
Tool Support for Continuous Quality Assessment

Florian Deissenboeck, Markus Pizka, Tilman Seifert∗

Software & Systems Engineering
Technische Universität München

85748 Garching, Germany

Abstract

Maintenance costs make up the bulk of the total life cycle
costs of a software system. Besides organizational issues
such as knowledge management and turnover, the long-
term maintenance costs are largely predetermined by var-
ious quality attributes of the software system itself, such as
redundancy and adequate documentation. Unfortunately,
many quality defects can hardly be corrected retrospectively
after they have penetrated the system. A much more promis-
ing approach than correction is to avoid decay and to pre-
serve a constant high level of quality through a continuous
real-time quality controlling process. To reduce the costs
for the required frequent quality assessments, adequate tool
support is indispensable. This paper proposes to integrate
measurement tools into a flexible and extensible yet high
performance quality assessment tool. We present the design
and implementation of this tool and report on our experi-
ences made with it in a medium-sized academical project.
Among the positive effects are improved software product
quality and reduced efforts for manual quality assessments
as well as increased awareness for quality issues.

1. Introduction

Software maintenance activities typically consume 80%

of the total cost of a software system [3]. While 80%

sounds dramatic, the interpretation of this number, its rea-

sons and consequences are not as obvious as they are of-

ten conceived. For example, rather low annual maintenance

costs of 10% of the original development costs over a pe-

riod of 30 years sum up to 75% over the complete life-

cycle. Hence, 80% by itself might not indicate a problem

but be a side-effect of the long-term success of a software

system. Likewise, spending 75% of the budget on mainte-

nance activities [19] does not justify the term “maintenance

∗Part of this work was sponsored by the German Federal Ministry for

Education and Research (BMBF) as part of the project VSEK (Virtual Soft-

ware Engineering Competence Center).

crisis” without a detailed view on the actual situation and

context. However, it is clearly a problem if maintenance

activities, such as adding new functionality, consume ex-

cessive amounts of time, or if change requests are primarily

corrective instead of perfective or adaptive ones [17].

Besides organizational issues, e. g. qualification and

turnover, the major reason for such undesirable effects are

quality defects. Standards such as ISO 9126 [12], define

maintainability by means of a set of quality attributes, such

as analyzable, changeable, testable, and stable, or more de-

tailed ones such as consistent and concise naming [7].

Violations of these quality criteria may either be intro-

duced during initial development or caused by long-term

decay [9]. Once these defects have found their way into the

system, they are usually very hard to correct. Obviously, re-

structuring a weak architecture requires extensive resources

but even assumed minor changes, such as the removal of

copied and pasted code duplicates1 can easily become ex-

cessively complex.

Reel states that “by the time you figure out you have

a quality problem, it is probably too late to fix it” [18].

Therefore, we claim that it is necessary to continuously and

closely monitor the quality of software systems in order to

prevent defects as far as possible from creeping into the sys-

tem. We argue that given appropriate tool support and a

certain amount of process discipline, the cost of maintain-

ing high quality can be diminishing low and will deliver

rapid pay-off, often even within the development phase, al-

ready. The tool concept proposed in this paper is based on

the seamless integration of different measurement tools into

a flexible, extensible, yet efficient quality assessment archi-

tecture. This setup allows to assess the quality of a software

system in real-time and paves the ground to establish a con-

tinuous quality controlling process.

Outline After a discussion of related work on quality

measurement tools in Section 2 we will state a set of re-

quirements for suitable tool support for real-time quality

1clone removal

1

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

controlling with respect to maintainability in Section 3. The

design and implementation of our tool ConQAT (Contin-

uous Quality Assessment Tool) is detailed in Section 4.

In Section 5 we report on our experiences with ConQAT .

Finally, Section 6 summarizes our findings and gives a

glimpse on future work.

2. Related Work

2.1. Software Quality

There is plenty of work on software quality in gen-

eral [13, 15, 16] as well as on more specialized topics like

maintainability [1, 6]. In fact there is far too much previous

work on the topic to be covered here in its entirety. This

is especially true as different authors approach this ample

topic from very different angles and deal with it on very

different levels of abstraction using very different methods.

Nevertheless nearly all previous work shares one common

result: The great variety and diversity of factors on software

quality. This is highlighted particularly by a number of pub-

lications about software quality models that aim at decom-

posing complex quality attributes like maintainability into

more tangible ones. Examples are Dromey’s model [8], the

original Factors-Criteria-Metrics model [4] and our two-

dimensional quality model presented in [5].

2.2. Software Quality Tools

Commercial vendors as well as the open source commu-

nity offer a plethora of diverse software analysis and quality

assessment tools.

An approach taken frequently is the construction of a

facts database or an intermediate meta-model representing

an abstraction of the source code. Commonly used levels

of abstraction are for example an abstract syntax tree (AST)

or a call- or dependency-graph of the system. Typically,

object-oriented [14] or relational models [2] are used to im-

plement the selected level of abstraction. Albeit great dif-

ferences in the detailed design of the various facts or meta-
model based approaches to software analysis, all of these

approaches preprocess the input before performing the ac-

tual analysis. During this preprocessing stage the system

under investigation gets parsed and transformed into the for-

mat of the meta-model. All analyses and assessments are

then carried out on the meta-model.

Although this well-structured tool design is consequent

and elegant from a software engineering point of view, it has

a major drawback: it rigidly defines a certain level of ab-

straction and thereby limits the range of possible analyses.

Code duplication checks, for example, can’t be performed

on the dependency graph. As important quality aspects are

of very diverse nature and rely on different information this

problem is typically circumvented by offering multiple lay-

ers of abstraction for the different types of analyses. But this

means that all information needed to construct the complex

multi-layer meta-model needs to be acquired for the entire

system, which in turn renders building the meta-model a

very expensive task. In practice, preparing the meta-model

of a large scale system often takes several hours which is

unacceptable for real-time quality assessment. In fact, these

tools are used by quality experts for rather infrequent in-

depth investigations of certain quality criteria. They are not

suited for the integration into a continuous quality control-

ling process.

Besides facts and meta-model based approaches, there

are numerous metric tools. They come as stand-alone tools

or plug-ins for development environments like Eclipse (e. g.

Metrics2). This range of products is supplemented by a

number of assessment (or audit) tools like PMD3 which usu-

ally offer batch and interactive operation modes, too. Some

of the available tools are designed as extensible platforms

which may be augmented with custom analyses, allowing a

centralized view of the results. However, they fail to pro-

vide means to compose more complex analyses from a set

of simple analysis modules — even though, literature on

software quality [4, 12] clearly points out that quality is

a complex and diverse matter which can only be assessed

by analyzing and aggregating a great number of influenc-

ing factors. Therefore the composition of different analyses

that create a holistic view on a system’s quality is a crucial

feature of a quality analysis tool.

3. Quality Management

The success of quality management depends on the qual-

ity management process, the criteria used to assess quality,

and the tool support provided.

3.1. The Process

An ideal quality management process allows to detect

small deviations from the target quality, so that corrective

action can be taken immediately, and it allows to do so early

and continuously, i. e. “in real-time of development”. It pro-

vides and uses a set of information about the current quality

status of the system. This information must be complete and

detailed on one hand to be of direct value to the developers,

on the other hand it must provide an aggregated view on

the same information to give a quick and accurate overview

over the status of the system. It must be possible to tailor

this information to the specific needs of the project. The in-

formation must be up-to-date and available at any time; the

collection of data must not affect development tasks.

2http://metrics.sourceforge.net/
3http://pmd.sourceforge.net/

2

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

3.2. The Criteria

Due to the diversity of the factors influencing product

quality the real challenge in software quality management

is to find the right criteria that allow to draw an accurate

picture of the quality of a system. Identifying these criteria

proves to be very complex as every project constellation de-

mands a unique set of quality criteria that match its specific

properties (in addition to generally accepted criteria).

Quality models like [4] or [8] help identifying the rele-

vant criteria by providing a structured framework. In [5] we

present an approach that allows advanced project-specific

tailoring by taking into account the activities carried out

within a certain constellation.

By not limiting itself to aspects that can be measured

automatically this approach further differs from other qual-

ity management endeavors. We believe that many essential

quality issues, such as the usage of appropriate data struc-

tures and meaningful documentation, are semantic in nature

and can inherently not be analyzed automatically. Moreover

the relevance of automatically determined metrics, e. g. cou-
pling between objects (CBO), is questionable if evaluated in

isolation.

We claim that only the combination of different mea-

sures, including systematic “manual” evaluations as well

as automatic measurements, can provide a coherent set of

criteria that serve as indicators for the quality of the sys-

tem. An example is cross-checking our manual source code

rating (see sec. 5) with automatic checks for JavaDoc com-

ments, comment ratio, unit tests results, test coverage etc.

3.3. The Tools

Following this reasoning, we derive the following key

requirements for the tool support of the quality management

process.

Static Output: The tool should work in a non-

interactive, automated way with a static output so that there

is no additional cost (in time, effort, or motivation) to use it.

It should integrate different result types. For ConQAT , we

decided to produce an HTML page in the nightly build that

gives a detailed, integrated report about all quality attributes

considered in the following.

Different Views: Information should be available in a

detailed form as well as in an aggregated, brief form to sat-

isfy the needs of different stakeholders in the project.

Flexibility: The system needs to be flexible in a way

that it is easy to combine different analyzers and to config-

ure different analysis runs that exactly match the needs of

the project. In different phases and for different projects,

different questions might be asked. The tool should be eas-

ily configurable to give concise answers.

Extensibility: The same argument leads to the require-

ment that the tool should provide an infrastructure to make

extensions with new analyzers as easy as possible.

Diversity: Quality attributes can be discussed on many

different levels. The tool should make no restrictions about

the level of detail, the level of granularity, nor the type of the

attribute of the analysis. Examples of analysis levels include

the source code, the build process, the documentation, or

repository properties.

4. ConQAT

To the best of our knowledge none of the tools available

completely satisfies the requirements pictured above. We

therefore designed ConQAT from scratch. Our design con-

siderations are led by the requirements above and by the

experiences we made with existing analysis tools as well as

our own prototypes.

A central decision is not to follow the approach taken by

fact-databases or meta-modeling tools as we believe that a

common abstraction level inherently increases implementa-

tion effort and hampers performance. Why load a complex

call graph representation of the entire source code into a

relational database, just to find out how often it contains

the string literal “TODO”? The usual argument in favor of

a common abstraction level is reduced redundant analysis

steps. As ConQAT shows, this problem can be elegantly cir-

cumvented by using smart caching mechanisms while mak-

ing sure that no superfluous analyses are carried out.

It quickly became evident that our tool must provide a

flexible extension (or plug-in) mechanism to fulfill our re-

quirements. These extensions can carry out various analy-

ses whose results should be composable.

The main challenge here was the design of an architec-

ture which is rigid enough to allow the efficient combina-

tion of different analyses while being flexible enough to

integrate the plethora of different kinds of analyses. De-

tailed analysis of different extensible architectures pointed

out that there is in fact a spectrum of flexibility. However,

there’s always a trade-off between the flexibility and the ex-

pressiveness of the extensions.

On one end of the spectrum you find architectures which

are extremely rigid. They define a very stringent extension

interface and thereby limit the extensions’ expressiveness.

Nevertheless, they allow a flexible composition of the ex-

tensions and permit a rich infrastructure in the architectural

core of the system. On the other end of the spectrum you

find architectures which define a very unspecific interface

and integrate their extensions only loosely. This enables ex-

tensions to be much more powerful but limits composition

possibilities and inhibits a rich common infrastructure.

To obtain a better understanding of this spectrum we de-

veloped two prototypes close to both ends of it. The one

on the rigid end basically supported a mapping from com-

pilation units to numerical metric values. Obviously this

3

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

mechanism allows very efficient composition of different

analysis modules but limits the range of analysis types. It

doesn’t support metrics which yield anything but a numer-

ical value (without cumbersome workarounds) and makes

analyses with a granularity different from compilation units

impossible. The prototype at the other end of the spectrum

was more or less a web portal which allowed the exten-

sions to contribute HTML pages with their analysis results.

It should be clear that this approach allows almost unlim-

ited possibilities for the extensions but makes a meaningful

composition of different extensions nearly impossible.

4.1. Design Considerations

Our analyses and experiments showed that finding the

“right spot” on this spectrum was impossible due to the mul-

tifaceted nature of quality factors. Whenever we came up

with a seemingly suitable set of interfaces a new require-

ment for a specific quality analysis revealed another defi-

ciency. Though this could be attributed to a lack of skills

on our part we are convinced the problem is caused by the

great number of diverse analysis types a system like this

must support.

We therefore opted for a solution which avoids picking

a fixed spot on the flexibility spectrum and thereby limiting

the system’s versatility. Central idea of the selected solution

is to specify interfaces that are general enough to support

literally every kind of analyses and let evolutionary mecha-

nisms work out more precise interface definitions for com-

ponents that allow meaningful composition.

These considerations finally led to the design depicted in

figure 1. The central element of ConQAT’s architecture are

processors that are interconnected in a pipes-and-filter ori-

ented style. These processors have highly diverse tasks and

work like functions that accept multiple inputs and produce

a single output. The Driver component is responsible for

configuring the processor network and passing information

from one processor to another. Processors may access ex-

ternal data like the file system or databases either directly or

using one of the provided Libraries.

Figure 1. Architectural Overview

4.2. Analyses Composition

A simple example for composing an analysis of multiple

processors is depicted in figure 2. Purpose of this analysis

is to determine the average length of methods and to assess

it with regard to a threshold. The analysis is composed of

7 processors which perform highly diverse and dedicated

tasks. Processor Scope analyzes the file system and records

the directory structure for all source code files that match a

certain naming pattern. This tree-like data structure is for-

warded to processors LoC and #Methods which determine

the lines of code of each source file respectively compute

the number of methods whereas the latter uses a parser or

bytecode analyzer (provided as library). Processors #Meth-
ods and LoC both annotate the original data-structure with

integer values describing the results of their analyses and

hand them to processor Div. This is a very simple proces-

sor which solely computes the average method length for

each source file. Processor Assessment assesses the aver-

age method length with regard to a predefined threshold and

rates each source file on simple traffic light scale with either

GREEN, YELLOW or RED. Processor Aggregator aggregates

these assessments from the leaves to the root of the tree, i. e.

nodes that have RED child nodes are themselves rated RED.

Finally processor Output writes the results to a file with a

suitable format like HTML.

Figure 2. Processor composition example

4.3. Agile Architecture Evolution

The type of data exchanged between processors is pur-

posely unspecified to allow greatest possible flexibility. As

ConQAT and its processors are implemented in Java it is ac-

tually defined as java.lang.Object. Nevertheless processors

must define their concrete interfaces by means explained

below. Our hope was that during the continuing extension

of the tool families of processors with matching concrete in-

terfaces would emerge like it is indicated in figure 1 by the

dashed “clusters” denoted with Fi.

Processor Families Fortunately our assumption was con-

firmed very quickly: After implementing a couple of pro-

cessors the desired families emerged. Examples are pro-

cessors that perform calculations on scalar values as typi-

cally done when processing the results of metric analyses.

These processors have no knowledge of the origin of the

4

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

values they process and can thereby be flexibly combined

and reused in all situations that demand basic calculations.

Another example are processors that deal with the “traf-

fic light assessments” we typically use. Besides assessing

the results produced by other processors they are special-

ized in aggregating and filtering assessed results.

To actually analyze the system there is a family of pro-

cessors that deals with the analyses of source code. This

family can be subdivided in processors that analyze code

in a language-independent way and processors that rely on

more complex parsing mechanisms.

In addition to that there is a family of processors that is

responsible for creating human readable output of the re-

sults. To make the results easily available to all project par-

ticipants this is done in HTML.

Collaborative Interfaces Experience shows that inter-

faces within processor families remain stable after a cer-

tain tuning phase due to their relatively limited scope. This

allows flexible organization of analyses by composing pro-

cessors in different ways. An obvious example are the pro-

cessors that deal with scalar values. By implementing a

set of processors which perform basic calculations, more

complex calculations can be performed by composing pro-

cessors. Note that formally the computability expressed by

composition is limited as we don’t allow recursive calls to

the processors. In practice this proves to be of no signif-

icance since each processors may implement every com-

putable function.

Equally important are the interfaces between different

families of processors. This is best illustrated by the fol-

lowing example. There is a family of processors that per-

form code audits like checking code format conventions or

finding dubious pieces of code like empty blocks. These

processors create lists with audit warnings for each source

file. A simple interface between these processors and the

ones described above is a processor that counts the number

of warnings for each source file. This number may then act

as input to further processors which perform calculations on

it or assess it with regard to predefined rules. Here too, ex-

perience shows that the interfaces become stable relatively

quickly.

Controlled Evolution By exploiting evolutionary mech-

anisms this approach leads to the modularization which we

weren’t able to design from scratch due to the great di-

versity of requirements. Evolutionary approaches demand

measures of control to ensure success and avoid undesired

developments. Problems that typically arise and which we

experienced as well are “bloated” functionality of single

processors and redundancy as two or processors implement

the same functionality. We counter these effects with pre-

cisely the same continuous quality controlling measures we

advocate in this paper. This involves clone detection, static

checks for architecture violations combined with manual re-

views. From the very beginning, we used ConQAT in a

bootstrapping manner on itself to integrate these activities.

Central to these activities was identifying commonly

used functionality and moving it to libraries that can be ac-

cessed by all processors.

Categorization The processors that evolved during Con-
QAT’s 10 month lifetime can be broadly categorized as fol-

lows:

Scoping. A processor may define the scope of particular

analyses. It does this by building an appropriate object tree

(e. g. representing files and directories) and passing it on to

other processors.

Filtering. According to some filtering criterion, a filter-

ing processor may remove particular nodes from the tree

(e. g. discard files edited by a certain author).

Analysis. An analyzing processor carries out a particular

analysis on the elements of an object tree and annotates the

tree elements with the results (e. g. lines of code or number

of comment lines); or it may analyze the whole tree (e. g.

analyzing dependencies between its elements) and produce

a new result type (like a dependency graph).

Aggregation. An aggregating processor collects values

from different analyzers and annotates them with aggre-

gated values (e. g. comment ratio).

Output. Finally a processor responsible for the output

collects the analysis results and displays them in a human-

readable format (e. g. HTML).

4.4. Configuration and Type Safety

This agile evolution of the architecture must be sup-

ported by a solid technical basis that inhibits uncontrolled

growth of the interfaces. Typically one would expect that

our decision to loosely specify the interfaces between the

processors would result in a mess of explicit cast opera-

tion and the accompanying inevitable cast errors. Indeed

the problems arising from the unspecified interfaces ini-

tially made our approach look infeasible. After implement-

ing about 15 different processors we realized that the prob-

lems of non-explicit interfaces and the required explicit type

casts introduced too many sources of errors to achieve a

well maintainable system. We therefore developed a novel

solution which we regard powerful and elegant. As we con-

sider it essential for the success of ConQAT , this solution

is presented in detail along with ConQAT’s configuration

mechanism.

Configuration An important design decision affects the

mechanism that allows users and extenders of ConQAT to

configure composed analyses from simple building blocks

5

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

(the processors). In early prototypes this configuration was

simply done by hard-coding the configuration with Java.

As even the most simple reconfiguration of the system de-

manded modification of source code, re-compilation and re-

distribution of the whole system it became evident that this

approach is not an option for a system whose central re-

quirement is flexibility.

We therefore moved to a solution that employs a declar-

ative (XML) configuration file to describe the interconnec-

tion of processors. This resembles the mechanisms typi-

cally used by extensible architectures like the Eclipse plat-

form [11]. The disadvantage of this approach is the need for

a minimal interface which processor implementations have

to adhere to, and a mechanism to describe the mapping be-

tween the declarative configuration file and the implemen-

tation of the processors.

Processors’ Interfaces As our processors are basically

functions, their interfaces could be described by a single

method:

Object process(Object[] parameters);

This interface precisely displays the problem discussed be-

fore: it is in fact untyped. As implementations can hardly

perform any real work on objects with type Object they need

further knowledge of the actual type of the parameter ob-

jects. Processor composition is further hampered by the fact

that result type of a processor is unspecified.

With the new features of Java 5 the latter problem can

be solved relatively easily using covariant return types. Co-

variant return types allow implementers of an interface to

refine the return types of methods by using a subclass of the

original return type, e. g.:

Integer process(Object[] parameters);

Unfortunately the former problem can’t be solved as eas-

ily since covariant method parameters are unsafe and there-

fore not supported in Java. Central idea of our solution to

this problem is to omit input parameters in the interface and

leave their definition up to the processors. This is achieved

by using Java’s annotation mechanism4.

Two example processor implementations are shown on

the right hand side of figure 3. Both processors implement

the parameterless method process and define their result

types by using covariance. Processor FileSystemScope is

responsible for scanning a given directory path for all Java

source files and creating an IFileSystemElement-object that

describes the resulting directory tree. The task of processor

LOCAnalyzer is to annotate each leaf element of this tree

object with the number of lines of code the corresponding

4http://java.sun.com/j2se/1.5.0/docs/guide/
language/annotations.html

source file has. Obviously this processor needs an object of

type IFileSystemElement to work on. Therefore it defines a

method

void setRoot(IFileSystemElement root);

and annotates it as a @AConfigElement. This annotation

informs the ConQAT runtime system that the annotated

method is meant to provide an input parameter. Addition-

ally one may use the annotation to specify further details

e. g. if this parameter is mandatory or not.

Type Safety To fully grasp the benefit of this approach

one must understand how the connection of different pro-

cessors is configured with ConQAT . A typical configuration

file is shown on the left hand side of figure 3. It defines

the processors named “source” and “loc-analysis” where

the latter one is connected to the former one by referenc-

ing its name (“@source”). This connection is indicated by

line 1©. This configuration implies a corresponding connec-

tion between the implementation of the two processors as

shown by line 2©. Now the advantage of this mechanism be-

comes evident: ConQAT’s run-time system can make sure

that two connected processors have matching interfaces by

using Java’s reflection mechanism. In fact ConQAT refuses

to run an analysis if the interfaces of connected processors

do not match. The advantage of this approach is that type

safety needs be ensured only once before running the first

analysis. We call this approach “configuration time type

checking” (opposed to compile time or runtime type check-

ing).

Besides this, the figure also shows that there is a de-

fined mapping between the configuration file and the pro-

cessors’ implementations. Line 3© shows that the processor

implementation is referenced by specifying the class name

in the configuration file. Lines 4© and 5© exemplify how

XML-elements are mapped to the corresponding input pa-

rameter methods: By using annotations, class FileSystem-
Scope states that it expects only one configuration element

called “input” that has exactly one attribute “root” with type

String. In contrast to parameter “@source” which describes

a reference to the output of the processor source, “src” is an

immediate parameter since strings can be provided in the

configuration file itself.

In fact annotations in processors are not only used to en-

sure type-safety and allow a defined mapping to the declara-

tive configuration file but also provide a basis for automated

generation of processor documentation.

Runtime The driver component is responsible for inter-

connecting the processors as defined in the configuration

file and running the analysis. During start-up the driver

loads the processors’ classes via reflection and uses their

6

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

meta data to ensure type safety. It thereby ensures that the

configuration is valid before starting the analysis.

Processors are topologically sorted and then ran one af-

ter another. During execution the driver passes the result

from one processor to the next. If a processor’s result is

used more than once the driver is responsible for cloning it.

It additionally performs some monitoring tasks to provide

debugging information if one of the processors should fail.

4.5. Caching Mechanisms

By nature, several different processors work on the same

resources, e. g. different code style analyses on the AST

of the compilation units. ConQAT offers a set of libraries
that provide commonly used functionality. Apart from the

already mentioned parser library this includes libraries as

simple as the IO library and as complex as a library that

provides access to the system’s call graph.

These libraries form a central point of entry to the an-

alyzed system’s artifacts and thereby allow the implemen-

tation of efficient caching strategies. As it is very likely

that different processors will use e. g. the AST of a particu-

lar compilation unit, the AST will be cached for future use

and needs to be built only once. All ConQAT libraries use

caching mechanisms which greatly reduces analysis time.

To further improve performance the libraries are built on

top of each other (if reasonable). The parser library uses

pre-cached tokens from the lexer library. All caches are im-

plemented in a memory-sensitive way and support dynamic

uncaching if the system is short of memory.

5. Experiences

Our group actively develops a number of different soft-

ware engineering tools. ConQAT was used to maintain a

steady quality level during the ongoing work on these tools.

Here we report on the experiences we made with the main-

tenance of roughly 100 KLOC5 Java code in a period of

10 month.

5.1. Project Environment

Though our project environment doesn’t fully reflect an

industrial one we consider it well-suited for the evaluation

of a quality assessment tool. Analogous to many industrial

projects we have to deal with varying levels of experience

and programming skills on the side of the developers which

are students and researchers. The team size of 14 (10 stu-

dents, 4 researchers) corresponds to the team size typically

found in industrial projects. Like many current industrial

5thousand lines of code

projects our project involves high risks regarding new tech-

nologies due to the rapid development of the Java infrastruc-

ture.

We additionally face a number of problems which are

less common in industrial projects but provide a touch-

stone for software quality management. As typical students

projects last about 3 to 4 months, we have short project

phases and turnover is very high. Students almost always

work on the project part-time and developers often work in

a distributed fashion (in the lab, in the office, at home).

This project situation demands efficient means of qual-

ity management to ensure a constantly high steady quality

level while optimizing the times researchers spend on the

project. To achieve this, researchers require an instrument

that allows them not only to monitor project progress but

also enables them to continuously assess the quality of new

developments as well as changes to the existing resources.

5.2. Controlling Quality with ConQAT

To provide such an instrument, we set up a fully auto-

mated build environment that builds, tests and analyzes the

entire source code every night. Therefore the source code is

retrieved from the SCM6 system and analyzed with a Con-
QAT configuration that itself is stored in the repository, too.

This allows developers to run the ConQAT analysis on de-

mand on their local workstations. Results of the nightly

analysis are published on a internal7 website to be accessed

easily by all developers.

Iterative Improvement As foreseen, quality criteria

evolved during project progress. This is due to new insights

in quality issues gained by experience but also because the

object of investigation evolves. For example, we intensi-

fied the attentiveness for the build system as this decayed

over time, and we introduced a number of quality criteria

regarding the new language constructs introduced with Java

version 5.

This was done by extending the ConQAT configuration

in use and, if required, adding new processors dedicated to

this issues. Up to now this resulted in a library of 57 pro-

cessors.

Examples The following excerpt of existing processors

shows that these processors support a great variety of dif-

ferent analyses besides commonly known metrics like lines
of code (LOC), comment ratio (CR), coupling between ob-
jects (CBO), etc.:

• ANTRunner. This processor executes a set of targets in

ANT build files and monitors build success.

6Software Configuration Management
7see http://www4.in.tum.de/˜ccsm/conqat-demo/ for

an example

7

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

Figure 3. Mapping from Configuration File to Implementation

• SVNLogMessageAuditor. This processor checks if the

commit log messages entered into the SCM system

comply with our project guidelines.

• JavaDocAuditor. This processors checks if JavaDoc

comments are present and comply to the guidelines.

• JUnitRunner. This processor runs unit tests and cap-

tures test outcome.

• PMDRunner. This processor acts as an adapter to the

open-source tool kit PMD which offers a great number

of source code audits. These audits are typically used

to detect anomalies like empty code blocks and to con-

trol compliance to our coding conventions.

• PerformanceMonitor. This processor allows to run

programs and capture performance characteristics. We

use it to inhibit slow but hard to detect performance

decline in performance critical parts of our programs.

Putting Results Into Relation An integral part of quality

controlling management is the design of meaningful analy-

ses. It is, e. g., of questionable use to assess the quality of a

Java class on the ground of its mean method length. Never-

theless our experience showed that careful combination of

different source values allows reliable and meaningful re-

sults in most cases.

For example a class that has 15 methods with an aver-

age length of 250 lines that do hardly comply to coding

conventions and on top of it doesn’t provide any inline or

JavaDoc documentation is a valid candidate for a quality

problem. Similarly a class that complies to every single

project convention but contains the string “hack” might be

another source of a quality problem.

ConQAT’s architecture enabled us to express precisely

this multi-faceted quality criteria by using its composition

mechanism that allows us to put different results into rela-

tion and assess them accordingly.

Assessment It proved to be useful to perform these as-

sessments on a simple ordinal scale with the three values

RED, YELLOW and GREEN. Although this may seem too

coarse-grained for some applications, our experiences show

that it is satisfying in most cases and most times better

than a complex scale which is difficult to read and therefore

mostly ignored. Apart from that, the ordinal scale and ap-

propriate aggregation mechanisms prevent typical mistakes

when calculating metric values [10]. Nevertheless ConQAT
offers more complex options, too. More sophisticated as-

sessment mechanism can easily be realized when needed.

Figure 4 shows an excerpt of a typical assessment result.

While files that have warning messages concerning their as-

sessment rules are rated RED, tidy files are rated GREEN.

Figure 4. Assessment Results

Review Cycles As software quality can’t be completely

determined by static code analysis, manual reviews are an

integral part of our quality management activities. As re-

views are inherently time-consuming we use ConQAT to

8

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

reduce review times as far as possible by using a combina-

tion of automatic and manual approaches.

For the manual evaluation, we use a simple three-valued

scale to rate the review state of source code files: prema-
ture, ready for review and accepted. The rating is stored in

the source code file itself by the author or the reviewer (de-

pending on the state). By using information from the SCM

we ensure that files that have been rated as accepted but

underwent change subsequently get re-rated accordingly.

Obviously, we implemented a processor which extracts

rating information from source files and maps them to the

traffic light scale. Although it already proved to be handy to

obtain a nicely formatted HTML output of the review state,

we could really leverage ConQAT’s power by composing

different analyses: With using existing processors, we eas-

ily created assessments that check if all files rated as ac-
cepted have full JavaDoc documentation and comply to our

coding guidelines. This also includes identification of typ-

ical errors like missing default cases in switch-statements

and known anti-patterns like god classes. Files not comply-

ing to these rules are displayed with rating RED.

As all files presented for review have a guaranteed mini-

mal quality level this greatly helped to reduce the time spent

on manual review activities.

Aggregation Our experiences showed that assessment

data needs to be highly condensed to be of real use. Only

if the key quality information that reflects an overall qual-

ity level can be viewed within a matter of minutes, quality

controlling activities will actually be put into practice.

We therefore use a simple graphical aggregation for the

quality assessments carried out by ConQAT . Figure 5 shows

the main page of the assessment result website generated by

the tool. For the sake of clarity the figure shows the results

of some very basic analyses including a JavaDoc assess-

ment and the manual rating described above. The colored

bars to the left of the assessment description provide a quick

overview of the results. So one can easily see that in project

“CloneDetective” most files have rating status RED (for pre-
mature), while the majority of ConQAT’s source files has

status GREEN (for accepted).8

This way, all important data is visualized on one page

and easily accessible by the researchers (in the role of QA)

as well as all other developers. More detailed information

is literally only one mouse click away as the main page is

linked to pages with detailed assessment results. Depend-

ing on the nature of the indicated quality problems, QA

can present the evidence to the respective author or needs

to check the source code for further examination.

8This is due to the fact that we introduced the code rating only after the

development of “CloneDetective”.

Figure 5. Condensed Assessment Data

5.3. Discussion

ConQAT’s architecture proves to satisfy our require-

ments for flexible yet efficient quality analysis tools: It

runs in a non-interactive manner and generates static HTML-

output. It is flexible and extensible by offering two differ-

ent levels of configuration; analyses can be composed us-

ing a declarative configuration file, and new analyses can

be added by implementing new processors. The system’s

design does not limit analyses to a particular scope, granu-

larity, or type of artifacts.

Experience shows that quality goals and criteria evolve

over time. Obviously this requires a quality assessment tool

that seamlessly supports this evolution. Therefore Con-
QAT’s flexible architecture proved to be crucial for a suc-

cessful long-term quality controlling activities. This archi-

tecture allowed us to integrate even rather complex analyses

like checks for unused code within a few hours. Of course

this is facilitated by the Java community which offers an

incredible rich variety of (open-source) analysis tools like

parsers, coding convention checkers, test frameworks, etc.

In addition to that ConQAT offers convincing perfor-

mance characteristics due to the heavy use of caching mech-

anisms. Even with a complex set of analyses includ-

ing almost all of our processors our 100 KLOC repository

could always be analyzed with matter of minutes. Experi-

ments show that even analyses of systems as big as Eclipse

(≈ 2.5 MLOC9) can be carried out in similar times if the set

of analyses is more restricted. These performance charac-

teristics in combination with ConQAT’s flexibility provide

a major advantage over meta-model-based systems if devel-

opers want to perform assessments of certain quality crite-

ria during their daily work. They can easily limit the set

of analyses by defining a trimmed down configuration file

for ConQAT and get almost instant feedback for the desired

analysis.

9million lines of code

9

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

The downside of the tool’s design is a fairly complex

configuration mechanism. Setting up a complete quality

assessment configuration results in a configuration file of

about 300 lines and requires thorough understanding of the

processors involved. However, the aim was to develop a tool

which is configured rather infrequently and run repeatedly

with the same configuration (or a subset thereof). Besides

that we expect the typical user to be an expert in the field

and therefore don’t consider this issue a problematic one.

6. Conclusions
While it is commonly accepted that software product

quality is one of the key factors for project success, there

is little common understanding of the factors influencing

quality and their manifestation as product properties. Due

to this blurry situation there is insufficient tool support for

product quality assessments.

We claim that these fundamental shortcomings can be

overcome to some extent by installing a quality manage-

ment process that ensures that a set of project-specific qual-

ity criteria is controlled on a continuous basis. As such qual-

ity controlling activity is inherently costly, appropriate tool

support is of paramount importance.

We deduced requirements for a tool to support this pro-

cess and presented the quality assessment tool ConQAT
which was designed in accordance to these requirements.

Central property of ConQAT is its flexibility that allows to

adequately support the immensely diverse tasks required for

quality assessments. We presented the powerful extensible

architecture that facilitates ConQAT’s flexibility and gave

various examples for the application of ConQAT .

Up to now, we applied ConQAT in the development and

maintenance of a tool collection at our department. As the

development team of this tool collection (students and re-

searchers) is subject to rapid turnover and the tool collec-

tion amounts to 100.000 LOC, sound quality management is

the crucial factor for productivity.

What we observed so far is that the application of the

tool greatly improved the consciousness for quality aspects

as part of daily development tasks. Students feel comfort-

able with getting an automated feedback on their work be-

fore they actually submit it and state that this system indeed

motivated them to create quality code from the beginning.

Noticeable, it was also the first time that we heard students

intensively discussing code quality issues in the lab. Be-

sides that the main advantage is a reduction of time spent on

quality measures on the side of the instructors while achiev-

ing and maintaining a product quality level not experienced

before. This is especially interesting for the maintenance of

our older tools.

While we can’t quantify this statement, we are sure

that this quality controlling process pays off rapidly, even

for small projects (e.g. 6 students, part-time, 4 weeks,

20.000 LOC).

Naturally, ConQAT is far from being complete. Cur-

rently the top-most item on our agenda is adding database

support to store analysis and assessment results. This would

allow us to track evolution of the system’s quality more con-

veniently. Besides that we plan to carry out a controlled ex-

periment to quantitatively measure the effects of continuous

quality management during the next lab courses.

References

[1] G. M. Berns. Assessing software maintainability. ACM
Communications, 27(1), 1984.

[2] W. R. Bischofberger, J. Kühl, and S. Löffler. Sotograph -

a pragmatic approach to source code architecture confor-

mance checking. In EWSA 2004, pages 1–9. Springer, 2004.
[3] B. W. Boehm. Software Engineering Economics. Prentice-

Hall, Englewood Cliffs, N.J., 1981.
[4] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J.

Macleod, and M. J. Merrit. Characteristics of Software
Quality. North-Holland, 1978.

[5] M. Broy, F. Deissenboeck, and M. Pizka. Demystifying

maintainability. In WoSQ 2006. ACM Press, 2006. to ap-

pear.
[6] D. Coleman, D. Ash, B. Lowther, and P. W. Oman. Using

metrics to evaluate software system maintainability. Com-
puter, 27(8), 1994.

[7] F. Deissenboeck and M. Pizka. Concise and consistent nam-

ing. In IWPC 2005, pages 97–106, Washington, DC, USA,

2005. IEEE Computer Society.
[8] R. G. Dromey. A model for software product quality. IEEE

Trans. Softw. Eng., 21(2), 1995.
[9] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and

A. Mockus. Does code decay? IEEE Transactions on Soft-
ware Engineering, 27(1):1–12, Jan. 2001.

[10] N. Fenton. Software measurement: A necessary scientific

basis. IEEE Trans. Softw. Eng., 20(3), 1994.
[11] E. Gamma and K. Beck. Contributing to Eclipse: Princi-

ples, Patterns, and Plugins. Addison Wesley Longman Pub-

lishing Co., Inc., Redwood City, CA, USA, 2003.
[12] International Standard Organization. ISO 9126. Information

technology – Software product evaluation – Quality charac-
teristics and guidelines for their use, Dec. 1991.

[13] B. Kitchenham and S. L. Pfleeger. Software quality: The

elusive target. IEEE Software, 13(1), 1996.
[14] A. Ludwig. RECODER Technical Manual.

http://recoder.sourceforge.net, 2001.
[15] R. Marinescu and D. Ratiu. Quantifying the quality of

object-oriented design: The factor-strategy model. In WCRE
2004, pages 192–201. IEEE Computer Society, 2004.

[16] J. McCall and G. Walters. Factors in Software Quality. The

National Technical Information Service (NTIS), Springfield,

VA, USA, 1977.
[17] T. M. Pigoski. Practical Software Maintenance. Wiley

Computer Publishing, 1996.
[18] J. S. Reel. Critical success factors in software projects. IEEE

Software, 16(3):18–23, 1999.
[19] STSC. Software Reengineering Assessment Handbook

v3.0. Technical report, STSC, U.S. DoD, Mar. 1997.

10

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

