
Development of SDL Speci�cations in Focus

Ketil St�len

Fakult�at f�ur Informatik� Technische Universit�at M�unchen
Postfach �� �� ��� D������ M�unchen

The objective of this paper is to explain how Focus can be used for the formal develop�
ment and veri	cation of SDL speci	cations
 We 	rst give a brief introduction to Focus

Then it is explained how Focus and SDL can be combined into one method by connecting
them via an intermediate language called F�SDL
 F�SDL characterizes a subset of Focus
speci	cations whose elements structurally and semantically match SDL speci	cations to
such a degree that an automatic translation is almost straightforward
 Finally we sketch
how the proposed approach can be used to develop an SDL speci	cation of a sliding
window protocol

�� INTRODUCTION

Focus ��
 is a framework for the formal speci	cation and development of reactive sys�
tems
 Focus o�ers speci	cation formalisms and re	nement calculi which allow reactive
systems to be described and designed in a step�wise� modular style
 Recently a restricted
version of SDL has been embedded as a target language in Focus
 We refer to ��
 for
a detailed description of this embedding
 This paper concentrates on the more prag�
matic�methodological issues�

� In what way does the Focus�SDL approach support system development� In par�
ticular� should Focus be used top�down or bottom�up�

� What is the relationship between Focus and SDL� In particular� how can system�
block and process speci	cations be expressed in Focus�

� What are the advantages�disadvantages of the proposed approach� Does it scale�

After having given a brief informal introduction to Focus in Section �� we attempt to
answer the questions under the 	rst bullet in Section �
 In Section � it is outlined how
the proposed approach can be used to develop an SDL speci	cation of a sliding window
protocol
 At each design level the questions under the second bullet are addressed
 Finally�
Section � gives a short summary and attempts to answer the remaining questions

�� FOCUS

Depending on the techniques and logical concepts they employ� Focus speci	cations can
be divided into a number of sub�styles�

� Trace Speci	cations ��
� speci	es a system in terms of its allowed traces
 This style
is particularly useful for the speci	cation of closed systems

� Relational Speci	cations ��
� speci	es an open system by explicitly characterizing
the relationship between the complete communication histories of the external input
channels and the complete communication histories of the external output channels

Note that both trace speci	cations and relational speci	cations can be written in
purely property�oriented style � purely property�oriented in the sense that the
speci	cations list the required properties without giving any algorithm for their
realization

� Assumption�Commitment Speci	cations ��
� relational speci	cations which are split
into a pair of two requirements �A�C�� where A characterizes the assumptions about
the environment in which the speci	ed system is supposed to run� and C charac�
terizes how the speci	ed system is committed to behave whenever its environment
behaves in accordance with A

� Algorithmic Speci	cations� speci	es a system in an algorithmic style inspired from
functional programming languages
 This style is particularly suited in the later�
implementation close phases of a development

� Tabular Speci	cations� allows algorithmic speci	cations to be expressed in a tabular
form

These speci	cation styles are all given a common denotational semantics based on
streams and stream processing functions
 As shown in Section �
�� speci	cations can be
composed into networks of speci	cations modeling systems consisting of several compo�
nents
 In this paper only the relational and the algorithmic styles are employed
 However�
the proposed approach can easily be combined with the other speci	cation techniques
mentioned above

Focus ��
� ��
 o�ers powerful re	nement principles which allow system speci	cations to
be re	ned into concrete implementations in a step�wise� modular manner via a number of
intermediate speci	cations
 In this paper only the most basic of these principles is needed
� namely the principle of behavioral re	nement
 A speci	cation S� is a behavioral
re	nement of a speci	cation S� i� any behavior allowed by S� is also a behavior allowed
by S�
 Logically this means that the speci	cation S� implies S�

�� METHODOLOGY

In ��
 it is explained how Focus and a restricted version of SDL can be assigned a
common denotational semantics based on streams and stream processing functions
 Since
Focus already has such a semantics it is enough to specify the di�erent SDL constructs
in Focus
 Based on these Focus speci	cations of SDL constructs a language called F�
SDL is de	ned
 In fact F�SDL characterizes a set of algorithmic Focus speci	cations
whose elements allow an automatic �almost� one�to�one translation into SDL
 Note that�
as indicated by Figure �� F�SDL models only a subset of SDL� and F�SDL is only a

�

�

�

�

�
�

�
�

�
�

�
�

�

�

�

�

�

�

Focus

Restricted SDL

F�SDL

TRANSLATION

SDL

Figure �
 Relationship between Focus and SDL

subset of Focus
 Thus� although the considered sub�language is su�ciently expressive
to deal with non�trivial applications� many SDL facilities have been ignored
 In fact
so far� with the exception of SDL����s statements for explicit nondeterminism� all the
constructs considered in ��
 are contained in what ��
 calls Basic�SDL
 Moreover� only
some restricted aspects of the SDL facilities for timers and process creation are modeled

For more detailed information on F�SDL� see ��

Since F�SDL speci	cations can be translated into SDL� and SDL speci	cations can
be translated into F�SDL� there are two fundamentally di�erent ways to use Focus in
connection with system developments based on SDL�

� Bottom�Up Veri	cation� First a speci	cation is formulated in SDL
 The SDL speci�
	cation is automatically translated into F�SDL
 The Focus�calculus is then used to
prove that this speci	cation satis	es the overall requirements stated in Focus
 The
overall requirements can be speci	ed in any of the speci	cation styles mentioned
above
 When this has been veri	ed� an implementation is generated from the SDL
speci	cation using standard SDL tools and environments

Thus this approach allows already completed SDL speci	cations to be veri	ed with
respect to some requirements stated in Focus � requirements which can be speci	ed
in any of the speci	cation styles mentioned earlier

� Top�Down Veri	cation� First the requirement speci	cation is formulated in Focus
using one of the already mentioned styles
 The requirement speci	cation is then
in a step�wise fashion re	ned into an F�SDL speci	cation� which is automatically
translated into SDL
 The resulting SDL speci	cation is transformed into its 	nal
implementation using standard SDL tools and environments

Thus this approach allows veri	cation during the development

�

�

F�SDL Spec�

SDL Spec�

Implementation

Design Phase

Impl� Phase

TOP DOWN

Formal Development
in Focus

Automatic Translation

SDL Tools

Requirement Spec�

�

�

�

�

�

F�SDL Spec�

SDL Spec�

BOTTOM UP

Implementation

Impl� Phase SDL Tools

Automatic Transl�

Veri�cation Phase

Requirement Spec�

Figure �
 Bottom�Up versus Top�Down

The two alternatives are illustrated graphically in Figure �
 In the early days of program
veri	cation more than �� years ago ��
� ���
� the emphasize was solely on bottom�up ver�
i	cation� i
e
� on the veri	cation of already completed programs
 However� this approach
turned out to be rather tedious� and during the �����ties the interest turned towards top�
down veri	cation� i
e
� towards veri	cation as a part of the development process
 Today�
if approaches for automatic veri	cation� which can only be employed in very restricted
areas� are ignored� the top�down alternative is dominating
 Well�known examples of such
methods are ���
� ���
� ���
� ���

It is important to realize that this change has taken place not only because the proofs
become easier when conducted during the development process� but also because top�
down veri	cation allows bugs to be discovered and mended during the early phases of a
development
 Thus one has realized that formal veri	cation is not only an alternative
to testing � it can also be used to guide and shorten the development process
 This
top�down philosophy is the underlying thesis of Focus

�� SLIDING WINDOW PROTOCOL

The objective of this section is to outline how an SDL speci	cation of a sliding window
protocol can be developed in Focus
 First an overview of the whole development process
is given
 Then some of the speci	cation�re	nement steps are investigated in more detail

We have chosen a sliding window protocol for two reasons
 Firstly� sliding window
protocols are well�known and relatively simple
 Thus we do not have to spend much
time on explaining how it works
 Secondly� a sliding window protocol is nevertheless so
complex that a formal development is worthwhile

RECSND

�

�

� �

� �

a�

m

a

m�

i

o

A MED

M MED

�

�

�

�

�

�
Process Level

i

o

a�

m

a

m�

SNDP RECP

SDL Level

� � �
� � ��

�

� �

�

�

Block Level

Process Graph
Level

i

o

a�

a

m m�

FMS

PRS PRR

FMR

System Level

i

o

SWP

Figure �
 Overview of the Development

���� Outline of the Development Process

The sliding window protocol considered here can be summarized as follows
 The sender
and the receiver communicate via channels that are lossy in the sense that messages
may disappear
 However� the channels maintain the order of the messages sent� and
messages cannot be duplicated
 Each message is tagged with a sequence number
 The
sender is permitted to dispatch several messages with consecutive tags while awaiting
their acknowledgments
 The messages are said to fall within the sender�s window
 At the
other end� the receiver maintains a receiver�s window� which contains messages that have
been received but which to this point in time cannot be output because some message
with a lower sequence number is still to be received
 It is assumed that both windows are
of the same size
 The receiver repeatedly acknowledges the last message it has output by
sending the corresponding sequence number back to the sender

The development consists of 	ve main steps as indicated by Figure �
 First the pro�
tocol�s overall input�output behavior is characterized
 The resulting speci	cation corre�
sponds to a system speci	cation in SDL
 This overall speci	cation is then decomposed
into a sender SND� a receiver REC� and two medium components A MED and M MED

The mediums model the unreliable behavior of the two channels connecting the sender
and the receiver
 Both mediums are assumed to be friendly in the sense that if they
repeatedly receive the same signal then this signal will eventually get through
 The four

component speci	cations can be thought of as SDL speci	cations at the block level
 The
mediums are environment components and therefore not re	ned any further
 The two
block speci	cations SND and REC are both very simple � each has only one process�
namely SNDP and RECP� respectively
 Each of these two process speci	cations is decom�
posed into a fair merge component FM and a processing component PR
 The fair merge
component simulates the unbounded bu�er of an SDL process
 The processing component
characterizes the SDL process graph
 As explained in ��
� this seems to be the best way
to model SDL processes �given our restrictions� in Focus
 At the end of this phase the
abstract system speci	cation has been re	ned into a system speci	cation written solely
in F�SDL syntax
 This speci	cation can then be automatically translated into SDL

���� System Speci�cation

In Focus the communication histories of channels are modeled by streams
 A stream
is a 	nite or in	nite sequence of actions
 Each action models a message sent along the
actual channel
 The protocol�s overall behavior is that of an identity component with one
input and one output channel
 This is expressed by a relational speci	cation�

system SWP�i � DT�
� o � DT�� � o � i end�

DT � fdt�d� jd � Dg is the set of data signals� where D is some nonempty set of data
 i
and o are streams representing the communication histories of the input and the output
channel� respectively
 The symbol � is used to distinguish the input streams from the
output streams
 DT� denotes the set of all streams over DT
 SWP is the speci	cation�s
name
 The system�s external behavior is characterized by the formula to the right of ���

It states that the output history is equal to the input history

There is a fundamental di�erence between this relational speci	cation and a system
speci	cation in SDL
 In SWP the system�s behavior is stated explicitly independent of its
later decomposition
 In SDL the behavior of a system speci	cation can only be determined
implicitly based on its block and process speci	cations
 Thus this system speci	cation
is not in F�SDL
 However� via a number of intermediate steps� it will be re	ned into an
F�SDL speci	cation by 	xing its internal structure in the style of SDL

���� Decomposing the System into Blocks

The 	rst step is to split the system speci	cation into four component speci	cations at
the block level� a sender� two mediums and a receiver
 Such a network of speci	cations
can be characterized as below�

system SWP�i � DT�
� o � DT�� �

�m� � SND�i� a��� �a�� � A MED�a�� �m�� � M MED�m�� �a� o� � REC�m��
where

block SND�i � DT�� a� � A�
� m � MG�� � RSND end�

block A MED�a � A�
� a� � A�� � RA MED end�

block M MED�m � MG�
� m� � MG�� � RM MED end�

block REC�m� � MG�
� a � A�� o � DT�� � RREC end

end

MG � fmg�d� n� jd � D � n � Ng is the set of signals sent by the sender to the receiver

Each such signal consists of a data element and a sequence number
 A � fa�n� jn � Ng
is the set of acknowledgments
 Note the close correspondence between the four equations
and the block level network pictured in Figure �
 RSND� RA MED� RR MED and RREC are
formulas characterizing the required behavior of the four blocks in the same way as i � o

characterizes the behavior of the previous SWP speci	cation
 Given such formulas it can
be veri	ed whether this new speci	cation re	nes the earlier more abstract speci	cation
or not� i
e
� that externally this network behaves as an identity component
 For this
purpose a simple deduction rule has been formulated ��

 This rule is closely related to
the while�rule of Hoare�logic ���

 Because of the space constraints such a proof cannot
be given here
 However� we would like to mention that in order to carry out this proof
the two mediums are required to satisfy a liveness constraint which says that if the same
signal is sent in	nitely many times from a certain point in time� then it will eventually
get through

���� Processing Component and its Translation into SDL

To show how an SDL process graph can be modeled in F�SDL we give the speci	cation
of the sender�s processing component �PRS in Figure ��

PRS�b � �DT � A �MG�� � m � MG�� t � MG�� �

�x� n � N � �start � N� N � �DT � A � MG�� � MG� �MG� �

start�x� n��b� � �m� t�

where �x� n� r � N � p � D � in � �DT � A �MG�� �

start�x� n��in� � next��� ���in� ���

next�x� n��dt�p� � in� � ���
let x � x � � in mg�p� x� ��

if x 	 n � w then mg�p� x� �� next�x� n��in�
else next�x� n��in�

next�x� n��mg�p� r� � in� � ���
if r � n then next�x� n��in� else mg�p� r� ��

if r � n � w then next�x� n��in� else mg�p� r� �� next�x� n��in�

next�x� n��a�r� � in� � ���
if r � n then next�x� r��in� else next�x� n��in�

The input channel b receives signals from the fair merge component
 Signals to the sender
are sent along m� and t is used as a feedback channel

The process graph is modeled by the �functional program� start whose recursive de	ni�
tion is given in the where clause
 The existentially quanti	ed variables n and x represent

cc
��

cc
��

cc
��

cc
��

�
��

�
��

�
��

�
��

cc
��

cc
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

cc
��

�
��

�
��

�
��

�
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

next

next

next
next

next

next

true false true
false

dt�p�

x �� x	 �

mg�p� x� to self

mg�p� r�

mg�p� r� to self

true false

r � n

next

next

true false

a�r�

n �� r

r � n

n	 w
�
x

n	w
�
r

mg�p� x� via m mg�p� r� via m

Figure �
 State Transition of the Sender

the internal state
 The existential quanti	er is used to model that their initial values are
not 	xed
 Thus it can be thought of as a local variable declaration which assigns some
arbitrary� type�correct values to the declared variables
 However� because of ��� this is of
no importance for this example

w is a constant representing the maximal size of the sender�s window

The where clause has four equations
 Each equation models a state�transition in the

SDL process
 The 	rst equation ��� models the initial transition
 Its task is to initialize
the two state variables
 � is the append operator on streams� i
e
� it takes an action and
a stream and returns a stream
 �j is used to to say that its left�hand side argument is
output along the j�th output channel
 What the equations ���� ��� and ��� represent in
SDL is pictured in Figure �
 Note the almost one�to�one correspondence

�� CONCLUSIONS

This paper has outlined how Focus can be used for top�down development of SDL
speci	cations
 First a requirement speci	cation is formulated in Focus
 This requirement
speci	cation is then re	ned into an F�SDL speci	cation via a number of intermediate

speci	cations
 The F�SDL speci	cation can then be automatically translated into SDL

If the correctness of each re	nement step has been properly veri	ed� the resulting SDL
speci	cation is correct with respect to the overall requirement speci	cation stated in
Focus

In some sense Focus and SDL specialize in di�erent areas
 Because of its very formal
nature� Focus has its strength in the area of formal re	nement and veri	cation
 SDL� due
to its graphical notation and many constructs for the structuring of speci	cations� is well�
suited for the formulation of large and complicated speci	cations as found in industry
 It
is therefore very tempting to try to combine Focus and SDL into one framework inheriting
the strength of both

Focus allows the use of formal techniques for the validation� veri	cation and develop�
ment of SDL speci	cations
 In particular Focus is well�suited for top�down development

In other words for development of the type described in Section �
 As we have outlined a
nontrivial SDL speci	cation can be re	ned from a requirement speci	cation asserting that
the overall network behaves as an identity component � a speci	cation whose correct�
ness is obvious More complicated protocols and algorithms can of course be developed
accordingly

Another advantage of Focus is the ease with which environment components are han�
dled
 The two components A MED and M MED were both speci	ed and used to prove
that the sender and the receiver communicate in the required manner� i
e
� that the net�
work consisting of SND� REC� A MED and M MED has the overall behavior of an identity
component
 As soon as this proof obligation is discharged the remaining re	nement of
SND and REC can be carried out in isolation �locally�
 Assumptions about a component�s
environment can also easily be stated explicitly in the component speci	cations by using
the so�called assumption�commitment format ��

SDL is a speci	cation language
 This means that the readability of SDL speci	cations
often is of crucial importance
 For this reason� F�SDL has been designed in such a way
that there is a straightforward mapping into SDL
 This means that the user has full
control of the syntactic structure of the SDL speci	cation he is developing
 From the
Focus user�s point of view the embedding of SDL as a target language in Focus means
that he gets access to the many tools and environments already designed for SDL

Although the considered sub�language is su�ciently expressive to deal with non�trivial
applications� many SDL facilities have been ignored
 However� it seems to be relatively
easy to extend F�SDL to handle a much richer part of SDL� including the full generality
of the SDL timer constructs� procedures �not remote call�� and services
 On the other
hand the treatment of the more OO�related facilities of SDL� including the full generality
of the constructs for process creation� is di�cult if at all possible in the context of Focus

�� ACKNOWLEDGMENTS

The research reported in ��
� on which this paper builds� was conducted as a collabo�
ration between the research groups of Professor Joachim Fischer� Humbolt Universit�at�
Berlin and Professor Manfred Broy� TU M�unchen
 This cooperation was supported by
the Sonderforschungsbereich ��� �Werkzeuge und Methoden f�ur die Nutzung paralleler
Rechnerarchitekturen�
 I am indebted to several colleagues both in Berlin and Munich�

in particular Eckhardt Holz and Max Fuchs

REFERENCES

�
 M
 Broy� F
 Dederichs� C
 Dendorfer� M
 Fuchs� T
 F
 Gritzner and R
 Weber� The
Design of Distributed Systems � An Introduction to Focus �Revised Version�� Report
SFB �������� A� Technische Universit�at M�unchen� ������

�
 E
 Holz and K
 St�len� An Attempt to Embed a Restricted Version of SDL as a
Target Language in Focus� Proc
 Forte���� �extended version available as Report SFB
��������� A� Technische Universit�at M�unchen�� ������

�
 R
 Weber� Eine Methodik f�ur die formale Anforderungspezi	kation verteilter Systeme�
Report ��������� A� Technische Universit�at M�unchen� ������

�
 M
 Broy� and K
 St�len� Speci	cation and Re	nement of Finite Data!ow Networks �
a Relational Approach� Proc
 FTRTFT���� Lecture Notes in Computer Science ����
pages �������� ������

�
 K
 St�len� F
 Dederichs and R
 Weber� Assumption�Commitment Rules for Networks
of Asynchronously Communicating Agents� Report SFB �������� A� Technische Uni�
versit�at M�unchen� �to appear in Formal Aspects of Computing�� ������

�
 M
 Broy� Compositional Re	nement of Interactive Systems� Report ��� Digital� SRC�
Palo Alto� ������

�
 M
 Broy� �Inter�� Action Re	nement� The Easy Way� Proc
 Program Design Calculi�
Summerschool� Marktoberdorf� pages �������� Springer� ������

�
 F
 Belina� D
 Hogrefe and A
 Sarma� SDL with Applications from Protocol Speci	ca�
tion� Prentice Hall� ������

�
 R
 W
 Floyd� Assigning Meaning to Programs� Proc
 Symposium in Applied Mathe�
matics� pages ������ ������

��
 C
 A
 R
 Hoare� An Axiomatic Basis for Computer Programming� Communications
of the ACM� ��� pages �������� ������

��
 C
 B
 Jones� Systematic Software Development Using VDM� Second Edition� Prentice�
Hall� ������

��
 C
 Morgan� Programming from Speci	cations� Prentice�Hall� ������

��
 K
 M
 Chandy and J
 Misra� Parallel Program Design� A Foundation� Addison�Wesley�

������

��
 L
 Lamport� The Temporal Logic of Actions� Report ��� Digital� SRC� Palo Alto�

������

