very first level, we already capture different
(causal and temporal) relationships between services
and therefore do not abstract from these aspects.

As this is the first step performed to gather the
system functionality, we do not speak from additional
behavior on this abstraction level. States (and tran-
sitions) and actors/entities are not part of this level
either and therefore are abstracted from, too.

3.2 Abstraction Level 2: Integrating Be-
havior

Motivation. The aim of our methodology is the
specification of the overall system behavior. So far,
we specified the services separately by introducing an
interaction sequence for each service or service variant,
respectively. This has two advantages:

• Single services (service variants) can be reused.

• The complexity is reduced, as only one service
(variant) is designed at a time.

In order to obtain the overall system behavior, the
closure of the interaction sequences has to be created;
i.e. the sequences have to be combined or integrated.
The aim of this level is not to specify the services
separately (as in the previous level), but to specify
the overall system behavior with all its interactions
and dependencies.

When combining the behavior, contradictories can
be detected and eliminated. Additionally, we have to
delete non-determinism which might be a result of the
service combination.

Survey of Concepts. The following concepts are
introduced on this level of service abstraction:

• states being places at which the sequences are
”glued together” and

• transitions partitioning actions into constraints
and (fired) events.

The identification of states and transitions is a gen-
uine design decision.

Formal Specification. We make use of Moore au-
tomata (cf. [5]) to model our combined services (ser-
vice variants). As result, we want to obtain one Moore
automaton specifying the overall functionality of the
system under construction (which can refer to the
whole system or only a sub-system). Hierarchical au-
tomata help us to reduce the complexity at this point.

To reach our aim, we construct the automaton step
by step. First we create small automata each speci-
fying one or several services. Then we combine these
automata to get larger automata until the overall au-
tomaton is obtained.

The question that we face at this point is whether
to create one automaton per interaction sequence or
one automaton for capturing the behavior described
by several interaction sequences. If we recognize
common behavior (identical sub-sequences), it might
be a good idea to integrate them into one automaton.
Another way is to combine automata that have
common states. In our terminology we call the
integrated Moore automaton Interaction Automaton
which is formally given by a 5-tupel:

ĨA = (States, T InAct, TOutAct, λ, δ, S0)

• States is a finite set of control states.

• TInAct is a finite set of incoming timed interac-
tions.

• TOutAct is a finite set of outgoing timed interac-
tions.

• λ : States → TOutAct is a output relation. The
semantics of (s, act) ∈ λ is that if the system is
in state s, the action act is performed.

• δ : States × InAct → States is a nondeter-
ministic transition relation. The semantics of
(s1, act, s2) ∈ δ is that if the system is in state s1

and the action act happens, the system switches
to state s2.

• S0 ⊆ States stands for the starting states of dif-
ferent services.

Case Example. In the example of our comfort clos-
ing service, we easily recognize that the sequences
start and end with identical parts, respectively. This
makes sense as the sequences are variants of each other
(cf. stereotype <<variant>> in Figure 1). There-
fore, we create one automaton for the overall service.
The graphical representation can be seen in Figure 2.
It can also be specified formally as follows:

˜ComfortClosing = ({NoMove, TimeToStop,
Closing, ClampDetected, Stopped}, {CCP , CP ,
OP , COP , Clamp, Block, ⊥}, {WUP , WSTOP ,
WDOWN}, {(NoMove,CCP ,Closing), ...}, {(Closing,
WUP), ...}, NoMove).

The service variants (ComfortClosingBlock,
ComfortClosingCmd, and ComfortClosingClamp)
can be seen as paths through the automaton.

Figure 2: ComfortClosing Service (Automaton)

We proceed like this for the ChildSafetyLocks ser-
vice (cf. Figure 3). As the system can either be
in the activated or deactivated state (cf. stereotype
<<exclusiveOr>> in Figure 1), we need two sepa-
rate states between which we can switch.

Figure 3: ChildSafetyLocks Service (Automaton)

As a next step, we combine the automata. Figure
4 shows the overall integrated behavior - and thus:
integrated automaton - of our running example. As
the ComfortClosing and the ChildSafetyLocks ser-
vices are mutually independent (no connection in Fig-
ure 1) we simply compose the automata with help of
an AND-state.

When specifying the system behavior, it is nec-
essary to also refine the services. Services have to
be created that are not visible to the outside, but
needed to establish the system services which can be
accessed by the user. For example, the controling of
the window motors is needed by all power window ser-
vices although not directly callable by the user. On
this level of abstraction (and also on the proceeding
ones) the behavior - and therefore: automata - are

Figure 4: Power Window Service - Integrated Behav-
ior (Integrated Automaton)

also refined. For the sake of simplicity we do not
show this step in this paper. Notice, that when tak-
ing care of behavioral refinement the automaton has
to be enlarged to ĨA = (States ∪ States′, InAct ∪
InSys,OutAct ∪ OutSys, λ′, δ′, S′

0 ⊆ States′); where
InSys and OutSys contain the actions which are not
visible to the outside of the system but needed for the
service refinement; States′ denote the states that are
added in context of the refinement; S′

0 represents the
new set of starting states (if neccessary) and λ′ and δ′

are the new relations.

Abstraction Aspects Still the service relationships
and time are looked at on this level. Additionally, we
now take care of different states the system can be in
and of respective transitions. Furthermore, additional
behavior is identified as automata are refined.

The actors/entities do not play a role.

3.3 Abstraction Level 3: Partitioning Be-
havior into Functions

Motivation. At this stage of our methodology, we
have a functional network of services containing all
the complex interactions and dependencies. However,
this network can not be mapped to a processor as
one processor can not handle the whole functionality.
Therefore, before we can map pieces of the function-
ality to pieces of hardware (processors), we have to
decompose - or: partition - our service network into
functions.

A question at this point is according to which as-
pects the partion is done. Some ideas are: logical clus-
tering, minimum of communication effort, maximum
degree of parallelism (mutually independent functions

Figure 5: Comfort Functionality (Partial Automaton)

should be composed in parallel), reuse from a logical
perspective.

When partitioning our service network into a set of
functions we have to be aware of the following fact:
Usually, not all of the input/output actions (that are
relevant for the whole service network/the system) are
relevant for each function. That means, that we have
to define those input/output actions which are of rel-
evance for one function, respectively.

Survey of Concepts. We use the concepts of par-
tial functions and of interfaces of partial functions on
this abstraction level. A partial function is a function
which does not have a defined output for each input.

Formal Specification. We make use of partial au-
tomata (cf. [5]) each specifying one partial function. A
partial automaton is characterized by a partial tran-
sition relation δ. This means that there exist argu-
ments for which λ and δ are not defined, respectively
(formally: ∃s1 ∈ States, act ∈ InAct: ∀s2 ∈ States
(s1, act, s2) /∈ δ; λ analogously). To stress the fact
that we carefully look at all relevant input/output ac-
tions for each function we call our partial automata
Partial Interface Interaction Automata.

As result we obtain a set of Partial Interaction Au-
tomata that - together - perform exactly the same be-
havior as the Interaction Automaton specifying the
service network (cf. section 3.2).

Case Example. For our power windows, we could
have decided to realize the comfort functionality (com-
fort closing and comfort opening) by one function.
The result would look like Figure 5. Here, we sim-
ply cut out the respective states and transitions that
are needed by the comfort functionality.

The next step is to determine the interface of
the partial function (Partial Interface Interaction Au-
tomaton). We easily see, that the commands CCP ,
COP , O, C, Clamp, and Block are input data to
this automaton. But are there any further inputs
which have an influence on the comfort function? The
(de)activation of the child safety locks does not af-
fect the comfort functionality of the driver’s window
(which we consider in this paper). Therefore the in-
puts activateCSL and deactivateCSL do not have
to be taken into consideration for the comfort func-
tion. However, we face another problem: The Opening
and Closing do affect our comfort mechanisms. If
the open button is pressed, the system has to ”de-
cide” whether to open the window (if no comfort func-
tion is being performed currently) or if the comfort
(un)locking service has to be stopped (if a comfort
service is being performed). For that end, we would
have to insert a synchronisation logic.7

Abstraction Aspects. The answering of the ques-
tion which behavior goes in which function is a gen-
uine design decision. By choosing functions we al-
ready make a step towards thinking of actors/entities
as functions will later be mapped to hardware entities.
Therefore, we no longer abstract from actors/entities.
Also, as mentioned in subsection 3.2, we refine behav-
ior on this level and thus obtain additional behavior.

Another design decision on this level is to determine
the necessary input and output actions.

3.4 Abstraction Level 4: Totalization of
Functions

Motivation. So far, we have specified our system in
terms of partial functions (modeled in terms of Partial
Interface Interaction Automata). However, it is nec-
essary to specify what the system has to do for each
possible input in each possible situation. Therefore,
we need to refine our functions.

Survey of Concepts. On this abstraction level, we
have total functions. A total function is a function
which has defined output data for each input data.
The interface descriptions of the previous level give us
a helping hand.

Formal Specification. We make use of total au-
tomata each specifying one total function. A total
automaton is characterized by a total transition rela-
tion δ. This means that: ∀s1 ∈ States, act1 ∈ InAct:
∃act2 ∈ OutAct, s2 ∈ States (s1, act1, act2, s2) ∈ δ.

The automaton is given by:
ĨIA = (IInAct, IOutAct, States′, S′

0, δ
′)

7Omitted here because of simplicity.

The set of total automata specifies our overall sys-
tem in terms of functions.

Case Example. In order to turn our partial au-
tomata into total automata, we have two possibilities:
Either

• we add missing transitions (so that in each state
it is defined what output should be generated for
each possible input), or

• we use automata accordingly to the Harel seman-
tics (cf. [4]).

In the latter case, the system does nothing in case
an unspecified input data occurs for the current state.
Due to reasons of simplicity, we make use of the second
variant for our running example.

On this level we add more information about be-
havior and therefore become less abstract.

As a result of our methodology, we now have to-
tal functions which together establish the system ser-
vices by collaborative interworking. The total func-
tions can be mapped to structural system pieces (e.g
processors).

Abstraction Aspects. On the very last abstrac-
tion level, we refine our automata and get additional
behavior.

4 Related Work
As already mentioned in the introduction, most of

the work on service-orientation deals with technical is-
sues and does not consider different levels of abstrac-
tion. To the best of our knowledge, we do not know of
any work that investigates services on different levels
of abstractions.

In [1], the authors introduce a service notion that
is based on the notion of streams. This notion can be
used to specify a system merely in terms of services
and functions. However, services are only looked at
using one level of abstraction. In the future, we will
investigate how this stream-based notion can be used
in our methodology (e.g. on more concrete abstraction
levels).

In [7], interaction-based services are presented.
These services are spread across structural system en-
tities (e.g. components, packages, classes); i.e. that a
service is established by the interplay of several struc-
tural entities. They are similar to our services in re-
gard that our services can also be partitioned into
functions which in turn are mapped to structural sys-
tem entities. However - again - this work does not
consider different abstraction levels.

In [6] service refinement is introduced. However,
refinement in this context is understood as the step-
wise adding of more informational data. E.g. first a
basic printer service is described; when a user spec-
ifies the type and the resolution of the document to
be printed, more information about the printer ser-
vice (e.g. time when printing will finish, costs, etc.) is
added - and therefore the service is refined (according
to the authors’ understanding of refinement).

5 Conclusions and Future Work
In this paper we introduced a service-oriented de-

velopment methodology resting on precise modeling
concepts to represent services. Using various abstrac-
tion levels and our notions of services and functions,
we come to the following conclusions:

Separation of services and functions. Due to
the clear separation of considered aspects the concep-
tual separation of services and functions is compre-
hensible.

Abstract specification of services. In contrast to
other approaches it has proven to be useful to specify
services already in an abstract manner.

Domain-Independency. Despite the approach
was originally developed in the automotive domain,
we claim, that it is also valuable in other domains.

Logical relationships between services are caught
on the abstract level in an overall functional service
network. As the distribution of services to functions
is explicit (by partitioning the service network into
functions) the logical relationships between functions
are also well-understood.

Design decisions. The specification steps on every
abstraction level represent design decisions and can
not be automated. This is especially true for the tran-
sition from the service network to partial functions.

Figure 6 gives an overview about our abstraction
levels, the aspects we abstract from, and the modeling
techniques we made us of, respectively.

In our current work we study the extension of
our methodology to manage the integration of non-
functional services. Additionally, we take care of the
aspect data which was omitted in this paper. In par-
ticular we investigate how input and output interac-
tions can be mapped to data.

On the formal level we are working on a service
specification language which represents the descripted
service aspects. Last but not least we are working on
a theory to manage the feature-interaction problem on
different levels of abstraction.

Figure 6: Levels of Service Abstraction

References
[1] M. Broy and I. H. Krüger. Services and service-

oriented software architectures - methodological
foundations, 2004.

[2] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web services description lan-
guage (wsdl). W3C, (Note 15), 2001. Available
at: www.w3.org/TR/wsdl.

[3] O. M. Group. Common object request broker: Ar-
chitecture and specification, revision 2.2. Online
Sites of Object Management Group, 1998.

[4] D. Harel. A visual formalism for complex sys-
tems. Science of Computer Programming, 8:231–
274, 1987.

[5] J. E. Hopcroft, R. Motwani, and J. D. Ullman.
Introduction to Automata Theory, Languages, and
Computation. Number ISBN 0-201-44124-1. Addi-
son Wesley, 2001.

[6] M. Klein, B. König-Ries, and P. Obreiter. Step-
wise refinable service descriptions: Adapting
DAML-S to staged service trading. In Pro-
ceedings of the First International Conference on
Service-Oriented Computing, ICSOC, LNCS 2910.
Springer, 2003.

[7] I. H. Krüger. Service specification with MSCs and
roles. In Proceediungs of IASTED International
Conference on Software Engineering, 2004. Avail-
able at: http://www.cs.ucsd.edu/∼ikrueger/
publications/iasted SE 04.pdf.

[8] Meyers Lexikonredaktion. Duden Informatik -
Ein Fachlexikon für Studium und Praxis. Number
ISBN 3-411-05233-3. Bibliographisches Institut &
F.A. Brockhaus AG, Mannheim, Germany, 2001.

[9] W3C. Simple object access protocol (soap). W3C,
(Note 8), 2000. Available at: http://www.w3.
org/TR/soap/.

