
Possibly In�nite Sequences in Theorem Provers�

A Comparative Study

Marco Devillers�� David Gri�oen���� and Olaf M�ullery�

� Computing Science Institute� University of Nijmegen� The Netherlands�
fmarcod�davidgg�cs�kun�nl

� CWI� Amsterdam� The Netherlands� griffioe�cwi�nl
� Computer Science Department� Technical University Munich� Germany�

mueller�informatik�tu�muenchen�de

Abstract� We compare four di�erent formalizations of possibly in�nite
sequences in theorem provers based on higher�order logic� The formaliza�
tions have been carried out in di�erent proof tools� namely in Gordon�s
HOL� in Isabelle and in PVS� The comparison considers di�erent logics
and proof infrastructures� but emphasizes on the proof principles that are
available for each approach� The di�erent formalizations discussed have
been used not only to mechanize proofs of di�erent properties of pos�
sibly in�nite sequences� but also for the veri�cation of some non�trivial
theorems of concurrency theory�

� Introduction

Sequences occur frequently in all areas of computer science and mathematics�
In particular� formal models of distributed systems often employ �possibly in��
nite� sequences to describe system behavior over time� e�g� TLA �Lam	
� or I�O
automata �LT
	�� Recently� there is a growing interest in using theorem provers
not only to verify properties of systems described in such a model� but also
to formalize �parts of� the model itself in a theorem prover� For this reason�
formalizations of possibly in�nite sequences in proof tools are needed�

In this paper� we compare a number of such formalizations� which were car�
ried out in theorem provers based on higher�order logic� We compare to what
extent the formalizations have been worked out� and draw conclusions on general
applicability� In the comparison we consider the following representative require�
ments on the datatype of possibly in�nite sequences� A predicate �nite character�
izes �nite sequences� operations on sequences include hd� tl� map� length� concat

�also known as append�� �lter �removal of elements� and �atten �concatenation
of possibly in�nitely many �nite sequences��

In particular� �lter and �atten are chosen� because de�ning them and reason�
ing about them turned out to be rather complicated in various formalizations�

� Research supported by the Netherlands Organization for Scienti�c Research �NWO�
under contract SION �	
��	��	
�

y Research supported by BMBF� KorSys

especially because of their result depend on in�nite calculations� These functions
are especially motivated by concurrency theory� for abstraction and modularity
purposes� internal messages are often hidden in behaviors using the �lter func�
tion� The �atten function is required for proofs about system re�nement� where
in�nitely many steps of a system may be simulated by �nite behaviors�

The following four approaches are evaluated and compared�

� HOL�Fun� Sequences are de�ned as functions by ���seq � N � ���option�
where the datatype ���option � None j Some��� is used to incorporate
�nite sequences into the model� None denotes a �non�existing� element� This
approach has been taken by Nipkow� Slind and M�uller �NS	�� MN	��� where
it has been used to formalize parts of I�O automata meta�theory� It has been
carried out in Isabelle�HOL �Pau	
��

� HOL�Sum� Sequences are de�ned as the disjoint sum of �nite and in�nite
sequences� ���seq � FinSeq����list� j InfSeq�N � ��� Here ���list stands for
ordinary �nite lists� This approach has been taken by Chou and Peled �CP	��
in the veri�cation of a partial�order reduction technique for model checking
and by Agerholm �Age	
� as an example of his formalization of domain the�
ory� Both versions have been carried out independently from each other in
Gordon�s HOL �GM	���

� PVS�Fun� Sequences are de�ned as functions from a downward closed sub�
set of N� where the cardinality of the subset corresponds to the length of
the sequence� This is achieved by the dependent product �S � I� �S � ����
where I� ��N� denotes the set of all downward closed subsets of N� This
approach has been taken by Devillers and Gri�oen �DG	��� who also formal�
ized I�O automata meta�theory� It has been carried out in PVS �ORSH	���

� HOL�LCF� In domain theory� sequences can be de�ned by the simple recur�
sive domain equation ���seq � nil j ��� � ���seq� where the �cons��operator �
is strict in the �rst and lazy in its second argument� This approach has been
taken by M�uller and Nipkow �MN	�� as a continuation of the �rst approach�
as that one caused some di�culties that will be sketched later on� It has
been carried out in Isabelle�HOLCF �Reg	���

The aim of every formalization is a rich enough collection of theorems� such
that independence on the speci�c model is reached� As this� up to our experience�
will not completely be possible� we focus our comparison on the proof principles
that are o�ered by the respective approaches� Their usability� applicability and
degree of automation are especially essential for the user of the sequence package
and in�uence proof length considerably� In addition� speci�c features of the tools
and of the respective logics are taken into account�

� Theorem Provers and Logics

In this section we summarize the distinguishing aspects of the di�erent tools
used� as far as they are relevant to the sequence formalizations�

��� The di�erent Logics

Isabelle�HOL and Gordon�s HOL� Gordon�s HOL �GM	�� is a theorem
prover for higher�order logic developed according to the LCF approach �Pau
���
Isabelle �Pau	
� is a generic theorem prover that supports a number of logics�
among them �rst�order logic �FOL�� Zermelo�Fr�ankel set theory �ZF�� construc�
tive type theory �CTT�� higher�order logic �HOL�� and others� As Isabelle�HOL
and Gordon�s HOL are similar� we will in general not distinguish between them
and refer to both of them as HOL� Both logics are based on Church�s formu�
lation of simple type theory �Chu
��� which has been augmented by a ML�style
polymorphism and extension mechanisms for de�ning new constants and types�
The following section gives a quick overview� mainly of the notation we use�

Types� The syntax of types is given by � ��� v j ���� ���� �n�op where �� ��� ���� �n
range over types� v ranges over type variables� and op ranges over n�ary type
operators �n � ��� Greek letters �e�g� �� �� are generally used for type variables�
and sans serif identi�ers �e�g� list� option� are used for type operators� In this pa�
per� we use the type constants N and B � denoting natural numbers and booleans�
and the type operators � for the function space and � for the cartesian prod�
uct�

Terms� The syntax of terms is given by M ��� c j v j �MN� j�v�M where c

ranges over constants� v ranges over variables� and M and N range over terms�
Sans serif identi�ers �e�g� a�b�c� and non�alphabetical symbols �e�g� �� �� ��
are generally used for constants� and italic identi�ers �e�g� x�y�z� are used for
variables� Every term in HOL denotes a total function and has to be well�typed�
HOL incorporates Hilbert�s choice operator � as a primitive constant�

HOLCF� HOLCF �Reg	�� conservatively extends Isabelle�HOL with concepts
of domain theory such as complete partial orders� continuous functions and a
�xed point operator� As a consequence� the logic of the original LCF tool �Pau
��
constitutes a proper sublanguage of HOLCF�

HOLCF uses Isabelle�s type classes� similar to Haskell� to distinguish between
HOL and LCF types� A type class is a constraint on a polymorphic variable
restricting it to the class of types ful�lling certain requirements�

For example� there is a type class � �� po �partial order� that restricts the
class of all types � of the universal type class term of HOL to those for which the
constant v� ���� B is re�exive� transitive and antisymmetric� Showing that a
particular type is an instance of this type class� requires to prove the properties
above for this particular de�nition of the symbol v� Once this proof has been
done� Isabelle can use this semantic information during static type checking�

The default type class of HOLCF is pcpo �pointed complete partial order��
which is a subclass of po� equipped with a least element � and demanding com�
pleteness for v� There is a special type for continuous functions between pcpos�
Elements of this type are called operations� the type constructor is denoted by
�c� in contrast to the standard HOL constructor �� Abstraction and applica�
tion of continuous functions is denoted by � �instead of �� and f �t �instead of

f t�� The �xed point operator �x � �� �� pcpo �c �� �c � enjoys the �xed
point property �xf � f��xf�� Note that the requirement of continuity is in�
corporated in the type of �x ��c instead of ��� This illuminates the fact� that
checking continuity in HOLCF is only a matter of automatic type checking� as
far as terms belong to the proper LCF sublanguage �� abstractions and � ap�
plications�� HOLCF includes a datatype package that allows the de�nition of
domains by recursive equations�

PVS Logic� Similar to HOL� the PVS logic �ORSH	�� is based on higher order
logic� but type expressions are more expressive� featuring set theoretic semantics�
Whereas HOL only allows simple types� PVS o�ers mechanisms for subtyping

and dependent types� Again� we only give a quick overview� mainly clarifying
syntax�

Subtyping is expressed with the usual set notation� e�g�� fn � N � even�n�g is
the set of all even natural numbers� The dependent sum �x � A�Bx� � in which
the second component Bx depends on a member x of the �rst set A � denotes
the set of all pairs �a� b� where a � A and b � Ba� For example� if Si denotes
a sequence of length i then members of �i � N � fa� b� cgi� would be ��� ab� and
��� bac�� A dependent product �x � A � Bx� denotes all functions f where if
a � A then f�a� � Ba� For example� if f is a member of the dependent product
�i � N � fa� b� cgi�� then f��� � ab and f��� � acb would be type�correct�
Furthermore� we use 	� and 	� for the left� and right�hand projection in a tuple�
e�g�� 	���a� b�� � a�

Whereas the general type checking problem in HOL is decidable� in PVS
it is not� The PVS system solves this problem by generating type correctness
conditions �TCCs� for those checks it cannot resolve automatically�

Similar to HOL� the speci�cation language of PVS is organized into theo�
ries and datatypes� which� in contrast to HOL� can be parameterized by types
and constants� This enables an easy handling of generic theories� HOL�s type
variables and Isabelle�s type classes o�er a similar mechanism�

��� Design Philosophies and Tool Speci�cs

Both Gordon�s HOL and Isabelle�HOL� were developed according to the LCF�
system approach �Pau
��� which ensures soundness of extensions to the logic� The
main idea of the LCF approach is to use abstract data types to derive proofs�
Prede�ned values of a data type corresponded to instances of axioms� and the
operations correspond to inference rules� By using a strictly typed language�
wherefore ML was developed� theorem security is assured�

PVS� however� is a closed tool� There is no document that describes the exact
syntax and semantics of the PVS logic� which is hardwired in the tool� On the
other hand� PVS features a tight integration of rewriting and various decision
procedures �e�g� for arithmetic and propositional logic based on BDDs�� which
results in a high degree of automation� This is in particular an advantage in
comparison to Isabelle�HOL� which in the present version does not o�er e�ective
support for arithmetic�

� HOL�Fun� Functions in Isabelle�HOL

De�nition � �Type of Sequences	� Sequences are de�ned by the type

���seq � N � ���option

using the option datatype de�ned as� ���option � None j Some���� None denotes
�nonexisting� elements and is used to model �nite sequences� To avoid the case
in which None appears within a sequence � otherwise the representation would
not be unique � the predicate

is sequence�s� � ��i�s�i� � None� s�i� �� � None�

is introduced� which has to hold for every sequence� Sequences therefore can
be regarded as a quotient structure� where is sequence characterizes the normal
form of each equivalence class� Of course� every operation has to yield a term
in normal form� This is the main disadvantage of this approach� as it is not
straightforward to construct the normal form for e�g� the �lter function� which
will be discussed below�

De�nition � �Basic Operations	� Functions on sequences are de�ned point�
wise� This is especially simple if the output length is equal to the input length
�as for map� or if it can easily be computed from it �as for 	 ��

nil � �i�None hd�s� � s���
tl�s� � �i�s�i� �� len�s� �
fi � s�i�
� Noneg
map f s � f � s s	 t � �i� if i � len�s� then s�i� else t�i� len�s��

where the codomain for len and
 �cardinality� are the natural numbers� extended
by an in�nity element� N� � Fin�N�jInf � Arithmetic operations and relations �as
e�g� �� � have been extended accordingly�

De�nition
 �Filter	� Filtering is divided into two steps� �rst� proj � ���seq �
���seq replaces every element not satisfying P by None� then the resulting se�
quence is brought into normal form� Normalization is achieved by an index trans�
formation it � N � N� that has to meet three requirements� �rst� normalization
has to maintain the ordering of the elements� second� every Some�a� has to ap�
pear in the normal form� and third� if there is a None in the normal form� then
there will be no Some afterwards� These requirements can directly serve as the
de�nition for it using Hilbert�s description operator ��

proj P s � �i� case s�i� of None� None

j Some�a�� if P �a� then Some�a� else None
it�s� � � it � monotone�it�

�i � s�i�
� None� i � range�it�

is sequence�s � it�

NF �s� � s � it�s�
�lter P s � NF � �proj P s�

The de�nition for it is a nice requirement speci�cation� but it is not simple
to work with it� as for every �x�P �x� the existence of an x satisfying P has to be
shown� Theoretically� this can be done using proof by contradiction� as we are in
a classical logic� but it was not obvious how to do this in this case� In practice�
an explicit construction seemed to be unavoidable�

One reason why M�uller and Nipkow stopped this sequence formalization at
this point �MN	�� and changed to a formalization in HOLCF was the complexity
of this construction� A second reason was the unsu�cient support for arithmetic�
provided by Isabelle�HOL up to now� as reasoning about normal forms heavily
involves index calculations� However� a version without normal forms has been
successfully used to model parts of the meta�theory of I�O�automata �NS	���

Anyway� it will turn out� that the PVS approach is very close to the one
presented here� so that an impression of the practicability can be gained from
the experiences that have been made there� In particular� it reappears in the
PVS approach in a very similar fashion� and an explicit construction of it will
be presented in that context�

� HOL�Sum� Lists and Functions in Gordon�s HOL

Chou and Peled �CP	�� use a disjoint union type of a list for �nite sequences�
and a function from the natural numbers for in�nite sequences�

De�nition � �Type of Sequences	�

���seq � FinSeq����list� j InfSeq�N � ��

An advantage of this approach is that no normalization of elements in this type
is needed� A disadvantage is that a number of the operators on sequences are
implemented twice� once in case the argument is a �nite sequence� and once in
the in�nite case�

De�nition � �Basic Operations	� For instance� consider the length len and
tl functions shown below�

len�FinSeq l� � Fin�len l�
len�InfSeq f� � Inf

tl�FinSeq l� � TL l

tl�InfSeq f� � InfSeq��i � f�i� ���

In the above de�nitions� the length function returns an element in N
� � The

tl function is de�ned twice� for �nite sequences the usual TL operator on lists is
used� and for in�nite sequences it uses a transposition function�

Whenever it is not easy to de�ne a sequence in such a way� Chou and Peled
make use of under�speci�ed functions from the natural number to the data set�
Such functions are not speci�ed for all arguments greater than the length of a se�
quence� A conversion function seq � which takes a number n � N� and such a func�
tion f as arguments� constructs the corresponding sequence to f of length n� In
the de�nition below� genlistfn is the �nite list of the �rst n values f���� � � � � f�n��

seq�Fin n��f� � FinSeq�genlist f n�
seq�Inf��f� � InfSeq�f�

For instance� the concatenation function� which takes two sequence arguments�
is de�ned by means of this function� If this function were de�ned using normal
case distinctions on the arguments� one would need four cases�

s	 t � seq �len�s� � len�t�� �� i � if i � len�s� then nth s i else nth t �i� len�s���

De�nition
 �Filter	� Chou and Peled de�ne the �lter function as the limit
of an ascending chain of �nite sequences according to the pre�x ordering v on
sequences� Below the de�nitions of chains and limits are given� The argument of
both functions is a variable c of type N � ���list�

chain�c� � ��j � �c j� v �c �j � ����

limit�c� � seq �lub ��n � �j � n � len�c j��� ��i � nth �c �least��j � i � len�c j���� i�

The chain function is a predicate which states that c is a chain i� all the
elements satisfy the pre�x ordering� The limit function returns the sequence seq
where the length is the least upper bound lub of all lengths in the chain� and
the i�th element in a sequence �if any� is the i�element of the �rst sequence in
the chain which holds at least i elements�

The �lter function then is de�ned as the limit of all projections on initial
segments of a given argument�

FilterChain�p��s��j� � FinSeq�FILTER�p��list�take s j���

�lter�p��s� � limit�FilterChain�p��s��

The function FilterChain produces a chain of lists where the j�th element in
such a list is the projection of p on the �rst j elements of s� For instance� when
�ltering all even numbers out of the sequence ���
� 	� ��� ��� � � �� the resulting
chain will be nil v �
� v �
� v �
� ��� v � � �� The limit of this chain is� of course�
the in�nite sequence of squares of even numbers�

Properties proven about these limits include that every sequence is the limit
of the chain of all of its �nite pre�xes� and that concatenation is continuous in
its right argument� in the sense of Scott�s topology� Theorems proven about the
�lter function include that �lter distributes over concatenation when the �rst
argument is a �nite sequence� The �atten function has not been de�ned in this
setting� however� a construction similar to �lter would be necessary�

De�nition � �Proof Principles	� The basic proof principles are structural in�
duction on �nite lists and extensionality for in�nite sequences� Using seq� proofs
have to be split up as follows�

��n� f � P �seq �Fin n� f�� ��g � P �seq Inf g��

�y � P �y�

The following more general extensionality proof principle is also available�

len�x� � len�y�
 ��i � len�x� � nth x i � nth y i�

x � y

For particular functions as �lter and 	� the notions of chains� limits and some�
times continuity are used to prove equality of sequences only by proving their
equality for all �nite sequences�

After writing the paper we became aware of �Age	
�� where Agerholm takes
the same approach as Chou and Peled� but in a more domain theoretic style and
to a much greater extent�

� PVS�Fun� Functions in PVS

The speci�cation of possibly in�nite sequences in PVS by Devillers and Gri�oen
made use of dependent types� In this manner� sequences are de�ned as functions
from downward closed subsets of the natural numbers to a data set� Below� the
de�nition of the set of all downward closed sets� called index sets� I is given�

I� fS � ��N� � ��i � S� j � N � j � i� j � S�g

In the case of �nite sequences� the domain of such a function will be an
initial segment of the natural numbers which can be constructed with the below

function �for any n � N� below �n� is the set of the �rst n natural numbers
f�� � � � � n � �g�� In case of in�nite sequences� the domain of the sequence is the
set of natural numbers N� Note� that I is isomorphic to N

� � In the following�
bSc denotes the smallest element of the set S�

The de�nition of possibly in�nite sequences is given as a dependent product
of an index set� and a mapping from that index set to the data set� The sets of
�nite and in�nite sequences are de�ned with the use of predicate subtyping�

De�nition � �Type of Sequences	�

A� � �S � I� �S � A��
A� � fx � A� � �nite�	��x��g
A� � fx � A� � ��nite�	��x��g

Note that a tuple of a set and a function is used in this implementation
because there does not exists a domain operator in PVS �an operator returning
the domain of a given function�� In the rest of the paper� we will write dom�x�
for the domain of a sequence x� and x�i� for the i�th element in such a sequence�

Simple operators are de�ned in a straightforward fashion� What is practical
about these de�nitions is that no distinction is made between �nite or in�nite
sequences in the mappings used� As a result� during some proofs no explicit split
in reasoning is needed between �nite and strictly in�nite sequences�

However� sometimes it is needed to make that distinction to derive the ap�
propriate domain for a function� Please consider� for instance� the concatenation
operator 	 de�ned in the list below�

De�nition � �Basic Operations	�

nil � A�

nil � ��� f� where f � � � A

len � A� � N

len�x� �
dom�x�

map � �A� B�� A� � B�

map�f��x� � �dom�x�� ��i � dom�x��f�x�i����

	 � A� �A� � A�

x	 y � �S� ��i � S� if i � l then x�i� else y�i� l� � ��
where l � len�x�� S � if �nite�y� then below �l � len�y�� else N �

The �lter function is basically de�ned with the use of an enumeration function
on ordered sets� Let W �S� x� be the witness set of all indexes i which satisfy
x�i� � S� and let itS� be the enumerated sequence of elements of the ordered
countable set S�� Then x � itW �S�x� is a �ltered sequence� For example� suppose
one wants to �lter all symbols a in the sequence x � �b� a� a� b� a� � � ��� Then
W �fag� x� � f�� ��
� � � �g� and itW �fag�x� is the sequence ��� ��
� � � ��� Therefore�
x � itW �fag�x� � �b� a� a� b� a� � � �� � ��� ��
� � � �� � �a� a� a� � � ���

De�nition �� �Filter	�

W �S� x� � fi � dom�x� j x�i� � Sg

 S � if �nite�S� then below �
�S�� else N �

S�� � S

S��n��� �

�
� � S�n � �
S�nnbS�nc � otherwise

itS�i� � bS�ic

�lter�S� x� � � W �S� x�� x � itW �S�x��

Although most proofs concerning sequence operators are simple in this set�
ting� a proof of even a simple property about �lter is complicated �which in a
similar fashion is expected for �atten that has not been formalized yet�� Proofs
performed about �lter include proofs that the it function is a monotonic bijec�
tive function� and of the primitive recursive characterization of �lter�
�lterS�a!x� � if a � S then a!�lterSx else �lterSx �

De�nition �� �Proof Principles	� The most used proof principle in this set�
ting is called extensionality� point�to�point wise equality

dom�x� � dom�y�
 ��i � dom�x� � x�i� � y�i��

x � y

As a corollary� we would like to mention that properties over down�ward
closed subsets of the natural numbers can easily be proven with a generalized
induction scheme on these subsets� Let S be a down�ward closed subset of the
natural numbers then

��� � S � p����
 ���n� �� � S � p�n�� p�n� ����

��n � S � p�n��

For �nite sequences� also structural inductions rules and induction to the
length of sequences are given�

� HOL�LCF� Domain Theory in Isabelle�HOL

De�nition �� �Type of Sequences	� Using the HOLCF datatype package se�
quences are de�ned by the simple recursive domain equation

domain ���Seq � nil j ��� � �lazy ���Seq�

where nil and the �cons��operator � are the constructors of the datatype� By
default domain constructors are strict� therefore � is strict in its �rst argument
and lazy in the second� This means� that elements of the type ���Seq come in
three �avors�

� Finite total sequences� a� � � � � � an � nil

� Finite partial sequences� a� � � � � � an ��
� In�nite sequences� a� � a� � a� � � �

The domain package automatically proves a number of user�relevant theorems�
e�g� concerning the constructors� discriminators� and selectors of the datatype�

Sequence Elements in HOL� Domain de�nitions� like ���Seq� require the
argument type � to be in type class pcpo� However� in M�uller�s case� domains
are appropriate for recursively de�ning sequences� but elements in sequences are
often easier to handle in a total fashion� as types of class term� Therefore types
of class term are lifted to �at domains using the type constructor lift�

���lift � Undef j Def���

Here� both � and ���lift are elements of term� but by adding the two de�nitions

� � Undef

x v y � �x � y� j x � Undef

and proving the properties of a complete partial order with a least element�
���lift becomes an instance of pcpo� Note that � and v are overloaded and this
de�nition only �xes their meaning at type ���lift� In the sequel� � is written
instead of Undef�

Sequences are now de�ned as ���seq � ����lift�Seq and a new �cons��operator
for elements of type class term is introduced� x!xs � �Def x� � xs� Using the lift

constructor has several advantages�

� If sequence elements do not need support for in�nity or unde�nedness� we
are not forced to press the overhead of domain theory into them� but lift
them as late as possible to a domain� just when it is really needed�

� Many datatypes are well supported in HOL� e�g� lists or natural numbers�
We can make reuse of these theories� theorem libraries� and tailored proof
procedures�

� Within the new �cons��operator x!xs the Def constructor serves as an implicit
tag showing de�nedness of an element� As we will show later with an example�
this simpli�es or even eliminates reasoning about the � case�

Besides lifting basic types it is necessary to lift also domains and codomains
of functions� built by the type constructor�� Furthermore the automatic proof
support for continuity has to be extended� Details can be found in �MN	�� MS	���

De�nition �
 �Basic Operations	� Operations are de�ned as �xed points�
from which recursive equations are derived automatically� For example� map

has type
map � ��� ��� ���seq �c ���seq

and the following rewrite rules

map f �� � �
map f �nil � nil

map f ��x!xs� � f�x�!map f �xs

are automatically derived from the de�nition

map f � �x ���h��s � case s of nil� nil

j �x!xs�� f�x�!�h�xs��

According to domain theory� the argument of �x in this de�nition has to be a
continuous function in order to guarantee the existence of the least �xed point�
This continuity requirement is handled automatically by type checking� as every
occuring function is constructed using the continuous function type �c�

Note� that the derived recursive equations are just the algebraic de�nitions
of the corresponding functions for �nite lists� extended for the � case� Therefore�
informally speaking� de�ning operations on �nite lists smoothly carries over to
in�nite lists�

De�nition �� �Filter and Flatten	� All other operations are de�ned likewise
easily� This is especially remarkable for the �lter and �atten operations that
would cause some trouble especially in the functional formalizations�

�lter � ��� B � � ���seq�c ���seq
�lter P �� � �
�lter P �nil � nil

�lter P ��x!xs� � if P �x� then x!�lter P �xs else �lter P �xs

Flatten is de�ned in a similar simple fashion� Note� that these �xed point
de�nitions incorporate the intuition of computability� Therefore� lemmas like

�lter P �x	 y� � �lter P x	�lter P y do not only hold for �nite x� Consider the
example P � ��x�x � a�� x � �a� b� b� b� ������ and y � �a� a� a� a������ Whereas in
HOL�LCF the mentioned lemma would hold �because �a��� � �a����� in other
formalizations this lemma would not ��a� nil� � �a� a� a������

De�nition �� �Proof Principles	� The proof principles that are discussed in
the following are all automatically proved by the HOLCF datatype package�

A very strong proof principle is structural induction� as it allows one to
reason about in�nite sequences� as if they were �nite� modulo an admissibility
requirement�

adm�P � P ��� P �nil� ��x� xs � P �xs�� P �x!xs��

�y�P �y�
���

Note� how Def serves here as an implicit tag for de�nedness� In the equivalent rule
for ���Seq the last assumption of this rule would be ��x� xs � x
� �
 P �xs� �
P �x � xs��� The nasty case distinction x
� � can be omitted� as �Def x�
� �
and x!xs � �Def x� � xs�

A predicate P is de�ned to be admissible� denoted by adm�P �� if it holds
for the least upper bound of every chain satisfying P � However� in practice� one
rather uses a syntactic criterion �see e�g� �Pau
���� Roughly� it states that if P �
reduced to conjunctive normal form� contains no existential quanti�er or nega�
tion� admissibility of P boils down to continuity of all functions occuring in P �
Therefore� if one stays within the LCF sublanguage� admissibility in theses cases
can be proven automatically� i�e� we get the proof of the in�nite case for free�
The following exceptions and extensions of the rough guideline above are espe�
cially useful when trying to satisfy the syntactic criterion� Firstly� t�x�
v c and
t�x�
� � are admissible in x� if t is continuous� Secondly� predicates over chain�
�nite domains are admissible� and �nally� substitution maintains admissibility�

Besides ��� and conventional �xed point induction� there are also weaker
structural induction rules� that do not need admissibility� namely for the �nite
case

P �nil� ��x� xs � P �xs�
 �nite�xs�� P �x!xs��

�y ��nite�y�� P �y�

and an analogous rule for the partial case� Furthermore� the take lemma

�n�take n�x � take n�y

x � y

and the bisimulation rule� that follows easily from the take lemma� are avail�
able�

bisimR R�x� y�

x � y

where bisim R � �x� y�R�x� y��
�x � �� y � ��

�x � nil� y � nil�

��a� x��x � a!x� � �b� y��y � b!y�
 R�x�� y��
 a � b�

	 Comparison

Comparing the functional Approaches� As mentioned earlier� HOL�Fun
and PVS�Fun are similar to the extent that they both use functions to de�ne
sequences� To achieve this common goal� two complementary ways are chosen�
Whereas HOL�Fun extends the codomain of the function by the element None
modeling partiality� PVS�Fun restricts the domain of the function� Therefore�
the main proof principle within such a setting is extensionality� Since the ap�
proaches are very similar and HOL�Fun �at least the version including normal
forms� has not been extensively studied� we will concentrate on the experiences
made with PVS�Fun�

Experiences with PVS�Fun� It turned out that the extensionality prin�
ciple works very well for the standard operators� since these operators often
only perform but simple index transformations on their arguments� As an ex�
ample� consider the concatenation operator 	 in the PVS�Fun section� Because
these index transformations often involve simple linear expressions� and the PVS
prover has considerable support for linear arithmetic� most proofs are done with
a minimum of human guidance� typically by just expanding the de�nitions in�
volved� However� the de�nition of �lter was tedious� and proofs of basic proper�
ties about it were very hard� since this involved more than just reasoning over
basic index transformations� In conclusion� the de�nition given seems to be too
ad�hoc� An approach where in a more general fashion de�nitions can be given�
together with matching proof principles� should be the focus of future research
for such a formalization�

Experiences with HOL�Sum� The HOL�Sum approach is a pragmatic
mixture of algebraic lists for �nite sequences and functions for in�nite sequences�
Equality of sequences therefore can be proven with structural induction for the
�nite case� and function equality in the in�nite case� Therefore proofs show a
twofold character� The �lter function� however� still is a problem� as there the
two representations have to be related� since �lter may produce either �nite
or in�nite sequences from an in�nite one� For this reason� notions of chains�
limits and continuity were introduced� which in �CP	��� however� are only used
for proofs about speci�c functions� whereas general proof principles involving
continuity are not developed� Agerholm �Age	
� takes this step and carries over
the whole world of domain theory to this setting� Agerholm concludes that his
development of sequences was long and tedious ��� pages of �� lines each� and
in his opinion rather an �ad�hoc approach�� The main di�culties arise from a
threefold de�nition of v" both sequences �nite� both in�nite� and �nite�in�nite
" which results in several versions of every single fact throughout the whole
development�

Experiences with HOL�LCF� HOL�LCF employs domain theory to ex�
tend algebraic lists to in�nity� so that a uniform approach is obtained� Of the
formalizations discussed� it is the most powerful formalization incorporating a
number of proof principles� and the largest body of proven lemmata� However� at
�rst sight it seems that domain theory has two drawbacks� all types must denote
domains� all functions must be continuous� But the �rst requirement can e�ec�

tively be relaxed by the ���lift type constructor� And the latter rather o�ers ad�
vantages than disadvantages� Firstly� arbitrary recursion can be de�ned by �xed
points� Unfortunately� this means also that de�nitions of non�continuous func�
tions are delicate� e�g� the fair merge function cannot be de�ned without leaving
the LCF sublanguage� Secondly� continuity extends the familiar structural in�
duction rule to in�nite objects for free� at least for equations about lazy lists�
For general formulae a rather liberal syntactic criterion exists� Here� M�uller�s ex�
perience in formalizing I�O automata was quite encouraging� in almost all cases
it was possible �sometimes by reformulating the goal� to satisfy this criterion or
to get by with the �nite induction rule� In the remaining cases� it seems not to
be advisable to prove admissibility via its de�nition� as this then often becomes
the hardest part of the entire proof� Instead� one should switch to other proof
principles� that do not require admissibility� These are the take�lemma �which
is similar to extensionality�� or bisimulation� For these principles a corecursive
characterization of the operators would be useful in order to automate coinduc�
tive proofs� that usually � compare the experiences by Paulson �Pau	�� � involve
more case distinctions than the inductive proofs�

Overall Evaluation� In conclusion� we may distinguish three basic proof
schemata for sequences� extensionality �point�wise equality�� rules using admis�
sibility or at least continuity� and bisimulation� The �rst of the three principles
turned out to be inconvenient in practice to prove equalities of arbitrary func�
tions� The second principle is strong� but builds on top of an extensive theory�
In HOLCF this theory is provided� for HOL�Sum it would be a lot of work to
incorporate these notions in a more general fashion� Experience with the appli�
cation of the bisimulation principle to sequences seems to be rather preliminary
�see also next section�� Of course� it should be possible to derive all three proof
principles in every setting� However� proof principles can only easily be applied
when corresponding de�nitions or characterizations of the occuring functions ex�
ist� It is not known� for instance� whether it is easy to derive coalgebraic lemmata
from de�nitions given in a functional manner�

Related Work� Concerning coalgebraic approaches� there is� up to our
knowledge� no published work on a coalgebraic formalization with an equally
large body of lemmata as the formalizations discussed� Paulson �Pau	�� pro�
vided a mechanization of coinduction and corecursion in Isabelle�HOL � inde�
pendent of domain theory �� which he applied also to the formalization of lazy
lists� Unfortunately� the �lter function � which indeed turned out to be very
crucial � has not been mechanized there� Leclerc and Paulin�Mohring use Coq
to formalize possibly in�nite sequences coalgebraically as well �LPM	��� A prob�
lem is that they cannot express the �lter function� as it does not �t into their
constructive framework� Hensel and Jacobs �HJ	�� showed how to obtain induc�
tive and coinductive proof principles for datatypes with iterated recursion from
a categorical analysis� They formalized a number of these datatypes in PVS
and have also some promising recent results in formalizing coalgebraic possibly�
in�nite sequences� Recently� Feferman �Fef	�� developed a recursion theory and
applied it to the formalization of sequences� Similar to HOL�LCF� his solution

incorporates �nite� partial and in�nite sequences� However� it does not require
continuity� His approach has not been mechanized in a proof tool yet�

 Conclusion and Future Research

We compared four formalizations of possibly in�nite sequences in di�erent higher�
order logics and proof tools� Two of them � the Isabelle�HOLCF and the PVS
solution � have been extensively used by the authors to model the meta�theory
of I�O automata� The sequence theories include more than ��� theorems and
required between � and � man months�

In general we have the following view on the formalizations� with respect to
automation and usability the HOL�LCF package is developed the furthest� It
o�ers a strong de�nitional scheme� and multiple proof principles for proofs by
induction� extensionality or bisimulation�

Although domain theory gets simpler to use and to automate by integrating
as much as possible from HOL� some users might be reluctant to take the signif�
icant step to switch to domain theory� These users probably will have to develop
further one of the other approaches� The HOL�Fun and PVS�Fun approaches
were not worked out completely� Within the PVS�Fun approach it became clear
that ad�hoc de�nitions like the �lter function result in too large proof obliga�
tions� The extensionality principle also seems to be not adequate for reasoning
about in�nite sequences�

The approaches taken by Chou and Peled HOL�Sum and Agerholm �Age	
�
are pragmatic and more �ad�hoc� ways to deal with sequences� For speci�c
purposes such a theory is built up quickly and may be satisfactory� but in general
the twofold or even threefold character of proofs is inconvenient� Basically� the
approach su�ers from the fact� that domain theory is �partly� used to de�ne
recursive functions� but not to de�ne recursive domains� which� however� is the
crucial point of domain theory�

Coinductive types are being implemented in di�erent proof tools in the mo�
ment� As the packages also o�er de�nitional principles� and coinduction �or
bisimulation� seems much stronger than the extensionality principle� they are
an interesting candidate for possibly in�nite sequences as well� However� to our
knowledge� at the moment there is not much experience with coinductive types
used in sophisticated veri�cations�

Acknowledgement�We thank Ching�Tsun Chou for intensive and fruitful dis�
cussions on his formalization of sequences�

References

Age��� Sten Agerholm� A HOL Basis for Reasoning about Functional Programs�
PhD thesis� University of Aarhus� Denmark� 	����

Chu��� Alonzo Church� A formulation of the simple theory of types� J� Symbolic
Logic� �������� 	����

CP��� Ching�Tsun Chou and Doron Peled� Formal veri�cation of a partial�order
reduction technique for model checking� In T� Margaria and B� Ste�en�
editors� Proc� �nd Workshop Tools and Algorithms for the Construction and
Analysis of Systems �TACAS����� volume 	��� of Lecture Notes in Computer
Science� Springer�Verlag� 	����

DG��� Marco Devillers and David Gri�oen� A formalization of �nite and in�nite
sequences in PVS� Technical Report CSI�R���
� Computing Science Insti�
tute� University of Nijmegen� 	����

Fef��� Solomom Feferman� Computation on abstract data types� the extensional
approach� with an application to streams� Annals of Pure and Applied Logic�
�	����		�� 	����

GM��� M�C�J� Gordon and T�F� Melham� Introduction to HOL� a theorem�proving
environment for higher�order logic� Cambridge University Press� 	����

HJ��� U� Hensel and B� Jacobs� Proof principles for datatypes with iterated recur�
sion� Technical Report CSI�R����� Computing Science Institute� University
of Nijmegen� 	����

Lam��� Leslie Lamport� The Temporal Logic of Actions� ACM Transactions on
Programming Languages and Systems� 	�������
��
�� May 	����

LPM��� Francois Leclerc and Christine Paulin�Mohring� Programming with streams
in Coq� a case study� the sieve of eratosthenes� In H� Barendregt and
T� Nipkow� editors� Proc� Types for Proofs and Programs �TYPES��	�� vol�
ume ��� of Lecture Notes in Computer Science� 	����

LT��� Nancy Lynch and Mark Tuttle� An introduction to Input�Output automata�
CWI Quarterly�
����
	��
��� 	����

MN��� Olaf M�uller and Tobias Nipkow� Traces of I�O�Automata in Is�
abelle�HOLCF� In Proc�
th Int� Joint Conf� on Theory and Practice of
Software Development �TAPSOFT��
�� Lecture Notes in Computer Science�
Springer�Verlag� 	����

MS��� Olaf M�uller and Konrad Slind� Isabelle�HOL as a platform for partiality� In
CADE��	 Workshop� Mechanization of Partial Functions� New Brunswick�
pages ������ 	����

NS��� Tobias Nipkow and Konrad Slind� I�O automata in Isabelle�HOL� In
P� Dybjer� B� Nordstr�om� and J� Smith� editors� Types for Proofs and Pro�
grams� volume ��� of Lecture Notes in Computer Science� pages 	�	�		��
Springer�Verlag� 	����

ORSH��� S� Owre� J� Rushby� N� Shankar� and F� von Henke� Formal veri�cation
for fault�tolerant architectures� Prolegomena to the design of PVS� IEEE
Transactions on Software Engineering�
	�
��	���	
�� February 	����

Pau��� Lawrence C� Paulson� Logic and Computation� Cambridge University Press�
	����

Pau��� Lawrence C� Paulson� Isabelle� A Generic Theorem Prover� volume �
� of
Lecture Notes in Computer Science� Springer�Verlag� 	����

Pau��� Lawrence C� Paulson� Mechanizing coinduction and corecursion in higher�
order logic� J� Automated Reasoning� �� 	����

Reg��� Franz Regensburger� HOLCF� Higher Order Logic of Computable Func�
tions� In E�T� Schubert� P�J� Windley� and J� Alves�Foss� editors� Higher
Order Logic Theorem Proving and its Applications� volume ��	 of Lecture
Notes in Computer Science� pages
������� Springer�Verlag� 	����

This article was typeset using the LATEX macro package with the LLNCS
E class�

