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Abstract. We compare four different formalizations of possibly infinite
sequences in theorem provers based on higher-order logic. The formaliza-
tions have been carried out in different proof tools, namely in Gordon’s
HOL, in Isabelle and in PVS. The comparison considers different logics
and proof infrastructures, but emphasizes on the proof principles that are
available for each approach. The different formalizations discussed have
been used not only to mechanize proofs of different properties of pos-
sibly infinite sequences, but also for the verification of some non-trivial
theorems of concurrency theory.

1 Introduction

Sequences occur frequently in all areas of computer science and mathematics.
In particular, formal models of distributed systems often employ (possibly infi-
nite) sequences to describe system behavior over time, e.g. TLA [Lam94] or I/0
automata [LT89]. Recently, there is a growing interest in using theorem provers
not only to verify properties of systems described in such a model, but also
to formalize (parts of) the model itself in a theorem prover. For this reason,
formalizations of possibly infinite sequences in proof tools are needed.

In this paper, we compare a number of such formalizations, which were car-
ried out in theorem provers based on higher-order logic. We compare to what
extent the formalizations have been worked out, and draw conclusions on general
applicability. In the comparison we consider the following representative require-
ments on the datatype of possibly infinite sequences: A predicate finite character-
izes finite sequences, operations on sequences include hd, tl, map, length, concat
(also known as append), filter (removal of elements) and flatten (concatenation
of possibly infinitely many finite sequences).

In particular, filter and flatten are chosen, because defining them and reason-
ing about them turned out to be rather complicated in various formalizations,

* Research supported by the Netherlands Organization for Scientific Research (NWO)
under contract SION 612-316-125
t Research supported by BMBF, KorSys



especially because of their result depend on infinite calculations. These functions
are especially motivated by concurrency theory: for abstraction and modularity
purposes, internal messages are often hidden in behaviors using the filter func-
tion. The flatten function is required for proofs about system refinement, where
infinitely many steps of a system may be simulated by finite behaviors.

The following four approaches are evaluated and compared:

— HOL-FUN: Sequences are defined as functions by (a)seq = N — (a)option,
where the datatype («a)option = None | Some(a) is used to incorporate
finite sequences into the model: None denotes a “non-existing” element. This
approach has been taken by Nipkow, Slind and Miiller [NS95, MN97], where
it has been used to formalize parts of I/O automata meta-theory. It has been
carried out in Isabelle/HOL [Pau94].

— HOL-SuM: Sequences are defined as the disjoint sum of finite and infinite
sequences: (a)seq = FinSeq((a)list) | InfSeq(N — «). Here («)list stands for
ordinary finite lists. This approach has been taken by Chou and Peled [CP96]
in the verification of a partial-order reduction technique for model checking
and by Agerholm [Age94] as an example of his formalization of domain the-
ory. Both versions have been carried out independently from each other in
Gordon’s HOL [GM93].

— PVS-FuN: Sequences are defined as functions from a downward closed sub-
set of N, where the cardinality of the subset corresponds to the length of
the sequence. This is achieved by the dependent product (S € I x (S — «)),
where I C p(N) denotes the set of all downward closed subsets of N. This
approach has been taken by Devillers and Griffioen [DG97], who also formal-
ized I/O automata meta-theory. It has been carried out in PVS [ORSH95].

— HOL-LCEF': In domain theory, sequences can be defined by the simple recur-
sive domain equation (a)seq = nil | () : (a)seq, where the “cons”-operator :
is strict in the first and lazy in its second argument. This approach has been
taken by Miiller and Nipkow [MNO97] as a continuation of the first approach,
as that one caused some difficulties that will be sketched later on. It has
been carried out in Isabelle/HOLCF [Reg95].

The aim of every formalization is a rich enough collection of theorems, such
that independence on the specific model is reached. As this, up to our experience,
will not completely be possible, we focus our comparison on the proof principles
that are offered by the respective approaches. Their usability, applicability and
degree of automation are especially essential for the user of the sequence package
and influence proof length considerably. In addition, specific features of the tools
and of the respective logics are taken into account.

2 Theorem Provers and Logics

In this section we summarize the distinguishing aspects of the different tools
used, as far as they are relevant to the sequence formalizations.



2.1 The different Logics

Isabelle/HOL and Gordon’s HOL. Gordon’s HOL [GM93] is a theorem
prover for higher-order logic developed according to the LCF approach [Pau87].
Isabelle [Pau94] is a generic theorem prover that supports a number of logics,
among them first-order logic (FOL), Zermelo-Frinkel set theory (ZF), construc-
tive type theory (CTT), higher-order logic (HOL), and others. As Isabelle/HOL
and Gordon’s HOL are similar, we will in general not distinguish between them
and refer to both of them as HOL. Both logics are based on Church’s formu-
lation of simple type theory [Chu40], which has been augmented by a ML-style
polymorphism and extension mechanisms for defining new constants and types.
The following section gives a quick overview, mainly of the notation we use.

Types. The syntax of types is given by ¢ ::= v| (01, ...,0n)0p where o, 01, ..., 0y
range over types, v ranges over type variables, and op ranges over n-ary type
operators (n > 0). Greek letters (e.g. a, §) are generally used for type variables,
and sans serif identifiers (e.g. list, option) are used for type operators. In this pa-
per, we use the type constants N and B, denoting natural numbers and booleans,
and the type operators — for the function space and x for the cartesian prod-
uct.

Terms. The syntax of terms is given by M == c¢|v|(MN)|Av.M where ¢
ranges over constants, v ranges over variables, and M and N range over terms.
Sans serif identifiers (e.g. a,b,c) and non-alphabetical symbols (e.g. =, =, V)
are generally used for constants, and italic identifiers (e.g. z,y,z) are used for
variables. Every term in HOL denotes a total function and has to be well-typed.
HOL incorporates Hilbert’s choice operator £ as a primitive constant.

HOLCF. HOLCF [Reg95] conservatively extends Isabelle/HOL with concepts
of domain theory such as complete partial orders, continuous functions and a
fixed point operator. As a consequence, the logic of the original LCF tool [Pau87]
constitutes a proper sublanguage of HOLCF.

HOLCEF uses Isabelle’s type classes, similar to Haskell, to distinguish between
HOL and LCF types. A type class is a constraint on a polymorphic variable
restricting it to the class of types fulfilling certain requirements.

For example, there is a type class « :: po (partial order) that restricts the
class of all types «a of the universal type class term of HOL to those for which the
constant C: a X a — B is reflexive, transitive and antisymmetric. Showing that a
particular type is an instance of this type class, requires to prove the properties
above for this particular definition of the symbol C. Once this proof has been
done, Isabelle can use this semantic information during static type checking.

The default type class of HOLCF is pcpo (pointed complete partial order),
which is a subclass of po, equipped with a least element 1 and demanding com-
pleteness for C. There is a special type for continuous functions between pcpos.
Elements of this type are called operations, the type constructor is denoted by
—¢, in contrast to the standard HOL constructor —. Abstraction and applica-
tion of continuous functions is denoted by A (instead of \) and f‘t (instead of



f t). The fixed point operator fiz : (a :: pcpo —. a) —. « enjoys the fixed
point property fixf = f(fizf). Note that the requirement of continuity is in-
corporated in the type of fir (—. instead of —). This illuminates the fact, that
checking continuity in HOLCF is only a matter of automatic type checking, as
far as terms belong to the proper LCF sublanguage (A abstractions and ¢ ap-
plications). HOLCF includes a datatype package that allows the definition of
domains by recursive equations.

PVS Logic. Similar to HOL, the PVS logic [ORSH95] is based on higher order
logic, but type expressions are more expressive, featuring set theoretic semantics.
Whereas HOL only allows simple types, PVS offers mechanisms for subtyping
and dependent types. Again, we only give a quick overview, mainly clarifying
syntax.

Subtyping is expressed with the usual set notation, e.g., {n € N.even(n)} is
the set of all even natural numbers. The dependent sum (z : A x B,) —in which
the second component B, depends on a member x of the first set A — denotes
the set of all pairs (a,b) where a € A and b € B,. For example, if S* denotes
a sequence of length i then members of (i : N x {a,b,c}?) would be (2,ab) and
(3,bac). A dependent product (z : A — B,) denotes all functions f where if
a € A then f(a) € B,. For example, if f is a member of the dependent product
(i + N = {a,b,c}?), then f(2) = ab and f(3) = acb would be type-correct.
Furthermore, we use mg and 7; for the left- and right-hand projection in a tuple,
e.g., mo((a, b)) = a.

Whereas the general type checking problem in HOL is decidable, in PVS
it is not. The PVS system solves this problem by generating type correctness
conditions (TCCs) for those checks it cannot resolve automatically.

Similar to HOL, the specification language of PVS is organized into theo-
ries and datatypes, which, in contrast to HOL, can be parameterized by types
and constants. This enables an easy handling of generic theories. HOL’s type
variables and Isabelle’s type classes offer a similar mechanism.

2.2 Design Philosophies and Tool Specifics

Both Gordon’s HOL and Isabelle/HOL, were developed according to the LCF-
system approach [Pau87], which ensures soundness of extensions to the logic. The
main idea of the LCF approach is to use abstract data types to derive proofs.
Predefined values of a data type corresponded to instances of axioms, and the
operations correspond to inference rules. By using a strictly typed language,
wherefore ML was developed, theorem security is assured.

PVS, however, is a closed tool. There is no document that describes the exact
syntax and semantics of the PVS logic, which is hardwired in the tool. On the
other hand, PVS features a tight integration of rewriting and various decision
procedures (e.g. for arithmetic and propositional logic based on BDDs), which
results in a high degree of automation. This is in particular an advantage in
comparison to Isabelle/HOL, which in the present version does not offer effective
support for arithmetic.



3 HOL-FuN: Functions in Isabelle/HOL

Definition 1 (Type of Sequences). Sequences are defined by the type
(a)seq = N — («)option

using the option datatype defined as: (a)option = None | Some(«). None denotes
“nonexisting” elements and is used to model finite sequences. To avoid the case
in which None appears within a sequence — otherwise the representation would
not be unique — the predicate

is_sequence(s) = (Vi.s(i) = None = s(i + 1) = None)

is introduced, which has to hold for every sequence. Sequences therefore can
be regarded as a quotient structure, where is_sequence characterizes the normal
form of each equivalence class. Of course, every operation has to yield a term
in normal form. This is the main disadvantage of this approach, as it is not
straightforward to construct the normal form for e.g. the filter function, which
will be discussed below.

Definition 2 (Basic Operations). Functions on sequences are defined point-
wise. This is especially simple if the output length is equal to the input length
(as for map) or if it can easily be computed from it (as for @ ).

nil = Xi.None  hd(s) = s(0)
tl(s) = X.s(i+ 1) len(s) =4{i.s(i) # None}
map fs=fos s®t = M.if i < len(s)then s(i) else t(i — len(s))

where the codomain for len and # (cardinality) are the natural numbers, extended
by an infinity element: N*° = Fin(N)|Inf. Arithmetic operations and relations (as
e.g. —, < have been extended accordingly.

Definition 3 (Filter). Filtering is divided into two steps: first, proj : (a)seq —
(a)seq replaces every element not satisfying P by None, then the resulting se-
quence is brought into normal form. Normalization is achieved by an index trans-
formation it : N — N, that has to meet three requirements: first, normalization
has to maintain the ordering of the elements, second, every Some(a) has to ap-
pear in the normal form, and third, if there is a None in the normal form, then
there will be no Some afterwards. These requirements can directly serve as the
definition for it using Hilbert’s description operator €.

proj Ps = Ai.case s(i) of None = None
| Some(a) = if P(a) then Some(a) else None
it(s) = eit. monotone(it) A
Vi.s(i) # None = i € range(it) A
is_sequence(s o it)
NF(s) =soit(s)
filter Ps = NF o (proj P s)



The definition for it is a nice requirement specification, but it is not simple
to work with it, as for every ex.P(z) the existence of an z satisfying P has to be
shown. Theoretically, this can be done using proof by contradiction, as we are in
a classical logic, but it was not obvious how to do this in this case. In practice,
an explicit construction seemed to be unavoidable.

One reason why Miiller and Nipkow stopped this sequence formalization at
this point [MN97] and changed to a formalization in HOLCF was the complexity
of this construction. A second reason was the unsufficient support for arithmetic,
provided by Isabelle/HOL up to now, as reasoning about normal forms heavily
involves index calculations. However, a version without normal forms has been
successfully used to model parts of the meta-theory of I/O-automata [NS95].

Anyway, it will turn out, that the PVS approach is very close to the one
presented here, so that an impression of the practicability can be gained from
the experiences that have been made there. In particular, it reappears in the
PVS approach in a very similar fashion, and an explicit construction of it will
be presented in that context.

4 HOL-SuwMm: Lists and Functions in Gordon’s HOL

Chou and Peled [CP96] use a disjoint union type of a list for finite sequences,
and a function from the natural numbers for infinite sequences.

Definition4 (Type of Sequences).
(a)seq = FinSeq((a)list) | InfSeq(N — «)

An advantage of this approach is that no normalization of elements in this type
is needed. A disadvantage is that a number of the operators on sequences are
implemented twice, once in case the argument is a finite sequence, and once in
the infinite case.

Definition 5 (Basic Operations). For instance, consider the length len and
tl functions shown below.

len(FinSeq ) = Fin(len 1)

len(InfSeq f) = Inf

tl(FinSeq 1) TL 1

tl(InfSeq f) InfSeq(Ai . f(i + 1))

In the above definitions, the length function returns an element in N*°. The
tl function is defined twice, for finite sequences the usual TL operator on lists is
used, and for infinite sequences it uses a transposition function.

Whenever it is not easy to define a sequence in such a way, Chou and Peled
make use of under-specified functions from the natural number to the data set.
Such functions are not specified for all arguments greater than the length of a se-
quence. A conversion function seq, which takes a number n : N and such a func-
tion f as arguments, constructs the corresponding sequence to f of length n. In
the definition below, genlist fn is the finite list of the first n values f(1),..., f(n).



seq(Fin n)(f) = FinSeq(genlist f n)
seq(Inf)(f) = InfSeq(f)

For instance, the concatenation function, which takes two sequence arguments,
is defined by means of this function. If this function were defined using normal
case distinctions on the arguments, one would need four cases.

s®t = seq (len(s) + len(t)) (Ai. if i < len(s) then nth sielse ntht (i — len(s)))

Definition 6 (Filter). Chou and Peled define the filter function as the limit
of an ascending chain of finite sequences according to the prefix ordering C on
sequences. Below the definitions of chains and limits are given. The argument of
both functions is a variable ¢ of type N — («)list.

chain(c) = (Vj . (cj) E (c(j +1)))
limit(c) = seq (lub (An .35 .n = len(cj))) (M. nth (¢ (least(Nj . i < len(cj)))) i)

The chain function is a predicate which states that ¢ is a chain iff all the
elements satisfy the prefix ordering. The limit function returns the sequence seq
where the length is the least upper bound lub of all lengths in the chain, and
the i-th element in a sequence (if any) is the i-element of the first sequence in
the chain which holds at least i elements.

The filter function then is defined as the limit of all projections on initial
segments of a given argument.

FilterChain(p)(s)(j) = FinSeq(FILTER (p)(list(take s j)))
filter(p)(s) = limit (FilterChain(p)(s))

The function FilterChain produces a chain of lists where the j-th element in
such a list is the projection of p on the first j elements of s. For instance, when
filtering all even numbers out of the sequence (1,4,9,16,25,...) the resulting
chain will be nil C (4) C (4) C (4, 16) C . ... The limit of this chain is, of course,
the infinite sequence of squares of even numbers.

Properties proven about these limits include that every sequence is the limit
of the chain of all of its finite prefixes, and that concatenation is continuous in
its right argument, in the sense of Scott’s topology. Theorems proven about the
filter function include that filter distributes over concatenation when the first
argument is a finite sequence. The flatten function has not been defined in this
setting; however, a construction similar to filter would be necessary.

Definition 7 (Proof Principles). The basic proof principles are structural in-
duction on finite lists and extensionality for infinite sequences. Using seq, proofs
have to be split up as follows:

(Vn, f.P(seq (Finn) f)) (Vg.P(seq Inf g))
Vy. P(y)




The following more general extensionality proof principle is also available:

len(z) = len(y) A (Vi < len(z) .nthx i =nthyi)
T=y

For particular functions as filter and @, the notions of chains, limits and some-
times continuity are used to prove equality of sequences only by proving their
equality for all finite sequences.

After writing the paper we became aware of [Age94], where Agerholm takes
the same approach as Chou and Peled, but in a more domain theoretic style and
to a much greater extent.

5 PVS-FunN: Functions in PVS

The specification of possibly infinite sequences in PVS by Devillers and Griffioen
made use of dependent types. In this manner, sequences are defined as functions
from downward closed subsets of the natural numbers to a data set. Below, the
definition of the set of all downward closed sets, called index sets, I is given.

I={SepN).(VieS,jeN.j<i=>jel)}

In the case of finite sequences, the domain of such a function will be an
initial segment of the natural numbers which can be constructed with the below
function (for any n € N, below(n) is the set of the first » natural numbers
{0,...,n —1}). In case of infinite sequences, the domain of the sequence is the
set of natural numbers N. Note, that I is isomorphic to N°°. In the following,
|S| denotes the smallest element of the set S.

The definition of possibly infinite sequences is given as a dependent, product
of an index set, and a mapping from that index set to the data set. The sets of
finite and infinite sequences are defined with the use of predicate subtyping.

Definition 8 (Type of Sequences).

A* =(Selx(S—A)
A* ={zx € A . finite(mo(z))}
AY = {x € A® _finite(mo(z))}

Note that a tuple of a set and a function is used in this implementation
because there does not exists a domain operator in PVS (an operator returning
the domain of a given function). In the rest of the paper, we will write dom(x)
for the domain of a sequence z, and z(i) for the i-th element in such a sequence.

Simple operators are defined in a straightforward fashion. What is practical
about these definitions is that no distinction is made between finite or infinite
sequences in the mappings used. As a result, during some proofs no explicit split
in reasoning is needed between finite and strictly infinite sequences.

However, sometimes it is needed to make that distinction to derive the ap-
propriate domain for a function. Please consider, for instance, the concatenation
operator @ defined in the list below.



Definition 9 (Basic Operations).

nil 1 AX

nil = (0, f)ywhere fe ) — A

len : A* >N

len(x) = tdom(x)

map : (A= B) » A® — B>

map(f)(z) = (dom(z), (Xi : dom(x).f(z(i))))

® i A X A 5 A®

zDy = (S,(\i: S.ifi <lthenz(i)elsey(i —1)fi))

where I =len(z),S = if finite(y) then below (I + len(y)) else N fi

The filter function is basically defined with the use of an enumeration function
on ordered sets. Let W (S, z) be the witness set of all indexes 7 which satisfy
z(i) € S, and let itg be the enumerated sequence of elements of the ordered
countable set S’. Then x o ity (g . is a filtered sequence. For example, suppose
one wants to filter all symbols a in the sequence x = (b,a,a,b,qa,...). Then
W({a},z) = {1,2,4,...}, and ity ({a},s) is the sequence (1,2,4,...). Therefore,
T o itw({a},e) = (bya,a,b,a,...)0(1,2,4,...) = (a,0a,a,...).

Definition 10 (Filter).

W(S,z) ={i€ dom(x)|=xz(i) € S}

S = if finite(S) then below (4(S)) else N fi
50 =5

s = {gn\Lsn | :ither;vi(ie

its(i) =[S

filter(S,x) = (W (S, ),z o itw(s,s))

Although most proofs concerning sequence operators are simple in this set-
ting, a proof of even a simple property about filter is complicated (which in a
similar fashion is expected for flatten that has not been formalized yet). Proofs
performed about filter include proofs that the it function is a monotonic bijec-
tive function, and of the primitive recursive characterization of filter:
filterg(a"z) = if a € S then a”filter gx else filter gz fi

Definition 11 (Proof Principles). The most used proof principle in this set-
ting is called extensionality, point-to-point wise equality

dom(z) = dom(y) A (Vi € dom(z) . z(i) = y(i))
T=y




As a corollary, we would like to mention that properties over down-ward
closed subsets of the natural numbers can easily be proven with a generalized
induction scheme on these subsets. Let S be a down-ward closed subset of the
natural numbers then

((0e S=p0)ANMn+1)eS.pn)=pn+1)))
(Vn € S .p(n))

For finite sequences, also structural inductions rules and induction to the
length of sequences are given.

6 HOL-LCF: Domain Theory in Isabelle/HOL

Definition 12 (Type of Sequences). Using the HOLCF datatype package se-
quences are defined by the simple recursive domain equation

domain (a)Seq = nil | () * (lazy (a)Seq)

where nil and the “cons”-operator x are the constructors of the datatype. By
default domain constructors are strict, therefore % is strict in its first argument
and lazy in the second. This means, that elements of the type (a)Seq come in
three flavors:

— Finite total sequences: aj ... % a, % nil
— Finite partial sequences: a1 x ... xay x L
— Infinite sequences: Ay *xQy *as...

The domain package automatically proves a number of user-relevant theorems,
e.g. concerning the constructors, discriminators, and selectors of the datatype.

Sequence Elements in HOL. Domain definitions, like (a)Seq, require the
argument type « to be in type class pcpo. However, in Miiller’s case, domains
are appropriate for recursively defining sequences, but elements in sequences are
often easier to handle in a total fashion, as types of class term. Therefore types
of class term are lifted to flat domains using the type constructor lift:

(a)lift = Undef | Def(a)
Here, both « and (a)lift are elements of term, but by adding the two definitions

L = Undef
zCy=(zx=y)|z=Undef

and proving the properties of a complete partial order with a least element,
(a)lift becomes an instance of pcpo. Note that L and C are overloaded and this
definition only fixes their meaning at type (a)lift. In the sequel, L is written
instead of Undef.

Sequences are now defined as («)seq = ((@)lift)Seq and a new “cons”-operator
for elements of type class term is introduced: z"xs = (Def z) x zs. Using the lift
constructor has several advantages:



— If sequence elements do not need support for infinity or undefinedness, we
are not forced to press the overhead of domain theory into them, but lift
them as late as possible to a domain, just when it is really needed.

— Many datatypes are well supported in HOL, e.g. lists or natural numbers.
We can make reuse of these theories, theorem libraries, and tailored proof
procedures.

— Within the new “cons”-operator zzs the Def constructor serves as an implicit
tag showing definedness of an element. As we will show later with an example,
this simplifies or even eliminates reasoning about the L case.

Besides lifting basic types it is necessary to lift also domains and codomains
of functions, built by the type constructor —. Furthermore the automatic proof
support for continuity has to be extended. Details can be found in [MN97, MS96].

Definition 13 (Basic Operations). Operations are defined as fixed points,
from which recursive equations are derived automatically. For example, map
has type

map : (o — B) = (a)seq —. (B)seq

and the following rewrite rules

map f'L =1
map fnil = nil
map f'(z zs) = f(z) map f'xs

are automatically derived from the definition

map [ = fix'(Ah.As . case s of nil = nil
| (z"@s) = f(z)"(h'ws))

According to domain theory, the argument of fiz in this definition has to be a
continuous function in order to guarantee the existence of the least fixed point.
This continuity requirement is handled automatically by type checking, as every
occuring function is constructed using the continuous function type —..

Note, that the derived recursive equations are just the algebraic definitions
of the corresponding functions for finite lists, extended for the L case. Therefore,
informally speaking, defining operations on finite lists smoothly carries over to
infinite lists.

Definition 14 (Filter and Flatten). All other operations are defined likewise
easily. This is especially remarkable for the filter and flatten operations that
would cause some trouble especially in the functional formalizations:

filter : (a — B) — (a)seq —. (a)seq

filter P°1. = L

filter Pnil = nil

filter P*(z"xs) = if P(x) then z"filter P‘xs else filter P‘xs

Flatten is defined in a similar simple fashion. Note, that these fixed point
definitions incorporate the intuition of computability. Therefore, lemmas like



filter P (z @ y) = filter P x & filter Py do not only hold for finite z. Consider the
example P = (Az.z = a), x = (a,b,b,b,.....) and y = (a,a,a,a....). Whereas in
HOL-LCF the mentioned lemma would hold (because (a, L) = (a, 1)), in other
formalizations this lemma would not ((a, nil) = (a, a, a...)).

Definition 15 (Proof Principles). The proof principles that are discussed in
the following are all automatically proved by the HOLCF datatype package.

A very strong proof principle is structural induction, as it allows one to
reason about infinite sequences, as if they were finite, modulo an admissibility
requirement:

adm(P) P(L) P(nil) (Vz,zs.P(zs) = P(z"zs))
Vy.P(y)

Note, how Def serves here as an implicit tag for definedness: In the equivalent rule
for («)Seq the last assumption of this rule would be (Vz,zs.x # L A P(zs) =
P(z * xs)). The nasty case distinction = # L can be omitted, as (Defz) # L
and z"xzs = (Def z) x xs.

A predicate P is defined to be admissible, denoted by adm(P), if it holds
for the least upper bound of every chain satisfying P. However, in practice, one
rather uses a syntactic criterion (see e.g. [Pau87]): Roughly, it states that if P,
reduced to conjunctive normal form, contains no existential quantifier or nega-
tion, admissibility of P boils down to continuity of all functions occuring in P.
Therefore, if one stays within the LCF sublanguage, admissibility in theses cases
can be proven automatically, i.e. we get the proof of the infinite case for free.
The following exceptions and extensions of the rough guideline above are espe-
cially useful when trying to satisfy the syntactic criterion: Firstly, ¢(z) Z ¢ and
t(z) # L are admissible in z, if ¢ is continuous. Secondly, predicates over chain-
finite domains are admissible, and finally, substitution maintains admissibility.

Besides (1) and conventional fixed point induction, there are also weaker
structural induction rules, that do not need admissibility, namely for the finite
case

(1)

P(nil) (Vz,zs.P(zs) A finite(zs) = P(z"zs))
Yy . finite(y) = P(y)
and an analogous rule for the partial case. Furthermore, the take lemma

Vn.take n‘z = taken‘y

r=Y

and the bisimulation rule, that follows easily from the take lemma, are avail-

able:
bisimR  R(z,y)

r=Y

where bisim R = Vz,y.R(z,y) =
(z=L=y=1)A
(z =nil =y =nil)A
(Fa, 2’z =a"z' = 3, y'.y=0"y AR(z',y') Na=1b)



7 Comparison

Comparing the functional Approaches. As mentioned earlier, HOL-FUN
and PVS-FUN are similar to the extent that they both use functions to define
sequences. To achieve this common goal, two complementary ways are chosen:
Whereas HOL-FUN extends the codomain of the function by the element None
modeling partiality, PVS-FUN restricts the domain of the function. Therefore,
the main proof principle within such a setting is extensionality. Since the ap-
proaches are very similar and HOL-FUN (at least the version including normal
forms) has not been extensively studied, we will concentrate on the experiences
made with PVS-FuN.

Experiences with PVS-FUN. It turned out that the extensionality prin-
ciple works very well for the standard operators, since these operators often
only perform but simple index transformations on their arguments. As an ex-
ample, consider the concatenation operator & in the PVS-FUN section. Because
these index transformations often involve simple linear expressions, and the PVS
prover has considerable support for linear arithmetic, most proofs are done with
a minimum of human guidance, typically by just expanding the definitions in-
volved. However, the definition of filter was tedious, and proofs of basic proper-
ties about it were very hard, since this involved more than just reasoning over
basic index transformations. In conclusion, the definition given seems to be too
ad-hoc. An approach where in a more general fashion definitions can be given,
together with matching proof principles, should be the focus of future research
for such a formalization.

Experiences with HOL-SuM. The HOL-SuM approach is a pragmatic
mixture of algebraic lists for finite sequences and functions for infinite sequences.
Equality of sequences therefore can be proven with structural induction for the
finite case, and function equality in the infinite case. Therefore proofs show a
twofold character. The filter function, however, still is a problem, as there the
two representations have to be related, since filter may produce either finite
or infinite sequences from an infinite one. For this reason, notions of chains,
limits and continuity were introduced, which in [CP96], however, are only used
for proofs about specific functions, whereas general proof principles involving
continuity are not developed. Agerholm [Age94] takes this step and carries over
the whole world of domain theory to this setting. Agerholm concludes that his
development of sequences was long and tedious (50 pages of 70 lines each) and
in his opinion rather an “ad-hoc approach”. The main difficulties arise from a
threefold definition of C — both sequences finite, both infinite, and finite/infinite
— which results in several versions of every single fact throughout the whole
development.

Experiences with HOL-LCF. HOL-LCF employs domain theory to ex-
tend algebraic lists to infinity, so that a uniform approach is obtained. Of the
formalizations discussed, it is the most powerful formalization incorporating a
number of proof principles, and the largest body of proven lemmata. However, at
first sight it seems that domain theory has two drawbacks: all types must denote
domains; all functions must be continuous. But the first requirement can effec-



tively be relaxed by the (@)lift type constructor. And the latter rather offers ad-
vantages than disadvantages. Firstly, arbitrary recursion can be defined by fixed
points. Unfortunately, this means also that definitions of non-continuous func-
tions are delicate, e.g. the fair merge function cannot be defined without leaving
the LCF sublanguage. Secondly, continuity extends the familiar structural in-
duction rule to infinite objects for free, at least for equations about lazy lists.
For general formulae a rather liberal syntactic criterion exists. Here, Miiller’s ex-
perience in formalizing I/O automata was quite encouraging: in almost all cases
it was possible (sometimes by reformulating the goal) to satisfy this criterion or
to get by with the finite induction rule. In the remaining cases, it seems not to
be advisable to prove admissibility via its definition, as this then often becomes
the hardest part of the entire proof. Instead, one should switch to other proof
principles, that do not require admissibility. These are the take-lemma (which
is similar to extensionality), or bisimulation. For these principles a corecursive
characterization of the operators would be useful in order to automate coinduc-
tive proofs, that usually — compare the experiences by Paulson [Pau97] — involve
more case distinctions than the inductive proofs.

Overall Evaluation. In conclusion, we may distinguish three basic proof
schemata for sequences: extensionality (point-wise equality), rules using admis-
sibility or at least continuity, and bisimulation. The first of the three principles
turned out to be inconvenient in practice to prove equalities of arbitrary func-
tions. The second principle is strong, but builds on top of an extensive theory:
In HOLCF this theory is provided, for HOL-SuM it would be a lot of work to
incorporate these notions in a more general fashion. Experience with the appli-
cation of the bisimulation principle to sequences seems to be rather preliminary
(see also next section). Of course, it should be possible to derive all three proof
principles in every setting. However, proof principles can only easily be applied
when corresponding definitions or characterizations of the occuring functions ex-
ist. It is not known, for instance, whether it is easy to derive coalgebraic lemmata
from definitions given in a functional manner.

Related Work. Concerning coalgebraic approaches, there is, up to our
knowledge, no published work on a coalgebraic formalization with an equally
large body of lemmata as the formalizations discussed. Paulson [Pau97] pro-
vided a mechanization of coinduction and corecursion in Isabelle/HOL — inde-
pendent of domain theory —, which he applied also to the formalization of lazy
lists. Unfortunately, the filter function — which indeed turned out to be very
crucial — has not been mechanized there. Leclerc and Paulin-Mohring use Coq
to formalize possibly infinite sequences coalgebraically as well [LPM93]. A prob-
lem is that they cannot express the filter function, as it does not fit into their
constructive framework. Hensel and Jacobs [HJ97] showed how to obtain induc-
tive and coinductive proof principles for datatypes with iterated recursion from
a categorical analysis. They formalized a number of these datatypes in PVS
and have also some promising recent results in formalizing coalgebraic possibly-
infinite sequences. Recently, Feferman [Fef96] developed a recursion theory and
applied it to the formalization of sequences. Similar to HOL-LCF, his solution



incorporates finite, partial and infinite sequences. However, it does not require
continuity. His approach has not been mechanized in a proof tool yet.

8 Conclusion and Future Research

We compared four formalizations of possibly infinite sequences in different higher-
order logics and proof tools. Two of them — the Isabelle/HOLCF and the PVS
solution — have been extensively used by the authors to model the meta-theory
of I/O automata. The sequence theories include more than 100 theorems and
required between 3 and 6 man months.

In general we have the following view on the formalizations; with respect to
automation and usability the HOL-LCF package is developed the furthest. It
offers a strong definitional scheme, and multiple proof principles for proofs by
induction, extensionality or bisimulation.

Although domain theory gets simpler to use and to automate by integrating
as much as possible from HOL, some users might be reluctant to take the signif-
icant step to switch to domain theory. These users probably will have to develop
further one of the other approaches. The HOL-FUN and PVS-FUN approaches
were not worked out completely. Within the PVS-FUN approach it became clear
that ad-hoc definitions like the filter function result in too large proof obliga-
tions. The extensionality principle also seems to be not adequate for reasoning
about infinite sequences.

The approaches taken by Chou and Peled HOL-SuM and Agerholm [Age94]
are pragmatic and more “ad-hoc” ways to deal with sequences. For specific
purposes such a theory is built up quickly and may be satisfactory, but in general
the twofold or even threefold character of proofs is inconvenient. Basically, the
approach suffers from the fact, that domain theory is (partly) used to define
recursive functions, but not to define recursive domains, which, however, is the
crucial point of domain theory.

Coinductive types are being implemented in different proof tools in the mo-
ment. As the packages also offer definitional principles, and coinduction (or
bisimulation) seems much stronger than the extensionality principle, they are
an interesting candidate for possibly infinite sequences as well. However, to our
knowledge, at the moment there is not much experience with coinductive types
used in sophisticated verifications.
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