
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Proceedings of the 1st Workshop on Software
Development Patterns (SDPP’02)

Michael Gnatz, Frank Marschall, Gerhard Popp, Andreas
Rausch, Maura Rodenberg-Ruiz, Wolfgang Schwerin (Eds.)

TUM-I0213
Dezember 02

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-12-I0213-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
�
2002

Druck: Institut für Informatik der
Technischen Universität München

Michael Gnatz, Frank Marschall, Gerhard Popp, Andreas Rausch,
Maura Rodenberg-Ruiz, Wolfgang Schwerin (Eds.)

Proceedings of the 1st Workshop on
Software Development Process Patterns (SDPP’02)

held at the 17th Annual ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2002)

Seattle, Washington, USA, November 4-8, 2002 (http://oopsla.acm.org)

Contents

v Call for Papers of the 1st Workshop on Software Development Process
Patterns

v Michael Gnatz, Frank Marschall, Gerhard Popp, Andreas Rausch, Wolfgang
Schwerin: Common Template for Software Development Process Patterns

v Martin Orehek: Model-Based Real-Time Systems Development

v Klaus Bergner, Andreas Rausch: Test Suite Bootstrapping

v Kendall Scott: Class and Method Documentation

v Sergio Soares, Paulo Borba: PIP: Progressive Implementation Pattern

v Traugott Dittmann, Volker Gruhn, Mariele Hagen: Improved Support for the
Description and Usage of Process

v Philippe Kruchten: A Process Engineering Metamodel

v Hajimu Iida, Yasushi Tanaka: A Compositional Process Pattern Framework for
Component-based Process Modeling Assistance

v Michael Gnatz, Frank Marschall, Gerhard Popp, Andreas Rausch, Wolfgang
Schwerin: Common Meta-Model for a Living Software Development Processes

CALL FOR PAPERS

for the

1st Workshop on Software Development Process Patterns
(SDPP’02)

(http://www.forsoft.de/zen/sdpp02/)

to be held at the

17th Annual ACM Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA 2002)
Seattle, Washington, USA, November 4-8, 2002

(http://oopsla.acm.org)

Themes and Goals
Industrial software engineers need a flexible and modular process model that enables them
to combine the benefits of existing process models, methods, techniques, and best practices
in a project-specific way. To devise such a process model, a comprehensive and clear notion
of software development processes and the corresponding process artifacts is required. Over
the last years, we have been working on the concept of process patterns. The underlying
meta model and the corresponding description techniques provide a common understanding
of all kinds of software development processes and their artifacts, respectively.
The workshop harvests best practices, techniques, methods, and development process
fragments presented as software development process patterns. The purpose of this
workshop is then to combine and relate these patterns, thus making a first step towards a
comprehensive process pattern language. This language will be based on a common
software development process framework, and it will include methodical guidelines on the
selection of the appropriate process pattern for a specific situation.
Our mid- and long-term goal is to continually evolve the language in order to gain a general
basis for the integration, communication, and evolution of process knowledge from different
software engineering communities. The workshop may thus result in the establishment of an
international community for software development processes based on process patterns.
The interest of this community will be to collect, document, and improve software engineering
and development process knowledge.

Topics
The workshop will elicit submissions of a large range of established best practices,
techniques, methods, and development process fragments to support the software
development process.
To ease communication among the participants, submissions are recommend to be
documented as a process patterns. For this, a process pattern template, a sample process
pattern, and a rough sketch of a conceptual framework for process patterns are provided at
the workshop’s website (http://www.forsoft.de/zen/sdpp02/). Ideally, a paper might also
reflect about the template or framework that was used to document a process pattern and
argue why it is appropriate or not.

Besides a sound description of the proposed process pattern(s) itself, the paper should also
discuss why the presented process fragment is a good candidate for a process pattern. This

comprises a discussion of how the proposed pattern can be reused in different development
processes and how it could possibly be combined with other patterns.
Topics that are relevant to the workshop are, guidelines, best practices, experience reports,
techniques, methods, or development process fragments that describe how to be better in:

• teamwork and collaboration
• project management and planning
• requirements engineering and business analysis
• design, modeling, using tools, elaborating documentation
• using UML and other notations
• programming
• testing
• quality assurance
• redesign and refactoring
• customers and contracts
• cost estimation and measurement
• other software development process relevant topics

During the workshop the authors will present their papers and answer questions that relate
directly to their presentation. Subsequently, the participants will discuss how the presented
patterns may fit into a common process pattern language and how a process pattern
framework must look like to provide an appropriate base for such a pattern language.
The main goal of the workshop is to establish an ongoing discussion on process patterns and
thereby to agree on an appropriate conceptual framework for these patterns to enhance
flexibility and evolution of software development processes.

Submissions
Paper submission is required for participation in the workshop. Submission deadline is the
19th September 2002. Papers should not exceed a length of 10 - 15 pages. Authors are
invited to send their papers to the organizers of the workshop (mailto:sdpp@in.tum.de) in
Postscript or PDF format. All submitted papers will be peer-reviewed by a minimum of three
people.
The accepted papers will be published on the workshop website already before the
workshop. Workshop proceedings including all papers will be published as Technical Report
of the Technische Universität München.

Workshop Organization
Chairs

• Klaus Bergner, 4Soft GmbH, Germany
• Philippe Kruchten, Rational Software, Canada
• Andreas Rausch, Technische Universität München, Germany

Organizing Committee

• Michael Gnatz, Technische Universität München, Germany
• Frank Marschall, Technische Universität München, Germany
• Gerhard Popp, Technische Universität München, Germany
• Wolfgang Schwerin, Technische Universität München, Germany

Program Committee

• Scott Ambler, Ronin International, Colorado, USA
• Klaus Bergner, 4Soft GmbH, Germany
• Barry Boehm, USC Center for Software Engineering, USA
• Manfred Broy, Technische Universität München, Germany
• Michael Gnatz, Technische Universität München, Germany

• Hajimu Iida, Nara Institute of Science and Technology, Japan
• Philippe Kruchten, Rational Software, Canada
• Frank Marschall, Technische Universität München, Germany
• Jürgen Münch, Fraunhofer Institut, Germany
• Gerhard Popp, Technische Universität München, Germany
• Rodrigo Quites Reis, Universidade Federal do Pará, Brazil
• Andreas Rausch, Technische Universität München, Germany
• Dieter Rombach, Fraunhofer Institut, Germany
• Wolfgang Schwerin, Technische Universität München, Germany
• Louise Scott, University of New South Wales, Australia

Important Dates
September, 19th 2002 Submission Deadline
October, 10th 2002 Notification of Acceptance
November, 4th -8th, 2002 OOPSLA’02
November, 5th 2002 1st Workshop on Software Development Process Patterns

 1

Common Template for Software
Development Process Patterns1

Michael Gnatz, Frank Marschall, Gerhard Popp, Andreas Rausch, Wolfgang Schwerin
Institut für Informatik

Technische Universität München
Arcisstraße 21

80290 München, Germany
(gnatzm|marschal|popp|rausch|schwerin)@in.tum.de

The template described in this document serves as one possibility to document a process
model according to our proposal of a common process meta-model (Gnatz, Marschall, Popp,
Rausch, Schwerin: A Common Meta-Model for a Living Software Development Processes).

Name: Name of the software development process pattern.

Also Known As: Other names for the pattern, if any are known.

Author: The names of the authors of the pattern.

Intent: A concise summary of the pattern’s intention and rationale.

Problem: The development issue or problem the pattern addresses, including a discussion of
the associated forces. If possible, a scenario or a real world example is provided demonstrat-
ing the existence of the problem and the need for the pattern.
Context: The situation or state of a development project in which the process pattern may be
applicable. The context comprises according to our common meta model the state of the re-
quired work artefact structure to apply the pattern – i.e. the initial and result state of the work
artefact structure. Furthermore also external circumstances, influences and specific applicabil-
ity promoters have to be considered here.

Solution: The suggested development process artefact including the development activities
within the process pattern. The proposed solution may be described using textual as well as
graphical description techniques.
Consequences: The benefits the pattern provides, and any potential liabilities.

Known Uses: Known uses of the pattern in development projects. These application exam-
ples illustrate the acceptance and usefulness of the pattern, and may provide practical guide-
lines, hints and techniques useful to apply the pattern, but also mention counter-examples and
failures.

See Also: References to patterns that solve similar problems and to patterns that help us refine
the pattern we are describing. Not pattern-based sources may also be referenced.

1 This work originates form the research project ZEN – Center for Technology, Methodology and Management of

Software & Systems Development – a part of Bayerischer Forschungsverbund Software-Engineering (FORSOFT),
supported by the Bayerische Forschungsstiftung.

Process Pattern:
Model Based Real-Time Systems Development1

1 This work originates from the research project HRS – Entwurf hybrider Realzeit Systeme – a part of Bayerischer For-
schungsverbund Software-Engineering (FORSOFT), supported by the Bayerische Forschungstiftung.

Martin Orehek

Institute for Real-Time Computer Systems
Prof. Dr.–Ing. Georg Färber

Technische Universität München,
D–80290 München, Germany

Martin.Orehek@rcs.ei.tum.de

Name: Model Based Real-Time Systems Development

Also Known As: Model Based Design of Embedded Real-Time Systems

Author: The here presented process pattern was developed within the project HRS in collaboration
with the company Vodafone Pilotentwicklung (former: Mannesmann Pilotentwicklung) and the Insti-
tute for Real-Time Computer Systems at the Technische Universität München.

Intent:

Development of embedded systems with hard real-time constraints using a central graphical model to
describe the different functional aspects of the design. The model is used as an executable specifica-
tion in a virtual environment. In the three phases of the development process, special aspects like the
physical behavior simulation of new designed components, the associated control system design task
and the final implementation, considering real-time aspects are covered.

Problem:

The evolution in micro controller technology and control system design science is characterized by the
extensive integration of embedded components in systems used in various application areas (automo-
tive, telecommunication, manufacturing, medical etc.). In most cases, the embedded components are
real-time systems that continuously interact with other systems and the physical world. They realize
innovative functions and are composed of closely coupled, specialized hardware and software parts.

The here presented process pattern describes the development process for embedded components
where the physical system and the corresponding electronic control unit are not yet developed or exist
as technological prototypes. The control strategy is the core function of the final software system.
The challenges are on the one hand to develop and construct the new physical components and on the
other hand to design the corresponding control system, considering the required control dynamics and
accuracy. The final control law is implemented in software onto an embedded target, considering not
only functional but also non-functional requirements like real-time software issues.

The main challenges of the software development for such systems result from their close integration
within a complex environment. Parts of the physical components (e.g. actors) and even the final con-
troller hardware (e.g. micro controller board) are developed during the overall design process. The
functional software design must therefore be decoupled from such steadily evolving aspects, avoiding
unnecessary restrictions and costs.

The final software implementation has to consider beside the functional also non-functional require-
ments, like the worst case response times to certain events. These real-time aspects are strongly con-
nected to the adopted software architecture and the computational power (worst case execution times)
of the final target. In most cases they have to be analyzed and their compliance with the requirements
has to be proven with special methods (e.g. scheduling analysis).

An example of such an innovative component is an electrically heated vaporizer used in a fuel-
processing system. The vaporizer, as first component of the system, has to vaporize and overheat a
water-gasoline mix without droplets for the following gas reformation process. The quite complex
thermodynamic laws have to be considered, designing the physical component and control system
theories are needed to design an adequate control strategy to meet the dynamic requirements. Finally
this algorithms are implemented onto an electronic control unit (ECU) using software and electronic
hardware design techniques.

Other possible example is the development of a new electronic gear control system. The different ac-
tors and even the gear box must be developed and optimized to achieve the desired dynamics and the
controlling software and electronic hardware have to fulfill the required timing constraints.

Context:

In Figure 1 the highest level of the process pattern map is depicted. During the product development
cycle (activity: develop embedded real-time system) all the necessary physical components of the
product, their corresponding control strategies and their software implementations are developed and
optimized.

The starting work artifact is the requirement specification. For each physical components a simulation
model is realized as result of the activity: specify environment. These models are used to simulate the
behavior and to iteratively optimize the designed physical components, minimizing turn around times
and expensive physical prototyping. Only satisfying solutions are realized as prototypes and then vali-
dated by means of real experiments.

As the physical components evolve also the controller strategies have to be refined during the activity:
design control system. Before implementing them, their quality has to be evaluated. This is also done
by means of simulations designing the different control strategies also as controller models and using
the already mentioned mathematical models of the physical components.

The activity: implement controller model is divided in two steps. In a first step, the simulated control-
ler are realized as rapid prototypes and allow to gain real world measurements of the achieved per-
formance. These measured data are fed back in the design process to refine the physical models and
increase the confidence and knowledge of the developed components. The experiences made with the
prototypes let estimate the requirements for the final hardware platform, and in the second step, the
embedded target development (final system) can be started. The possibly necessary software tool sup-

port (e.g. driver library, run-time-environment) can be build concurrently with all the other ongoing
refinement tasks. For the final implementation a measurement and estimation of the used target re-
sources is provided, making available the necessary parameters for the real-time analysis. This ensures
the compliance of the software solution with the worst case timing requirements of the specification.

activity
work artefact

final
system

requirement
specification

develop embedded
real-time system

process pattern

simulation
model

controller
model

specify
environment

design
control system

implement
controller model

rapid
prototype

measured
data

Figure 1: Work artifacts and high level activities of the presented process pattern

Necessary work products are: requirement specification (functional and non-functional part).

Produced work products are: simulation models, validated controller models (with corresponding sta-
bility analysis and quality estimation etc.), rapid prototype (measured data, embedded target estima-
tion, etc.), measured data, designed final system (embedded target solution with real-time analysis
results).

Solution:

The activities mentioned in the context chapter composing the main process pattern (see Figure 1) are
now described in more detail. They build three different and timely overlapping phases of the devel-
opment process. The activities are executed iteratively, refining the outgoing work artifacts and pro-
viding new, more detailed inputs to the following activities. For example, after a first run through the

specify environment activity, first simulation models of the physical components for the activity: de-
sign control system are available.

�� specify environment

As starting point of the development process a requirement specification is available. This initial work
product can be divided in two parts, the functional and non-functional specification. The functional
requirements describe for instance the desired behavior of the final system, whereas the non-functional
requirements define aspects like the worst case response time for events or the maximal weight of the
product.
In the first phase (see Figure 2), after an accurate analysis a graphical model reflecting the physical
relationships of the different hardware components is built. This model allows the simulation of the
physical system and the analysis of its dynamics, before building a real hardware prototype. Important
is that this model is also used during the following activity: design control system for simulation and
control design validation.

process pattern

equations +
physical laws

promising
sim. results

analyse and build
mathematical
description

design graphical
model + simulate

build test stand +
measure real
behavior

build physical
prototype

physical
prototype

measured
data iterations

activity
work artefact

simulation
model

specify
environment

requirement
specification

measured
data

Figure 2: process pattern for activity: specify environment

A real prototype is manufactured when the simulation results are promising. Then the physical com-
ponent prototype is integrated in a test stand, measurements and tests are run to iteratively refine the
corresponding simulation model.
The simulation model, based on physical equations and parameterized using these measurements can
be used to quickly simulate und evaluate different new hardware constructions, reducing the amount
of physical prototypes needed for the final design. This not only reduces the costs but also the iteration
time because of a faster evaluation of new ideas. Due to the validation and the contemporaneous

documentation of the different hardware design decisions, this phase leads to qualitative higher and
better understood hardware components. In addition the central model used to simulate the physical
behavior can be used for the next activity of the design process: design control system.

�� design control system

Finding an adequate controller strategy for different plant structures is a well known task and there are
many different approaches to solve this problem. But all of them need at least some knowledge about
the plant, here provided by the former design phase (activity). Using the facilities of a computer aided
control system design tool (CACSD tool, e.g. Matlab/Simulink/Stateflow and the Toolboxes) the de-
sign of complex control structures is supported.
The different approaches can be analyzed, simulated and optimized using the simulation models of
phase 1. The activity: design control system is also iteratively executed (see Figure 3), on the on hand
due to new more refined models coming from the specify environment activity, and on the other hand
due to the evolving hardware components. This changes can be quite considerable at the beginning of
the project, but should become more and more stable approaching the end.

new ideas for
control structure

controller
model

analyze system
to control

optimize parameters
and / or structure

model control
structure

performance
analysis

results
(e.g. stability,
dynamics)iterations

ideas for
control structure

validated
controller strategy

requirement
specification

design control
system

simulation
model

measured
data

Figure 3: process pattern for activity: design control system

�� implement controller model

The activity: implement controller model is subdivided in two main activities: implement a rapid pro-
totype and implement the final embedded target.
The input work artifacts of the implement a rapid prototype activity (see Figure 4) are the functional
requirement specification and a validated control design. The output artifacts are a full functional
prototype of the system, measured data for further refinements of the former phases, knowledge of the

totype of the system, measured data for further refinements of the former phases, knowledge of the
minimal resources needed to achieve the required functions and a controller model adapted for a real-
time software implementation.
The goal is to test the control design in reality, using a rapid prototyping platform and physical com-
ponent prototypes, providing measured data to phase 1 and 2, and making a parameter adaptation and
refinement of the simulation and controller model possible. Other outputs of this activity are estima-
tions of the necessary computation power and peripheral resources of the final embedded target solu-
tion.

implement a
rapid prototype

requirement
specification

validated
controller
strategy

estimation for
final computation
power (emb. target)

rapid
prototype

measured
data

new ideas

real-time
implementation

adapt controller
model for
implementation

analyse results

auto code
generation +
download

run dedicated
tests + measure

measured
dataiterations

cont. model for
rapid prototype

measured
computation
load

estimate final
target system

cont. model for
rapid prototype

Figure 4: process pattern for activity: implement a rapid prototype

In the second sub-activity, implement the final embedded target (see Figure 5), the different tasks can
start when the final target hardware was defined. Tasks which depend on the chosen micro controller
hardware but not on the control design, can be started very early and be executed contemporaneously
with the design control system and implement a rapid prototype activities. Such activities are: provide
SW frame, provide device driver blocks and build extension hardware.
When the resulting work artifacts (e.g. control model) of the different activities are sufficiently re-
fined, the preparatory tasks provide software frame must be finished. The results are used to realize the
controller model for the real-time analysis, using in the first approach an evaluation board with the
chosen micro controller. The goal is to execute the designed software architecture on the target within
a virtual environment, provided by means of a co-simulation between target and host PC. This simula-

tion allows to measure dedicated execution time parameters during a representative stimulation of the
software. The parameter are then used to calculate the worst case response time for special events,
claimed by the non-functional requirement specification. In the case, that required response times are
not met, a re-design of the control system becomes necessary. Due to quantitative results of the men-
tioned real-time analysis, a selective optimization can be carried out.

In the case, that all timing requirements can be met, the used model is adapted for the final real-time
implementation, using graphical blocks to connect software signals to hardware interfaces. After a
final test, the developed embedded system is available.

SW frame for
real-time exec.

provide
software frame

final controller
model

new ideas

execution time
parameters

adapt controller
and simulation
model for rt-analysis

analysis +
optimization

aut. code gen. +
co-simulation +
execution time
measurement

real-time
analysis

worst case
response timesiterations

cont. model for
rt-analysis

graphical
block library

provide device
driver blocks

adapt controller
model for
rt-implementation

SW frame for
rt-analysis

hardwarebuild extension
hardware

sim. model for
rt-analysis

real-time
model

aut. code gen. +
download +
final test

implement the
final embedded
target

final embedded
real-time target

real-time
performance

requirement
specification

estimation for
final computation
power (emb. target)

cont. model for
rapid prototype

Figure 5: process pattern for activity: implement the final embedded target

Consequences:

The here presented model based development process pattern provides the following benefits:

• Using a central and uniform description (model within one tool chain) facilitates the exchange
of information between different engineering teams and allows easy reuse and feedback of
new information but still allowing to concentrate on different aspects of the system design (e.g.
modeling the physical laws in phase 1, control design in phase 2).

• Due to the simulation feature within the first phases the turn around times can be minimized
and the number of realized prototypes can be diminished. New ideas can be evaluated more
quickly leading to new efficient solution and better understood hardware components.

• Applying rapid prototypes to evaluate the control system design allows the functional verifica-
tion using real physical component prototypes. For example, developing a new vaporizer in
this phase over 32 different temperature sensors were used, which allowed to analyze different
resulting temperature profiles over the component, providing the real system behavior to
physical engineers. After this phase not only the control system was verified but also the ther-
modynamic hardware component was optimized and due to the gained knowledge, the final
implementation onto the embedded target could be minimized in terms of sensors and actua-
tors.

• An efficient implementation, guaranteeing all the required timing constrains, can be achieved
by:

- adopting an analyzable software architecture to map the graphical controller model
onto the real-time embedded system

- providing the necessary mathematical equations for the analysis

- measuring respectively deducing the necessary model specific parameters (e.g. execu-
tion times, priorities of model parts, etc.).

The here presented model based development process pattern leads to the following liabilities:

• The model based approach presented can only be applied efficiently with an adequate tool sup-
port.

• There is a slightly higher effort in the first approach to provide a reusable SW support (graphi-
cal block library for embedded target) for the chosen hardware target but on the other hand it
allows to fasten up future projects with the same final target (this is the case in our project) or
to move from on target to another.

Known Uses: Starting first Vodafone Pilotentwicklung GmbH and now the new hive of company P21
GmbH are using the described process pattern within there development efforts. P21 is now concen-
trate to design other physical components for the fuel processing system.

See Also: model based design

 1

Process Pattern

Test Suite Bootstrapping1

Klaus Bergner

4Soft GmbH
Mittererstraße 3

80336 München, Germany
bergner@4soft.de

Andreas Rausch

Institut für Informatik
Technische Universität München

Boltzmannstraße 3
85748 Garching, Germany

rausch@in.tum.de

Name: Test Suite Bootstrapping

Also Known As: –

Author: SDPP02 team

Intent: Validate the correctness of a data-centric business application by building a regression
test suite. Use full database snapshots as the basis for the initial input, the result and the ex-
pected result of each test case in order to rule out unwanted side effects. Minimize the effort
for creating the needed database snapshots by reusing the result snapshots of test cases as ini-
tial input snapshots for other test cases.

Problem: The correctness and consistency of the data managed by a business application are
usually of utmost importance for the concerned enterprise. For example, a bank with a bank-
ing system that unintentionally loses money on accounts from time to time would be out of
business very soon.

Therefore, it is essential to run a sufficient number of test cases during the development of a
business application in order to guarantee the required correctness and robustness. As the
number of necessary test cases is usually very high, and as the test cases have to be executed
many times during the development, an automated regression testing facility is indispensable.

To ensure the reproducibility of a regression test case, the system first has to be initialised
with a clearly defined initial system state. Then, the test scenario – a sequence of user interac-
tions – is executed. Finally, the resulting system state has to be compared with the expected
system state. For data-centric business applications, all of these system states – the initial, the
result, and the expected result system state – should include a complete database snapshot.
This is necessary to rule out unwanted side effects which cannot be detected by resorting only
to the observable results of the operations executed by the test case.

Hence, to create a data-centric regression test case that is ready to be used for testing, an initial
database snapshot and an expected result database snapshot have to be created. Elaborating
and maintaining these snapshots for a large business application with some thousand test cases
is a painful and costly task.

1 This work originates form the research project ZEN – Center for Technology, Methodology and Management of

Software & Systems Development – a part of Bayerischer Forschungsverbund Software-Engineering (FORSOFT),
supported by the Bayerische Forschungsstiftung.

 2

Context: As a result of the analysis of an application’s business domain, the considered func-
tionality is captured in form of use cases. Based on them, the corresponding design and im-
plementation work artefacts may be elaborated. Likewise, the use cases may be used for
specifying and implementing the system’s test cases.

Each test case specification document is derived from a set of use case specification docu-
ments, as shown in the UML instance diagram in Figure 1. A test case consists of an initial
data specification document, an expected result data specification document, and a test driver
specification document. For each execution of such a test case, a result data document as well
as a test report document are created.

Use Case Specification Document
: Work Artefact Description

Test Case Specification Document
: Work Artefact Description

Initial Data Specification Document
: Work Artefact Description

Result Data Document
: Work Artefact Description

Expected Result Data Specification
Document : Work Artefact Description

Test Report Document
: Work Artefact Description

:
C

o
n

ta
in

s

*

*

*

0..1
1

0..1 0..1

* *

Test Driver Specification Document
: Work Artefact Description

0..1

:
Is

D
e

ri
ve

d
F

ro
m

:
S

u
cc

e
ss

o
r

Figure 1: Work Artefact and Context Model for Test Suite Bootstrapping Process Pattern

Test case specification documents are structured hierarchically: Each test case may have some
successor test cases which may be performed after its successful termination. In order for this
to be possible, the database snapshot specified by the initial data specification document of
each successor test case has to be equivalent to the database snapshot specified by the ex-
pected result data specification document of the corresponding predecessor test case.

 3

Figure 1 shows the context of the process pattern graphically. Documents that are initially
required to apply the process pattern are shown as grey boxes. Resulting documents which are
created by applying the process patterns are shown as boxes with little grey diamonds. Finally,
documents that are related to the pattern, but neither belong to the initial context nor to the
result context, are shown as white boxes2.

Solution: To minimize the effort for creating test case specification documents, a bootstrap-
ping technique may be applied to generate the necessary initial data specification documents
and the expected result data specification documents. The UML activity diagram in Figure 2
shows the activities that have to be performed to apply the process pattern.

First of all, test case specification documents are elaborated. They contain the corresponding
test driver specification documents, which may be represented by JUnit Java test case classes,
for example. Test cases without a predecessor test case must be designed for running on a
newly installed system – their initial data specification document defines the database snap-
shot after the system’s initial installation.

In a second step, the initial data specification documents of test cases without a predecessor
test case are actually created. As said above, they refer to the database snapshot after the sys-
tem’s initial installation – usually, an empty database with some configuration information but
no business data.

Now, the test cases that do only require the database state of a newly installed system can be
executed. These test cases produce a result data document in form of a database snapshot,
which has to be examined and validated by the developer manually. If this examination re-
veals a bug in the implementation, it has to be fixed and the corresponding test cases have to
be executed again. Otherwise, the result data documents of the test cases are stored as ex-
pected result data specification documents, serving as regression test oracles for future testing.
Technically, this may be performed by dumping database snapshots to files and assessing the
equivalence of such files by means of a specialized diff tool.

The expected result data specification documents of the already considered test cases then
serve as initial data specification documents for their successor test cases. These successor
test cases can be executed, thereby recursively generating the initial data specification docu-
ments for further test cases. As can be seen, this process may be performed until initial data
specification documents and expected result data specification documents for all test cases
have been created.

2 Note that the UML instance diagram in Figure 1 is based on the common meta-model of the living software

development process. All instances belong to the Work Artefact package. The colouring schema represents
the information modeled by the Context package.

 4

Figure 2: Process Artefact Model for Test Suite Bootstrapping Process Pattern

derive test case specification
documents and test driver

specification documents from use
case specification documents

run all test cases that contain an
initial data specification document

use initial database snapshot as
initial database specification

document for all test cases without
predecessor

[all test cases
executed and okay?]

copy expected result data specification
documents to initial data specification

documents of successor test cases that
do not have such a document yet

[no]

manually validate result data documents of all
test cases without expected result data

specification documents and store correctly
validated result data documents as expected

result data specification documents

fix bugs for all failed test cases

[yes]

 5

Consequences: The Test Suite Bootstrapping process pattern provides the following benefits:

• It makes it possible to detect unwanted side effects by resorting to database snapshots
as the basis for the initial test inputs as well as the actual and expected test results.

• It eases the elaboration of a regression test suite by minimizing the effort needed for
the creation of initial and expected result database snapshots.

• It provides guidance for the structuring of a test suite by means of the successor rela-
tionships between the test cases.

• It leads to complete test cases that may be executed stand-alone or as a suite.

The Test Suite Bootstrapping leads to the following liabilities:

• The developer must take care not to forget important test cases that can not be added
as successors to already existing test cases.

• Initially, the developer has to perform the test cases in the order given by the successor
relationship.

• If the database schema changes, the developer must adapt and re-run all corresponding
test cases.

Known Uses: The concept of using database snapshots as the basis for test input and results is
practiced in many development companies (German examples known to the authors include
the software house Healy Hudson AG, HypoVereinsbank AG, sd&m AG, and the 4Soft
GmbH). An article about the test environment GOAL describes the use of data-centric test
cases combined with test suite bootstrapping at Healy Hudson AG, a German procurement
software provider (c.f. Thomas Bonfig, Rainer Frömming, Andreas Rausch: Goal – Eine Tes-
tinfrastuktur für unternehmensweite Anwendungen, OBJEKTspektrum 4/2000). The corre-
sponding test framework has been further developed, integrated into the JUnit test framework,
and applied in some projects at the German software development company 4Soft GmbH.

See Also: –

1

Process Pattern

Class and Method Documentation

Kendall Scott
13113 Eldridge Rd.
Harrison, TN 37343

kendall@kendallscott.com

Name: Class and Method Documentation

Also Known As: –

Author: Kendall Scott

Intent: Provide “just enough” documentation for the classes and methods of a system. Link the
various aspects of the documentation together such that the reader can get a reasonably complete
picture of what the classes are about and what the methods do.

Problem: All software development teams wrestle with the problem of documentation at some
point during or after a project. The usual results include the following:

• No one writes any documentation, because it’s considered a deeply unpleasant task that takes
developers away from their “real” work.

• Some documentation gets produced, but it’s inadequate because it’s done by people who don’t
have adequate understanding of the system.

• The team produces reams of documentation that no one ever reads.

Also, claims that code is “self-documenting” are all too often overstated. Overall, the time that
developers coming up to speed on a project is considerably greater than it would be if “good
enough” documentation was in place.

Context: Figure 1 shows the minimal yet sufficient set of documents that effectively and effi-
ciently capture the information necessary to understand an arbitrarily large set of classes and asso-
ciated methods.

2

Figure 1: Class/Method Documentation Set

The elements represented in this diagram include the following:

• The Master Class Table contains entries for each of the classes in the system. The information
for each class includes a brief description of the intent of the class, references to the files in
which the source code appears, and links to class diagrams (see below) as appropriate.

• Each Class/Method Page contains brief descriptions of one or more classes and of the meth-
ods that comprise those classes, and also links to other documents and diagrams (see below)
as appropriate.

• The Data Dictionary contains information about internal data structures and/or the physical
database schema associated with the system.

• The Glossary contains definitions of terms that appear within the system.
• High-Level Class Diagrams show important relationships to which “major” (particularly sig-

nificant” classes belong.
• Low-Level Class Diagrams show relationships to which less important classes belong.
• Activity Diagrams show the logic that underlines certain methods.
• Overview Text/Connecting Tissue provides text that places at least some of the classes in a

larger context. It contains links to the specifics of these classes that appear within the Master
Class Table.

3

Solution: The answer to the problem of providing sufficient documentation without “over-docu-
menting” or “under-documenting” lies in providing an HTML-based level of detail commensu-
rate with the complexity of a particular method or class, and with the complexity of the system as
a whole.

Figure 2 shows how to document a class.

Figure 2: Documenting a Class

The brief descriptions of the intents of the classes, combined with links to method descriptions,
form the heart of the Master Class Table. As necessary, Overview Text/Connecting Tissue pro-
vides meaningful context at a higher level. Each class has one or more associated UML class dia-
grams, which provide a quick visual reference as to the class’ environment.

4

Figure 3 shows how to document a method.

Figure 3: Documenting a Method

The description of the method should be as short and simple as possible, but as extensive as nec-
essary. Links to the Data Dictionary and the Glossary enable the reader to see data and project
vocabulary, respectively, in specific use within the system. A UML activity diagram can often
provide insight into complex logic more effectively than just the code itself.

5

Consequences: The Class and Method Documentation process pattern provides the following
benefits:

• It provides readers with various complementary views on the classes and methods that make
up a system; taken together, the documentation is “good enough.”

• It makes minimal demands on the people doing the documentation.
• It results in a flexible and scalable documentation set that’s easy to maintain.

The Class and Method Documentation pattern has the following liabilities:

• It requires a certain amount of judgment as to what is sufficient documentation in a given sit-
uation. It’s very easy to underestimate or overestimate what’s required if the writer doesn’t
know the intended audience.

• It calls for patience and persistence from the writer, which can be in short supply under typical
development project conditions.

• It works best if one person (for a small or medium-sized project) or a small group of people
(for a large project) do all of the writing; the role of documentation specialist is not yet a well-
defined one.

Known Uses: The pattern is receiving its first usage on a documentation project the author is cur-
rently working on. The system contains roughly 400 C++ classes and several thousand methods.
Initial response to the documentation set, which includes 94 Class/Method Pages, 104 Low-Level
Class Diagrams, and 10 High-Level Class Diagrams, has been favorable.

See Also: –

PIP: Progressive Implementation Pattern

Sérgio Soares∗ and Paulo Borba†

Informatics Center

Federal University of Pernambuco

Intent

Tame complexity and improve development productivity. Reduce the impact caused by require-
ments changes during development.

Context

When developing a persistent, distributed, and concurrent system, implementation and tests
are usually hard. During tests, database, distribution, concurrency, and functional errors might
appear at the same time, increasing debugging complexity.

When using EJB [10] as the persistence and distribution technology, the deployment time
might be very high. To fix errors — including functional, persistence, and concurrency control
errors — we might waste a lot of time by compiling the code and them deploying the system into
the application server. Another problem happens when using a database to persist data. We
might have to write specific programs to check if the data stored into the database conforms to
the expected results. Similarly, if the system can be concurrently accessed, programmers should
worry about concurrent executions when implementing functional requirements, increasing pro-
gramming complexity.

Problem

It is difficult and expensive to validate and test a concurrent, distributed, and persistent sys-
tem. Furthermore, system validation usually can only be done latter in the development phase.
This delay to validate system requirements increases costs to fix detected errors, since develop-
ers might dedicate considerable effort to implement non-functional requirements to incorrectly
implemented system services.

To implement a persistent, distributed, and concurrent system, PIP balances the following
forces:

• Early validation of functional requirements. This reduces changes cost and prevents delays
in project schedule.

• Simplify tests by testing each aspect (persistence, distribution, and concurrency control)
separately. This separation allows testing the functional version of the system without
the impact of database, network, or concurrent environments errors. In fact, each non-
functional requirement will also be gradually implemented and tested, which avoids that
errors of one aspect affects tests of another.

∗Supported by CAPES. Also affiliated to Catholic University of Pernambuco. Email: scbs@cin.ufpe.br
†Partially supported by CNPq, grant 521994/96–9. Partially supported by Qualiti Software Processes

(www.qualiti.com.br). Email: phmb@cin.ufpe.br

1

• Data storage transparency. This is crucial to initially provide a non-persistent version of
the system in order to validate functional requirements without implementing persistence.
After that, the system evolves to a persistent version.

• Independence of communication API and middleware. Similar to the persistence aspect,
in an early version of the system there is no distribution code, in order to allow early
validation of functional requirements. However, the system should evolve to a distributed
version, without affecting the requirements already implemented.

Solution

In order to solve the mentioned problem, we should implement functional, persistence, distri-
bution, and concurrency control requirements in a progressive way. In fact, we should first
implement the functional requirements, user interface, and non-persistent storage, in order to
provide a completely functional prototype, and then implement the others aspects, as illus-
trated in Figure 1. Although the figure suggests an order for implementing and testing the
non-functional requirements, this is not demanded by the process pattern. In fact, PIP only
requires the different aspects to be implemented and tested in a progressive way.

Figure 1: Progressive Implementation Method.

By initially abstracting from the non-functional code, developers can, for example, quickly
develop and test local, sequential and non-persistent prototypes useful for capturing and vali-
dating user requirements. As functional requirements become well understood and stable, those
prototypes are used to derive the final version of the application, by gradually implementing
and testing the persistence, distribution, and concurrency control code.

In order to support this progressive implementation, separation of concerns [11] principles
must be applied during design activities. The software architecture must support the modu-
lar addressing of functional and non-functional aspects during coding activities. This can be
achieved by using specific architectural and design patterns [1, 7, 12].

Alternatively, this separation of concerns can be achieved by using aspect-oriented program-
ming [2]. For instance, we could separate persistence, distribution, and concurrency control
aspects from the business code, by using AspectJ [5], an aspect-oriented language, and weave
them and the functional prototype into a persistent, distributed, and correct application [14, 13].

Consequences

PIP provides the following benefits:

• Increased productivity. Due to the early validation of functional requirements and the
simplification of tests, the development productivity is increased. Data collected in a simple
case study [9] shows that this increasing is about 10% and there were a 50% reduction

2

on the requirements changes effort. Those numbers can be higher by providing code
generation.

• Tests and debugging are easier. PIP naturally helps to tackle the complexity inherent
to persistent and distributed applications, by allowing the gradual testing of the various
intermediate versions of the application, which benefits system correctness.

• Early functional prototype. In the simple case study [9] previously mentioned, there is
another metric showing that the functional prototype is obtained 30% earlier by using a
progressive approach.

This pattern has the following drawbacks:

• Reduced team motivation. Programmers might feel that they are generating more code
than necessary, for instance, by first generating non-persistent versions of data storage
classes and then their persistent versions. To avoid this, the development team should be
convinced of the benefits.

• Limited functional tests. The progressive approach does not allow to test situations were
transactions would be rolled back, with the functional prototype.

• Additional classes. When implementing persistence we should create classes to store ob-
jects in a persistent medium. However, in order to implement the functional prototype,
before implementing persistence, we have to create classes to store the objects in a non-
persistence structure. This affects productivity, since programmers should implement two
classes to store instances of an object. Code generation tools could solve this drawback by
automatically providing part of the implementation of the non-persistent and persistent
data storage classes. In fact, even in a non-progressive approach, some non-persistent
storage classes should be generated to retrieve data in response to system searches.

• Additional modifications to classes. To implement functional requirements, classes are
usually modified several times. When using the progressive implementation approach this
number increases, since some classes should be modified to implement persistence, then
distribution, and finally, concurrency control, decreasing productivity.

Known Uses

Some systems that were developed using this pattern are presented as follows:

• A system to manage clients of a telecommunication company. The system is able to register
mobile telephones and manage client information and telephone services configuration.

• A system for registering health system complaints. The system allows citizens to complain
about health problems and to retrieve information about the public health system, such
as the location or the specialties of a health unit.

• Several small systems developed as undergraduate and graduate projects on object-oriented
programming at our institution. Several kinds of systems, such as games, academic control
systems, and sales systems, have been developed in these courses.

Besides the mentioned systems that were developed in a progressive way, we can mention
some potential uses of the pattern in systems that use the same software architecture and specific
design patterns [1, 7, 12] that allow progressive implementation. These systems are the following

3

• A system for performing online exams. This system has been used to offer different kinds
of exams, such as simulations based on previous university entry exams, helping students
to evaluate their knowledge before the real exams.

• A complex point of sale system. This system will be used in several supermarkets and is
already being used in other kinds of stores.

See Also

• Use Case Driven Development [3]. This development technique states that system devel-
opment should be driven by functional requirements. Therefore, developers should create
analyzes, design, and implementation models that conform to the functional requirements,
and make tests to ensure that the system correctly implement functional requirements.
Next section presents how PIP interacts with this technique.

• PDC: Persistent Data Collections [7]. This pattern provides a set of classes and interfaces
in order to separate data access code from business and user-interface code, promoting
modularity. The pattern defines a structure to archive storage transparency. This structure
allows implementing persistence after the functional requirements implementation.

• DAP: Distributed Adapters Pattern [1]. This pattern provides a structure for implementing
remote communication between two components, decoupling them from specific commu-
nication Application Programming Interface (API). This pattern’s structure also allows
implementation of distribution after the functional requirements implementation.

• PaDA: A Pattern for Distribution Aspects [13]. This pattern is similar to DAP in the sense
that provides a structure for implementing distribution code. However, PaDA achieves
better separation of concerns, through the use of aspect-oriented programming (AOP) [2].

• Concurrency Manager [12]. This pattern provides an alternative to method synchroniza-
tion with the aim of increasing system performance. Concurrency Manager uses knowledge
about the semantics of the methods in order to block only conflicting execution flows, allow-
ing the non–conflicting ones to execute concurrently. It can be used to improve concurrency
control.

There are variations of PDC and DAP that use EJB to implement persistence and distribu-
tion [6].

Interactions with other patterns

Based in RUPim [8, 9], a RUP extension that defines how to extend the Rational process with
the Progressive implementation method (Pim), this section describes how PIP interacts with
Use Case Driven Development [3], a well know and used development technique, which is used
by the Rational Unified Process (RUP) [4] and other processes. In fact, we suggest this kind
of section to be added to the process patterns template, in order to explicitly describe how the
pattern interacts with other process patterns. As design patterns have a well-defined structure,
it is easier to understand how they interact with each other. We think that a major challenge
for the widespread use of process patterns is to dearly define how they depend on and interact
with each other. Most of the related patterns are actually design patterns that are necessary to
supporting the use of the Progressive Implementation Process Pattern.

A use case defines what interactions occur between a system and its users, capturing system
requirements. The use cases of a system constitute a use case model. In Use Case Driven

4

Development (UCDD), developers create design and implementation models that realize the use
cases. Moreover, other models should comply with the use case model, and tests should ensure
that the use cases are correctly implemented.

In order to combine UCDD with PIP, providing a use case driven progressive development,
we should define how and when non-functional requirements are to be considered and imple-
mented. In UCDD a system is designed, implemented, and tested based on its use cases. When
considering a progressive implementation, design models should favor the progressive implemen-
tation, as mentioned in the forces of the Section Problem.

To implement a use case, programmers should implement parts of the system that are neces-
sary to realize the use case. However, when planning development combining UCDD with PIP,
non-functional requirements implementation should be schedule after implementing the func-
tional part of the use cases and the user interface code. Therefore, use cases will be partially
implemented in functional iterations, until a functional prototype is finished. At this moment,
this prototype should be validated and, if necessary, changes should be made. After validat-
ing the implemented functional code, the prototype will evolve to a persistent and distributed
application, with concurrency control.

Another alternative to combine PIP with UCDD is to plan interchanged functional and non-
functional implementation during use case implementation. Contrasting with the first alterna-
tive, use cases are completely implemented, in their corresponding functional and non-functional
requirements implementation activities. As an advantage, use cases are developed only once in
the lifecycle. Furthermore, the implementation effort for the non-functional code can be frag-
mented in several points. However, changing requirements will result in greater impact to the
code, since part of the non-functional code will be implemented earlier in the process, also
increasing tests complexity.

References

[1] Vander Alves and Paulo Borba. Distributed Adapters Pattern: A Design Pattern for
Object-Oriented Distributed Applications. In First Latin American Conference on Pattern
Languages Programming — SugarLoafPLoP, Rio de Janeiro, Brazil, October 2001. UERJ
Magazine: Special Issue on Software Patterns.

[2] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect–Oriented Programming. Commu-
nications of the ACM, 44(10):29–32, October 2001.

[3] Ivar Jacobson. Object-oriented development in an industrial environment. In Proceedings
of the OOPSLA’87 conference on Object-oriented programming systems, languages and ap-
plications, pages 183–191. ACM Press, December 1987.

[4] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software Development
Process. Addison-Wesley, 1999.

[5] Cristina Lopes and Gregor Kiczales. Recent developments in AspectJ. Workshop on Aspect–
Oriented Programming at ECOOP’98, July 1998.

[6] Klissiomara Lopes and Paulo Borba. Design Patterns to Structure Enterprise JavaBeans
Distributed Applications (in portuguese). In Second Latin American Conference on Pattern
Languages Programming — SugarLoafPLoP, Itaipava, Rio de Janeiro, Brazil, August 2002.

[7] Tiago Massoni, Vander Alves, Sérgio Soares, and Paulo Borba. PDC: Persistent Data Col-
lections pattern. In First Latin American Conference on Pattern Languages Programming
— SugarLoafPLoP, Rio de Janeiro, Brazil, October 2001. UERJ Magazine: Special Issue
on Software Patterns.

5

[8] Tiago Massoni, Augusto Sampaio, and Paulo Borba. Progressive Implementation of As-
pects. In Workshop on Advanced Separation of Concerns in Object-Oriented Systems —
OOPSLA’01, Tampa Bay, USA, 14th-18th October 2001.

[9] Tiago Massoni, Augusto Sampaio, and Paulo Borba. A RUP-based Software Process Sup-
porting Progressive Implementation. In Idea Group Publishing, editor, 2002 Information
Resources Management Association International Conference (IRMA 2002), pages 480–483,
Seattle, USA, 19th-22nd May 2002.

[10] Richard Monson-Haefel. Enterprise JavaBeans. Oreilly, second edition, 2000.

[11] David L. Parnas et al. On the criteria to be used in decomposing systems modules. Com-
munications of the ACM, 15(12):1053–158, December 1972.

[12] Sérgio Soares and Paulo Borba. Concurrency Manager. In First Latin American Conference
on Pattern Languages Programming — SugarLoafPLoP, Rio de Janeiro, Brazil, October
2001. UERJ Magazine: Special Issue on Software Patterns.

[13] Sérgio Soares and Paulo Borba. PaDA: A Pattern for Distribution Aspects. In Second Latin
American Conference on Pattern Languages Programming — SugarLoafPLoP, Itaipava, Rio
de Janeiro, Brazil, August 2002.

[14] Sérgio Soares, Eduardo Laureano, and Paulo Borba. Implementing distribution and persis-
tence aspects with AspectJ. In Proceedings of OOPSLA’02, Object Oriented Programming
Systems Languages and Applications. ACM Press, November 2002. To appear.

6

Improved Support for the Description and Usage of Process Patterns Page 1 of 12

Improved Support for the Description and Usage of
Process Patterns

Traugott Dittmann�, Volker Gruhn**, Mariele Hagen***

Abstract. Process Patterns are a valuable means to model and execute processes.
However, present process patterns have deficiencies with respect to their description.
These deficiencies might prove to be an obstacle for process patterns to become a strong
and useful approach for process management, since they cause ambiguity. Therefore, in
this paper we propose the Process Pattern Description Language (PPDL), which
embodies concepts to overcome the mentioned deficiencies. These concepts are the
explicit definition of the pattern’s problem, the modularity of process patterns, the more
formal definition of the pattern’s process and relationships and the specializing of process
patterns. The PPDL is based on the UML and supports the everyday work of miners and
users of process patterns in providing notational elements for process patterns. An
example illustrates our approach.

1 Introduction

1.1 Patterns and Process Patterns
A pattern represents a proven solution to a recurring problem (cf. [Cop96] for an in depth
introduction). Patterns are not restricted to a certain domain to be applied in or to emerge of.
They have been developed for several domains like Architecture (the first domain in which
thy appeared in) [Ale79], Software Engineering (especially for the design phase) [GHJ95],
[BMR96], Organization ([Cop94], [Har95]), Pedagogics [Ped02] etc. There are two types of
patterns, namely result and process patterns [Stö01]. Result patterns describe how the
solution for the problem looks like (the solution is the result) (cf. [GHJ95] for typical result
patterns), whereas process patterns describe which process leads to the desired result (the
solution is the process) (cf. [Amb98], [Stö00] for typical process patterns). Result and
process patterns can further be classified according to the application domain (e.g. Software
Design) and the level of abstraction (e.g. Architectural, Design and Idiom level, cf. [BMR96]).

Irrespective of the application domain or the pattern type, the main benefits of patterns are

�� the presentation of proven and helpful knowledge,

�� the abstraction of problem and solution and

�� the basis for communication and understanding.

� ip value GmbH, Stockholmer Allee 24, 44269 Dortmund, Germany, dittmann@ip-value.de

** University of Leipzig, Faculty of Mathematics and Computer Science, Department of e-business/telematic, PB 920, D-04009
Leipzig, volker.gruhn@informatik.uni-leipzig.de

*** adesso AG, Stockholmer Allee 24, 44269 Dortmund, Germany, hagen@adesso.de

Improved Support for the Description and Usage of Process Patterns Page 2 of 12

Using process patterns provides the additional advantage of allowing to perform a more
flexible, dynamically adapting process than traditional processes do ([Stö01], [BRS98],
[LRS00]). Process patterns are selected according to the existing problem and context. If
there is no matching process pattern the user has the freedom to perform an individual
process. The application sequence of patterns is therefore determined in a “just-in-time”
fashion: As soon a problem has been faced an appropriate process pattern is searched,
selected (if available) and then performed.

1.2 Deficiencies of present Process Pattern Descriptions
Although the recent focus of the software engineering community has mainly been on design
patterns, the interest in process patterns is rising. In the recent past the amount of
publications with respect to process patterns has increased. By presenting pattern
catalogues a lot of useful implicit (“tacit”) knowledge was externalized and kept for reuse.
Besides pattern catalogues1 (cf. [BRS98], [Mar99], [GG99]) there also were new concepts for
presentation (cf. [Stö01]). Despite this increasing attention patterns of all types bear
shortcomings with respect to their description [Hag02]. These deficiencies might prove to be
an obstacle for process patterns to become a strong and useful approach for process
management, since they cause ambiguity. We will explain these deficiencies with respect to
process patterns.

Ambiguity because of lacking precision

Patterns – also called a “literary form” [Cop96] - are mostly described in an informal way by
natural language. This can be considered as an advantage, since understanding a pattern
does not require the knowledge about notation, semantics or syntax. However, there is a
limitation to precision in natural language. Eden examined the semantic ambiguity of
Gamma’s design patterns and revealed vast deficiencies concerning precision [Ede97]. The
informal description of a process pattern leads to an ambiguous interpretation and execution
of a pattern’s process.

Consequently, the premises for combining patterns into another one are unknown. Under
which conditions is a pattern a variant of another pattern and in which cases can patterns be
executed sequentially? Finally, in many cases maybe not the most adequate pattern is
chosen. The perfect degree of precision may differ from pattern to pattern, but textual
notations should be replaced or at least enhanced by more precise alternatives.

Ambiguity because of non-standard description of pattern interfaces and pattern
relationships

It is widely accepted that patterns should not be considered as isolated solutions, but be a
part of a more complex structure (like pattern languages, catalogues, handbooks or
systems)2 to “achieve their fullest power” [Cop96]. This requirement is important especially
for process patterns. It is necessary to know, which patterns might work together or even
depend on each other to build up a software process. We need to know the entry and exit
conditions (i.e. the interfaces) of a process pattern to glue it together with other process
patterns. Present process pattern descriptions contain textual context definitions, but they
are not accurately described in a standardized way.

1 Although the authors call them pattern languages.

2 Structured sets of patterns with different meaning, cf. for pattern catalogues, or
pattern systems, for pattern languages and for pattern handbooks.

[GHJ95] [BMR96] f
[AIS77] [RZ96]

Improved Support for the Description and Usage of Process Patterns Page 3 of 12

In addition to a more accurate context definition, pattern relationships have to be defined
more precisely. Although several publications bother with pattern relationships, they provide
mostly a textual, nonformal and unprecise description like “A variant pattern refines a more
well-known pattern” [Nob98]. Relationships defined without precise criteria are questionable,
as they do not give reliable implications for their usage.

2 Key ideas of the Process Pattern Description Language (PPDL)
To overcome the deficiencies of present process patterns descriptions explained above, we
developed a language for describing process patterns in a more precise way, the Process
Pattern Description Language (PPDL). The PPDL contains several approaches augmenting
the expressiveness of process patterns as described beneath.

2.1 Explicit definition of problems
Instead of specifying a problem merely by its name or a question phrase and eventually
giving some hints by means of natural language, PPDL explicitly defines a problem by its
input and output:

- a problem’s input is the situation before the application of a solving pattern

- a problem’s output is the situation after the application of a solving pattern

So every pattern addressing a certain problem solves this problem by transforming the input
situation into the output situation. The problem’s input and output may consist of physical
objects, like documents created or used within the software process, and an arbitrary set of
additional information. For example, this additional information may concern the timeframe,
size of work force or relationship to clients.

2.2 Modularity
If a pattern is to solve a certain problem, its initial and resulting contexts have to match input
and output of the problem to be solved. That means that a problem serves as an interface to
all its solving patterns. The number of solving patterns is arbitrary, since there can be various
solutions to one problem (see also Figure 4, one-to-may relation between Problem and
ProcessPattern).

In separating problem and solution the pattern catalogue becomes a modular one. As long
as the problem’s interface definition is met, one can add a pattern to, change or delete a
pattern from a pattern catalogue without affecting other patterns. This is possible, since
patterns do not refer each other directly, but via a problem. Let us see an example3: A
problem “How can a technical review be conducted?” with input and output situation is
identified. Several patterns solving this problem are identified, namely the pattern
“Inspection”, “Review” and “Walkthrough”. Now the process of the pattern “Review” contains
an activity “Review Session”. The activity “Review Session” can now be assigned the
subproblem “How can Review Sessions be conducted?”. For this subproblem the adequate
pattern “Review Session” is available. Consequently, the pattern “Review” refers indirectly to
the pattern “Review-Session” and all other patterns that solve its subproblems.

That means that the pattern “Review” remains independent from concrete patterns, using
them as a black box. Still we ensure that the used pattern (“Introductional Session, Review-

3 Cf. chapter 5 for the example in detail.

Improved Support for the Description and Usage of Process Patterns Page 4 of 12

Session and “Release” - which ever is chosen by the user of the catalogue) works in the
context of the pattern ”Review”. The user of the catalogue is guided to the detailed
descriptions of all possibly applicable patterns.

Problem Solution

Activity

1 1

0..*

1..*

1 0..*

0..1

1

Process
Pattern

Figure 1: Modularity of Process Patterns

2.3 More formal definition of processes
The PPDL allows presenting the solutions graphically and forces the documenter to a higher
degree of formality than natural language would do. The solution provided by a process
pattern is a process. So we need to offer notations for modeling processes, such as
activities, results of activities, objects, states, roles, parallel action and non-determinism.

As mentioned above, patterns can be linked to other problem definitions inside the
catalogue. The link is not added to the whole pattern (pointing from the pattern to the
problem), but from a single activity (posing the problem, pointing from that activity to the
problem). The input and output of such an activity must also match the interface definition of
the linked problem. For attaining this there are syntactic rules in PPDL. Thus there is a
consistent implementation of the interface definition.

2.4 Specializing and generalizing patterns
The fewer input is required by a pattern, the larger is its scope of application. Contrariwise
more input means having access to more information and documents, which can lead to
quicker, more efficient or more elegant solutions. Obviously we have contradictory goals.

The PPDL solves this dilemma by defining a relationship between more general and more
specialized patterns solving the same problem. A diagram provides an overview of all solving
patterns and illustrates the specializations. The user can easily pick the most specialized
pattern fitting his situation.

3 Relationships – What glues Process Patterns together
Besides the need of a standard description of process patterns also process pattern
relationships need to be defined in a standardized way. After having defined the relationships
conceptually, we formalized them in adding metaclasses and constraints to the UML.

All relationship definitions are specified with respect to – initial and resulting - contexts of
related patterns. Contexts are the glue of process patterns and therefore determine the
patterns’ relationships.

The most important relationships are Succession, Refinement, Usage and Variance (s.
Figure 2):

Improved Support for the Description and Usage of Process Patterns Page 5 of 12

Component
Pattern

Superpattern

refines

Subpattern

Predecessor Successor

Composite
Pattern

usessucceeds

(a) (b) (c)

Variant 1 Variant 2
varies to

(d)

Figure 2: Process Pattern Relationships (a: Succession, b: Refinement, c: Usage, d: Variance)

Definition 1: Pattern A (Predecessor) and Pattern B (Successor) are related by
SUCCESSION, if Pattern A produces all artifacts, which Pattern B
consumes, i.e. the initial context of Pattern B is a subset of the
resulting context of Pattern A.

Definition 2: Pattern A (Superpattern) and Pattern B (Subpattern) are related by
REFINEMENT, if Pattern B is a specialization of Pattern A, i.e. the
initial and the resulting contexts of Pattern A and B match, whereas
Pattern B’s process is described more detailed than the process of
Pattern A.

The (initial / resulting) contexts of the two pattern match, if the
subpattern’s context completely includes the superpattern’s
context. It may well be real superset.

Definition 3: Pattern A (Composite Pattern) and Pattern B (Component Pattern)
are related by USAGE, if Pattern B represents a sub-process of
Pattern A, i.e. Pattern B describes part of the solution of Pattern A.
This requires that the problem of Pattern A can be decomposed
into subproblems, of which one addresses Pattern B. The initial
context of Pattern B then corresponds to the input states of the
using activity of Pattern A; the resulting context of Pattern B then
corresponds to the output states of the using activity of Pattern A.4

4 This relationship is expressed indirectly. The composite pattern’s activity is linked to a problem and
the catalogue may contain several solving patterns to the problem.

Improved Support for the Description and Usage of Process Patterns Page 6 of 12

Definition 4: Pattern A (Variant1) and Pattern B (Variant2) are related by
VARIANCE, if they solve the same problem within the same context
with mutual exclusive solutions.

Figure 3 shows examples for the relationships defined above. The “Design” pattern is the
predecessor of the pattern “Implement”, which is succeeded by the pattern “Test”. The
specialization of the pattern “Design” is the pattern “OO Design”. The composite pattern
“Design” uses two component patterns “Design components” and “Design Database”. If a
pattern is composed of other patterns as in this case the pattern “Design”, the pattern’s
symbol is cross hatched. The two patterns “Design Components” and “Design Realtime
Components” are variants of each other.

Design

refines

OO Design

Design
Components

Design
Realtime

Components

Design
Components

Design

Design
Database

(a)

(b)

(c) (d)

Design Implement Test

Figure 3: Example Relationships (a: Succession, b: Refinement, c: Usage, d: Variance)

4 The Process Pattern Description Language

4.1 Choosing UML as the language foundation
For adding precision and unequivocalness to process patterns, we have to use a language to
model the processes inside the patterns. As discussed above, we do not develop a new
language from scratch but use and extend an existing one. There are several languages that
provide graphic notations for processes from which we choose UML [UML01] as a foundation
for the Process Pattern Description Language (PPDL) for several reasons:

�� UML is the lingua franca of software engineering. Thus, the amount of new notations
to learn for people mining and applying process patterns is small.

�� UML Activity Diagrams offer the necessary elements for modeling processes
including activities, artifacts and parallel action. We additionally introduced concepts
for representing roles connected to activities and concepts for representing
composition of process patterns.

Improved Support for the Description and Usage of Process Patterns Page 7 of 12

�� UML allows extending its syntax and semantics by defining UML profiles, even to add
new diagrams (see [BGJ99] for different degrees of extension). E.g. for expressing all
kinds of relations we define new diagram types.

4.2 Extending Syntax and Semantics of the UML
The most important concepts (cf. [Dit02]) that we add to the UML metamodel are shown in
Figure 4:

Process Pattern
Catalogue

A process pattern catalogue consists of problems, process patterns and
relationships between process patterns.

Problem A problem is defined by its input and output, both sets of simple states.

Process Pattern While a problem may possibly stand alone, every process pattern belongs to a
problem. It defines an initial and a resulting context. The contexts must match
the input and output of their corresponding problem. This is guaranteed by
constrains defined by OCL5 rules.

Simple State Set SimpleState is a model element defined in standard UML. A simple state set is
an arbitrary collection of simple states (artifacts and events).

Solution The Solution represents the pattern’s process. Solution is another important
entity and is associated to a pattern.

Relationship The catalogue models process pattern relationships.

Role The catalogue models roles that are connected to activities.

Figure 4 : Main concepts of PPDL as an UML extension

5 OCL stands for Object Constraint Language, a constraint definition language . [UML01]

Improved Support for the Description and Usage of Process Patterns Page 8 of 12

4.3 Choosing an appropriate Notation
The PPDL provides different diagram types for problems and patterns and furthermore for
relationships. The main diagram types are (included diagram types in brackets):

�� Problem diagram (includes Solution diagram) and

�� Process pattern diagram (includes Process diagram and Usage diagram)

The Problem Diagram represents a problem and its input and output. Input and output must
be matched by its solving patterns. Then there is an overview of its solving patterns (i.e. the
Solution diagram) and their relations. Refinement associations may be commented by the
difference of their contexts, as shown below (cf. Figure 5).

Problem How can a technical review be conducted?

Input
 object to be reviewed

Output
object reviewed and released Review Protocol

Process
Patterns

Technical Review

ReviewInspection Walkthrough

Formal Review
Inspection Plan
and Inspection
Rules needed

Semiformal Review
Review criteria

needed
Informal Review

Figure 5: Problem Diagram (Solution diagram in the “Process Patterns” section)

A process pattern diagram (Figure 6) represents a process pattern and its initial and resulting
context, followed by a process description (the process diagram) and the discussion (pros
and cons forces, rationale, example).

Improved Support for the Description and Usage of Process Patterns Page 9 of 12

Problem How can a technical review be conducted?

Pattern Name Review

Initial Context
 object to be reviewed

Resulting
Context

 object reviewed and released Review Protocol

Solution

By this Review Process, objects can be reviewed systematically and according to certain review criteria.
Several tasks are dispatched to several roles for obtaining an efficient review. First, the object to be
reviewed is examined whether it allows review. Then, the review is prepared and the reviewers are
informed. In an introductional session the moderator presents the object to be reviewed, review criteria
and schedule. Every reviewer then reviews the object individually and records defect and change
requests. During the review session, every reviewer presents his defect/CR list. Based on the Review
protocol the object author revises the object. After object revision the object is released.

Activity Subproblem

Introductional Session How can introductional Sessions be conducted?

Review-Session How can Review-Sessions be conducted?

Subproblems

Release How can a release be conducted?

Discussion Objects have to be reviewed. But reviews mean lot of work. It is not clear who can review certain objects
and what happens if defects or change requests are identified.

No examples available.

Preparation of Review

Object
of

Review
Initial examination

Manager

Reviewer

Introductional Session

Individual Preparation and Review

Review-Session

Object revision

Release

Moderator

Author

Review
Plan

Review
criteria

Individual Defect /
CR list

Review
Protocol

Revised
Object

Object reviewed
and released

Review
documents

Reviewer
list

Figure 6: Process Pattern Diagram of pattern “Review”

Improved Support for the Description and Usage of Process Patterns Page 10 of 12

PPDL Process Diagrams provide - compared to the UML Activity Diagram – the possibility to
show if there are possibly other patterns that can be used to perform certain activities (in the
sense of the Usage relationship). In this case activities are hatched (see activities
“Introductional Session”, “Review-Session“ and „Release“). The table “Subproblems” below
the Process Diagram redirects the reader to the referred problem. Figure 7 then shows the
process pattern “Review Session”, which is used by the process pattern “Review”. That
means that the pattern “Review” and “Review Session” are related by a Usage relationship.

Problem How can Review-Sessions be conducted?

Pattern Name Review-Session

Initial Context
 Individual Defect / CR list

Resulting
Context

 technical review protocol

Solution

The review session serves to gather all review information (defects and change requests) that has been
detected by the reviewers. First, the moderator explains how the review session is going to proceed.
Then, every reviewer presents defects and CRs detected. Then the defects / CRs have to be evaluated
(e.g. high, middle low priority or effort) to determine how to handle them. After evaluation the results are
summarized in the review protocol.

Activity Subproblem Subproblems

Evaluation of Defects/CRs How Defects and CRs be evalutated?

Discussion A review needs a review session. This session must be systematically and efficiently in that sense that
defects and CRs are gathered but not discussed. The review session is not to be misused for discussing
the proper solution.

No examples available.

Presentation of Defects / CRs

Explication of
Review Session Process

Moderator

Reviewer
Evaluation of Defects / CRs

Protocol Result

Individual Defect /
CR list

Review
Protocol

Defects/CRs
evaluated

Figure 7: Process Pattern Diagram of pattern “Review Session”

To get an even quicker survey of Usage relations of a process pattern, take a look at the
Usage Diagram (Figure 8):

Improved Support for the Description and Usage of Process Patterns Page 11 of 12

Review

Introductional
Session Review-Session Release

Requirements
Specif ication Publication

Figure 8: Usage Diagram

The Usage Diagram presents two aspects of a process pattern: First, it presents the process
patterns used (Introductional Session, Review-Session, Release), i.e. the process pattern’s
partial composition. Cross-hatched patterns signify – as in the Process Diagram – the
patterns` composition. Secondly, it presents predecessors and successors of the process
pattern. Note that the patterns “Requirements specification” and “Publication” are only two
examples of preceding and succeeding patterns. There are certainly many more patterns
that can lead to or follow a review.

Note that in Usage Diagram only the known relationships are presented. Certainly there are
many more relationships not yet known. During the process of continuous improvement such
relationships should be added, outdated relationships should be removed. With tool support,
the identification of relationships could be automated.

5 Conclusion
We think that current process pattern descriptions are unprecise and therefore ambiguous.
This ambiguity prevents an effective and productive use of process patterns and process
pattern languages (or systems, handbooks and catalogues respectively). So, our aim is to
improve understanding and use of process patterns and process pattern languages by
defining a process pattern description language, which possesses the required precision and
unambiguity.

By introducing and formalizing concepts as

�� Separation of Problem/Pattern,

�� Relationships and

�� Notation

each role (miner, user) involved with patterns is strongly supported in his activities. By adding
precision to process pattern descriptions process patterns can be a preferable alternative to
standard process models, since they provide more flexibility.

The next step is to design and develop a PPDL tool support, the Process Pattern
Workbench. By developing the process pattern workbench we want to implement and
validate the introduced concepts and to support the everyday work of miners and users of
process patterns. The workbench is supposed to facilitate actions like presenting, adding,
removing or modifying patterns, checking the patterns’ context (e.g. when adding a relation)
and logging the selection of patterns for a process and therefore giving clues about possible
pattern sequences.

Improved Support for the Description and Usage of Process Patterns Page 12 of 12

6 References
[AIS77] Alexander, C.; Ishikawa, S.; Silverstein, M.: A Pattern Language. New York:

Oxford University Press, 1977.
[Ale79] Alexander, C.: The Timeless Way of Building. Oxford University Press, 1979.
[Amb98] Ambler, S.: Process Patterns. Cambridge University Press, 1998.
[BGJ99] Berner, S.; Glinz, M.; Joos, S.: A Classification of Stereotypes for Object-

Oriented Modeling Languages. In: Proceedings of UML 1999, LNCS 1723,
1999, pp. 249-264.

[BMR96] Buschmann, F.; Meunier, R; Rohnert, H. et al. : Pattern-Oriented Software
Architecture - A System of Patterns. Wiley and Sons, 1996

[BRS98] Bergner, K.; Rausch, A.; Sihling, M.: A Component Methodology based on
Process Patterns. In: Proceedings of the 5th Annual Conference on the
Pattern Languages of Programs (PLoP), 1998. Available at
www4.informatik.tu-muenchen.de/rausch/publications/.

[Cop94] Coplien, J.: A Development Process Generative Pattern Language. In:
Proceedings of PLoP 94, 1994.

[Cop96] Coplien, J.: Software Patterns. SIGS Book & Multimedia, 1996.
[Dit02] Dittmann, T.: PPDL – Eine Beschreibungssprache für Process Patterns,

2002, University of Dortmund
[Ede97] Eden, A.: Giving The Quality a Name: Precise Specification of Design

Patterns: A Second Look at the Manuscripts. In: Journal of Object Oriented
Programming, SIGS Publications,
http://www.math.tau.ac.il/~eden/bibliography.html#giving_the_quality_a_nam
e, May 1997.

[GG99] Gabriel, P.; Goldmann, R.: Jini Community Pattern Language, 1999.
[GHJ95] Gamma, E.; Helm, R.; Johnson, R. et. al.: Design Patterns. Addison-Wesley,

1995.
[Hag02] Hagen, M.: Support for the definition and usage of process patterns. Focus

Group “What makes Pattern Languages work well”, EuroPloP 2002, to
appear.

[Har95] Harrison, N. B.. Organizational Patterns for Teams. In: Coplien, J., & Schmidt,
D. C. (Eds): Pattern Languages of Program Design, Reading, Massachusetts,
Addison-Wesley, 1995. Available via http://st-www.cs.uiuc.edu/˜plop/.

[LRS00] Lesny, C.; Rumpe, B.; Schwerin, W. et.al.: Prozessmuster und
Produktmodell. Available via
http://www4.in.tum.de/~rumpe/ProcessPattern.Handout6.pdf, 2000.

[Mar99] Marzolf, T.R.: A System Composition Pattern Language, 1999.
[Nob98] Noble, J.: Classifying Relationships Between Object-Oriented Patterns,

Microsoft Research Institute, 1998
[Ped02] The Paedagogical Patterns Project, http://www.pedagogicalpatterns.org/.
[RZ96] Riehle, D.; Züllighoven, H.: Understanding and Using Patterns in Software

Development, Theory and Practice of Object Systems, Vol. 2(1), pp. 3-13.
[Stö00] Störrle, H.: Models of Software Architecture. Design and Analysis with UML.

PhD-Thesis, Universität München, 2000.
[Stö01] Störrle, H.: Describing Process Patterns with UML. In: Software Process

Technology, LNCS 2077, Springer, 2001, pp. 173-181.
[UML01] Unified Modelling Language 1.4, Object Management Group,

http://www.omg.org/technology/documents/formal/uml.htm.

A Process Engineering Metamodel

Philippe Kruchten
Rational Software
April 17, 2001

Note: this paper was published (with minor modifications) as chapter 13 in the book:

Pierre N. Robillard and Philippe Kruchten (2003), Software Processes with the
Unified Process for Education (UP/EDU), Addison Wesley Longman 350 pp,
ISBN: 0-201-75454-1 (see http://www.aw.com/info/robillard/)

1. Introduction
Lee Osterweil wrote in 1987: “Software processes are software, too.” Indeed, a software
development process is a complex artifact, not unlike a complex, distributed, concurrent
software program. It is after all, the program run by the software project team members.
In order to design a process, to compare and assess different processes, to reason about
processes and their shortcomings, to deliver a process to the people who use it, process
engineers and methods gurus have found that some level of formalism and modeling
capabilities are useful. Moreover, once you have a process model, it becomes easier to
interface a process with CASE tools, such as a planning tool or an activity management
tool, to interchange process components, and to offer some visualization of the process.

This section introduces the Unified Software Process Metamodel (USPM). This object-
oriented model, expressed in UML, is the common model underlying a family of
software engineering processes, including at least the UP/Edu [Robillard 2002], the
Unified Software Development Process [Jacobson et al. 1999] and the Rational Unified
Process® (RUP®) [Kruchten 2000].

2. The conceptual model
At the core of the USPM, is the notion that a software development process is a
collaboration between abstract active entities called process roles that perform operations
called activities on concrete, tangible entities called artifacts. Figure 1 depicts this
concept using a UML class.

 Role
activity1(Artifact_1)
activity2(Artifact_2)

Figure 1—Conceptual model

 1 © 2001 Rational Software

Multiple roles interact or collaborate by exchanging artifacts and triggering the execution,
or enactment, of certain activities. The overall goal of a process is to bring a set of
artifacts to a well-defined state.

From this simple idea, by “reifying” (i.e., making each of them true objects) the concepts
of role, activities and artifacts we obtain the slightly more complex model presented in
figure 2.

 Role

Activity
0..*

1

0..*

1

Performs

Artifact
0..*1 0..*1 IsResponsibleFor

0..*

0..*

0..*

input
0..*

Uses

0..*

0..*

0..*

output
0..*

Produces

Figure 2—Reifying the conceptual model: roles, artifacts, and activities

Roles performs activities; the activities use some artifacts as input, and produce artifacts
as output, or at least change the state of the artifacts (update, refine, validate, approve).
This initial concept was at the heart of the Objectory process before it became the RUP
[Jacobson 1995]. The USPM metamodel is just a more complete model, covering many
other aspects of software process engineering.

It is important to stress that this metamodel is a model of a process description, not of a
process as instantiated.

3. Structure of the model
The USPM is organized in five packages, as shown in figure 3.

• Package Basic Elements contains the elements on which the rest of the model is
built.

• Package Process Structure describes the three key concepts—role, artifacts and
activities—and their relationships.

• Package Process Components introduces elements to structure a process into
manageable chunks for an easier description, or for process interchange.

• Package Process Lifecycle introduces concepts to describe the lifecycle in terms
of goals and precondition, and to allow the decomposition of the process lifecycle
into phases and iterations.

• Package Process Guidance introduces different types of guidance destined to the
help the practitioners.

 2 © 2001 Rational Software

Basic Elements

Process
Structure

Process
Components

Process
Lifecycle

Process
Guidance

Figure 3—The five packages of the USPM

The following sections will describe each of these 5 packages in turn.

4. Basic Elements Package
This package shown in figure 4 contains the basic elements from which the rest of the
model is built.

ArtifactTypeProcessRole

WorkDefinition

Guidance DependencyProcessDefinitionElement
name : Name0..* 1..*0..* 1..*

0..*1

+supplierDependency

0..*+supplier1

0..*
1

+clientDependency

0..*
+client1

ExternalDescription
content : String
name : String
medium : String
language : st ring

1

1..*

1

1..*

ProcessPackage

Constraint

Figure 4—The Basic Elements Package

A process definition is built out of ProcessDefinitionElements. Each process definition
element describes one aspect of a software engineering process and has an internal name.
To be handled by people, each process definition element has associated with it one or
more External Descriptions in some natural language. This allows a single and same
process to be delivered in different languages; the RUP, for example, exist in English,

 3 © 2001 Rational Software

Japanese and Chinese. To each process definition element, a useful process is likely to
associate one or more Guidance to help the practitioner (see section 8, below, for
examples of guidance). A process definition is also very likely to introduce Dependencies
between process definition elements to improve the understandability of the overall
process; for example, we will see further below dependencies such as IsResponsibleFor
between a role and an artifact, or ConsistsOf for a composite artifact type, or HasSubwork
for a composite work definition.

5. Process Structure Package
This package, shown in figure 5, details the relationships between the 3 key process
definition elements: roles, activities, and artifacts.

ProcessRoleWorkDefinition *
1+feature

* +owner

1
0..1

0..*

+parentWorkDefinition
0..1

HasSubwork
<<Dependency>>

+subwork 0..*

ActivityParameter
kind : Param eterDirectionKind
hasWorkPerArti fact : Boolean

0..*

1

0..*{ordered}

1

ArtifactType
isDeliverable : Boolean

0..*

0..*

+consistsOfArtifact
0..*

ConsistsOf
<<Dependency>>

+containingArtifact

0..*
1*

+type

1*

Step Role

0..1

0..*

0..1

0..*

I sResponsib leFor
<<Dependency>>

Activity1

0..*

1

0..*

HasSubwork
<<Dependency>>

1

* +owner
1+feature

*
/

Figure 5—The Process Structure Package

WorkDefinition is a generalization of the simpler concept of activity. Since conceptually
work definitions are operation on a role (see figure 1), they need to be associated with a
ProcessRole. The dependency HasSubwork allows the decomposition of complex work
into simpler ones. Finally an Activity maybe decomposed into a set of atomic Steps.
Activities use and produce artifacts of a certain ArtifactType, some of which may be
deliverable. They use artifact types as ActivityParameters of kinds: in, out, or inout. An
Artifact type in a process may itself be described as composite artifacts, through the
dependency ConsistsOf, an artifact which is made of other artifacts.

 4 © 2001 Rational Software

6. Process Lifecycle Package
In this package, shown in Figure 6, we introduce the process definition elements that
define how the process will be run. They describe or constrain the behavior of the
performing process, and are used to assist with planning, executing, and monitoring the
process. As we stated earlier, a process can be seen as a collaboration between roles to
achieve a certain goal or an objective. To guide its enactment, we need to indicate some
order in which activities must be, or can be, executed. Also there is a need to define the
“shape” of the process over time, and its lifecycle structure in terms of phases and
iterations.

Constraint
body : BooleanExpression

Precondition

Goal

WorkDefinition

0..11 0..11

0..11 0..11

ProcessLifecycle
0..* 0..*0..* 0..*

/Governs
<<Dependency>>

Phase

Iteration

/hasSubwork
<<Dependency>>

/hasSubwork
<<Dependency>>

Figure 6—The Process Lifecycle Package

Each ArtifactType can define a state machine for the artifact instances. Any work
definition maybe associated with a Precondition and with a Goal. They are both
Constraints, expressed in terms of the states of the artifacts that are parameters to this
work definition. The precondition defines what artifacts are needed and in which state
they must be to allow the work definition to start. This defines a basic partial ordering of
the activities. Most activities will at minimum change the state of one of their parameter
artifacts, hence allowing other activities to proceed.
The Lifecycle associated to a process is a work definition containing all the work to be
done in a development project. This lifecycle can be decomposed into Phases and/or

 5 © 2001 Rational Software

Iterations. The milestones that conclude the phases of the Unified Process are expressed
in terms of goals: which artifacts and in which state must have been completed.

7. Process Components Package
The classes in this package, shown in figure 7, are concerned with dividing one or more
process descriptions into self-contained parts that can be placed under configuration
management and version control.

ProcessComponent

Process

ProcessPackage

ProcessDefinitionElement
0..*

0..1

+ownedElement

0..*

+namespace

0..1

0..*

0..* +importingProcessPackage

0..* +importedElement

0..*

im port
<<Dependency>>

ActivityDiscipline
0..*1 0..*1

Figure 7—The Process Components Package

Process packages allow any arbitrary (and overlapping) groupings of process definition
elements. A process component is a process package that has some internal consistency,
and that is used for interchange of process definition, for structuring a large process. A
discipline in the Unified Process is a special case where the process component is
organized as a partition (in the set theory sense) of all activities; that is, each activity
belongs to one and exactly one discipline. Finally a Process is a distinguished process
component that comprises all the process definition elements (and their external
description) needed for one given process, in one given language.

8. Process Guidance package
Most of the content and the value of an actual process description, like the UPEDU, is in
the guidance it brings to the practitioners. This guidance may take different form in the
process, attached to different process definition elements. Figure 8 depicts the most
common one in the UPEDU and the RUP.

 6 © 2001 Rational Software

Guidance

ToolMentorConcept Guideline Template RoadMap

Figure 8—The Process Guidance Package

Concepts define important terms and notions in process engineering. Guidelines are
techniques, standards or heuristics associated to activities or to artifacts. Template is a
sort of prototype of an artifact. A tool mentor describes how to use a given tool to
perform an activity or to build an artifact. This list is not limitative.

9. Summary
Figure 9 summarizes the USPM, omitting dependencies and derived associations.

ProcessLifecycle

Phase
ProcessComponent

ProcessPackage

Iteration

Role

Activity Discipline0..*
1

0..*
1

Constraint

ExternalDescription

Guidance

ProcessDefinitionElement
1..*

1
1..*

1

1..*

0..*

1..*

0..*

Dependency

0..*1 0..*1

1
0..*

1
0..*

ArtifactType

Act ivityParameter

1

0..*

1

0..*

ProcessRole

GoalPrecondition

WorkDefinition

0..*

1

0..*

1

1* 1*

*

1

*

1

*

1

*

1

Figure 9—An overview of the USPM

 7 © 2001 Rational Software

The original USPM served as a key input to the creation of the SPEM (Software Process
Engineering Metamodel), an effort under way at the OMG (Object Management Group)
to standardize a process metamodel throughout the industry [OMG 2001]. The SPEM is a
collaborative effort involving people from Rational, IBM, DMR/Fujitsu, Softeam,
Unisys, Alcatel, and others. It also aimed at defining a UML Profile for process
definition, and means to interchange process components using XML. The USPM is
compatible with SPEM, and has only small variations in terminology, and a few
specialization of guidance.

The USPM is used for process authoring with a tool called the Rational Process
Workbench®, used to create processes such as the RUP and UP/Edu.

For a survey of various approaches on software process modeling, see [Derniame 1999].

References and further reading

[Derniame 1999] Jean-Claude Derniame, et al., Software Process: Principles,

Methodology, and Technology, LNCS #1500, Springer-Verlag, 1999.
[Jacobson 1995] I. Jacobson and S. Jacobson, “ Reengineering your software engineering

process” Object Magazine, March 1995.
[Jacobson 1999] Ivar Jacobson, Grady Booch, Jim Rumbaugh, The Unified Software

Development Process, Addison-Wesley-Longman (1999)
[Kruchten 2000] Philippe Kruchten, The Rational Unified Process—An Introduction, 2nd

ed., Addison-Wesley-Longman (2000).
[Osterweil 1987] Leon J. Osterweil, “Software processes are software too,” Proceedings

9th ICSE, 1987. pp.2-13
[OMG 2001] The Software Process Engineering Metamodel (SPEM) Revised

Submission, OMG document number: ad/2001-03-08, April 2, 2001
(adopted spec: http://www.omg.org/cgi-bin/doc?ptc/2002-01-23)

[Rational 2000] Rational Unified Process (RUP) 2000, Rational Software Corporation,
Cupertino, CA (2000)

[Robillard 2002] Pierre N. Robillard and Philippe Kruchten, Software Processes with the
Unified Process for Education (UP/EDU), Addison Wesley Longman (2002) 350 pp,
ISBN: 0-201-75454-1 (see http://www.aw.com/info/robillard/)

 8 © 2001 Rational Software

A Compositional Process Pattern Framework for

Component-based Process Modeling Assistance
Hajimu Iida1 and Yasushi Tanaka1,2,

1Nara Institute of Science and Technology

Takayamacho 8916-5, Ikoma, Nara, 6300101 Japan

iida @ ieee.org

2Sony Corporation, Network & Software Technology Center,

Software Process Solutions Department

Kitashinagawa 6-7-35, Shinagawa-ku,

Tokyo, 1410001 Japan

Yasushi.Tanaka @ jp.sony.com

Abstract

Component-based process model is one of effective approach to increase the degree of utilization of

organizations process asset (OPA). Each process component which is pluggable to multiple process

templates is a fine-grained element of the process asset. However, it is very difficult to establish the

process templates widely reusable in a heterogeneous organization having various types of products.

In such organizations, project’s defined software process is often highly depends on each

product/project, and therefore various process variations may occur although there are still high

demands of common organizational principle and standards.

In many cases, project leaders, who are not always experts of software process engineering, are

requested to construct their own projects’ software process definition. Various templates of many

kinds of projects are independently developed by different divisions/sections, and almost no

knowledge is shared among them. It is very important to assist their process construction by utilizing

organizational process assets, which are to be shared among the organization. In order to extract the

process template suitable for the specific project from the process asset, pattern-oriented approach

may provide powerful assistance.

We propose a compositional pattern framework for software process modeling in this paper. This

approach assumes the software process components capable to be flexibly connected each other.

Compositional patterns can be formally described as connections between process component classes,

so that the patterns can be searched by systematic query.

1. Introduction

The utilization of Organizational Process Assets (OPA) is one of the important topics of software

process improvement activities such as CMM/CMMI. For example, Organizational Process Assets

mainly archives the organization standard software processes (OSSP), which are developed, managed,

and maintained by the software organization at CMM level3. The project's defined software processes

(PDSPs) are tailored from the organization standard software processes. At CMM level3, the

organization standard software process is repeatedly reused under different (but similar) contexts, and

also improved through statistical measurement of actual process performance at level 4. This means

that CMM aims to establish improved quality and higher productivity by employing the current

optimal process, which is continuously maintained, managed and improved. However, in many of

today’s software development organizations, actual processes are not so stable for repeated reuse and

improvement. The requirements for the development project are changed so frequently. One of the

reasons is that product life cycle is becoming shorter and the new businesses are born so frequently.

Another reason is that today’s many companies are so heterogeneous as to have various product

categories. Thus, the techniques for flexible reformation of development process are becoming much

more important.

In order to make organization’s standard-based project’s defined software processes work properly in

a situation like this, the concept of reusable software process component will be great help in

providing features as follows for organizational process asset utilization:

• Variants and alternatives of the process (=process assets) according to changing situations

• Pre-project tailoring mechanisms for project managers at end-user (non-Software Engineering
Process Group (SEPG)) level

• Postmortem modification/annotation mechanisms for project managers and members for future
improvement.

These features are often discussed as a low-level reuse and customization of the software process.

However, specific changes in the product requirements usually affect the whole project. Therefore,

requirement changes should be handled at the project level abstraction. This implies that project-level

process architecture and process patterns (design patterns for software process) will play very

important roles for process asset utilization.

We propose a compositional pattern framework for software process modeling in this paper. This

approach assumes the software process components capable to be flexibly connected each other.

Compositional patterns can be formally described as connections between process component classes,

so that patterns can be searched by systematic query.

2. Process Components and Compositional Patterns

One of the major problems for reusing process in the organizational process asset is the granularity of

the process elements. Due to the diversity of the product categories, heterogeneous organizations have

much difficulty in reusing coarse grained (=specific) process elements without large modification,

while fine grained (=generic) process elements has to be organized as project’s defined process by

project leaders. We assume the process components (=fine elements) model, which is pluggable to

various project process templates (=coarse elements). The compositional process pattern plays the role

to bridge these two kinds of elements.

2.1. Component-Oriented Process Model

Since we consider that rapid and strong support to end-user’s process design is essential to the purpose

of the framework, we assume that the most important feature of the process model is the support for

modularity and adaptability, just as plug-and-play mechanisms. Self-configurable software process

component is a key technique of this feature.

In the area of the software component (componentware), there are several major component

architectures such as Microsoft’s COM family[13] and Sun’s Java Beans families[14]. In this paper,

we use the term “component” as “self-configurable component.” This feature is mainly established by

representing I/O interfaces which can be inspected from external components in a uniformed way.

Software Process Component also employs similar mechanisms. Each process component

encapsulates a series of autonomous process activities and it has the following characteristics:

• Process component has explicitly defined interface,

• Process component takes objects (artifacts/products) as input and output, and

• Process component has explicitly specified goal and the responsible.

For example, activities such as “requirement analysis”, “spec documentation”, “coding”, “unit test”,

and “integration test” are typically considered to be process components.

Fig. 1 shows a conceptual model of software process components. There is a Process Component

Specification, which is supported by multiple Process Component Interfaces. Interfaces can be

inspected externally so that external process modules can determine how to access the component. A

Process Component is implemented based on the Component Specification, and then installed in an

actual environment (i.e. in the organization’s standard processes and process assets). Finally, each

instance created in an actual context (i.e. in a software project) from installed Process Component is

called Process Component Object.

2.2. Compositional Process Pattern

Process components can be connected each other based on the interface specification. The minimum

restrictions on the component connections are provided by the interface matching, and more

complicated restrictions can be represented as compositional patterns.

A compositional pattern is defined as a set of composed process elements and product flows

(connective relations) among them. Fig.2 shows an example of the compositional process pattern.

Compositional patterns are used for searching process descriptions developed in the past as well as for

composing process elements. Therefore, frequently or repeatedly used compositional patterns may be

regarded as process templates. Pattern matching is done based on the following rules:

• Every process elements contained in the pattern description appears as itself or its subclass in the
actual target process. Otherwise, it should be replaced with a set of decomposed elements.

• Every product flow described in the pattern description appears as itself or its subclass in the actual
target process. Otherwise, it should be replaced with a set of decomposed flows..

• Additional process elements and additional product flows may exist in the target process (They
don’t break the matching.)

Fig.3 shows the class relation of the composite process, process components, and compositional

patterns. Every composite process has a composition manager which manages the composition of the

Process Component
Specification

Process Component
Implementation

Process Component
Installed in a Project

Process Component
Object

Process Component
Interface

supported
interface 1..*

*

1
*

1
*

1
*

implementation

installation

instance

Fig. 1 Process Component Model

element processes based on the specified compositional patterns. Every composite process must have

the default compositional pattern. The default compositional pattern of the basic composite process is

the “Waterfall pattern” which connects the element processes sequentially. Many compositional

patterns are defined according to the various management techniques.

Once the compositional pattern is specified to the composition manager of the composite process,

composition can be guided by the composition manager according to the interface specification and

component class information, so that the user can easily select process components and embeds them

to the composite process. For example, position and connection can be automatically determined in

part based on matching of the class and/or the interface.

Requirement
Analysis

require
ment

System
Design

design
Program
Coding

code
System
Testing

system

System
Development

system
Requirement

Analysis
require
ment

Actually Composed Process

Compositional Pattern

Fig.2 Compositional Pattern Example

Process
Component

Composite
Process

Component

Composition
Manager

Composition
Pattern1

n

1
default

Waterfall
Pattern

Iteration
Pattern

Verification
Pattern

...

Fig.3 Class Relations between Process Component and Composition Pattern

2.3. Process Composition Tool

We are developing a tool which supports project leaders in project’s defined software process

implementation work. The process definition is composed as a set of process components, which are

graphically drawn on the window (see Fig. 2.) Project templates are also provided as process

components. Each component provides its interfaces to connect with each other, but there are types of

interfaces that only allow the valid combinations of the components. Project templates can be searched

by specifying the compositional patterns. User can browse each component’s description, which is

fundamentally documented in XML. User also can search process components which can be

connected specific components based on the component interface specification and the component

class tree.

3. Discussion
There are many work related to the underlying software process component technology. For example,

there is the Software Process Engineering Metamodel (SPEM) published by OMG[14], which defines

metamodel of Process Modeling Parts as a profile of UML. There are researches of object-oriented

mechanisms for process execution. For example, Di Nitto et al. have developed a system which can

generate executable process description from UML description. For another example, Taylor et al.

have developed Endeavors system[3] which can build executable process description visually by

connecting process elements, which are represented as component objects. These researches treat

interesting and highly technical issues for process execution and reuse. However, most of them are

hard to apply directly to industry’s actual process improvement activity. We consider that executable

Process Designer: Development process with parallel testing

Begin PJ

Process Inspector

Property Event

Brainstorm

Unit Test

Cording

Process Recommender

Debug

Debug

Acceptance
Test

Make
Specification

Review

Component Palette

R
equirem

ent
D

evelopm
ent

T
estin

g
E

valu
atio

n
O

th
ers

Coding

Debug

Review

Confirm
Specification

Overhaul
Confirm

Specification

Name: Review

Members: 5

Man-hour: 10

Term: 16h

Cost: $1,500

Method: Walk thro

Files: 12

Language: Java

Risk
Evaluation

Progress
Evaluation

Review
Inheritance Interfaces Properties
Events Usage References

Improvement of member’s understanding about entered product.

Category
Development

Detail
Review is one of the activities in the development phase.

Review improves understanding among participants of the activity
about entered product, so that the participants’ short-term
productivities are increased.

Hint
Generally, multiple short time reviews are more effective than a
long time review.

Process Designer Help

Fig. 2 Process Composition Tool

process code is not mandatory for software process improvement, although it is very interesting and

challenging issue.

There are several works on software process patterns[2,7,8,9,10,11], For example, Gnats et. al. tries to

represent process patterns as a kind of component, which can adapt to changing context.[8]. However,

too much complex semantic may be exposed to end users without further assistance mechanisms. Our

approach aims additional mechanism for end-users’ utilization.

As a view point of software process modeling assistance, our approach is similar to that of the

Spearmint/EPG system[1], which is developed by Fraunhofer IESE. Spearmint/EPG is a process

modeling and documentation tool that eases process description work by supporting multiple

representational views such as E-R diagram like product flow view, tree-formed structural view, and

“electronic guidebook” style HTML view. Spearmint is a process modeling tool for process engineers.

Although Spearmint’s process models are stored in an object-oriented database, there is no explicit

support for reuse of process elements. Our focus is process modeling/authoring support for end-users

(non-SEPG project leaders), and we introduce component and pattern handling mechanism into our

framework in order to explicitly support the reuse of process assets.

4. Conclusion
There are so many activities of software process improvement reported. Most of them reports that they

didn’t use highly functional process centered environments (PCEs) for their activity. Large software

manufacturers such as mainframe industry could construct detailed process standards and process

asset, which are shared and reused in entire of the company. Smaller organizations having narrow

product area may not be able to take the same approach due to high cost for huge standard process, but

they may take anyhow simplified approach for process definition and reuse. In some cases, simply

semi-formal documents such as Microsoft Word or Excel files are used as templates of process

descriptions. They use these documents mainly because end-users can easily view/edit them.

However, it is very hard to share such process documents as it is in heterogeneous organizations

manufacturing various kinds of products containing some software, for example, PC, video camera

and mobile phone. Still, they also have motivation to establish process assets shareable and reusable in

entire of the company. In this case, developing huge standard process documents or using just simple

template documents of process may not work either. They need to store fine grained generic process

elements, which can be reused in each division by re-organizing them into the project specific process

definition.

In this paper, we have proposed the use of compositional patterns in component-based software

process modeling. This approach helps the utilization of component-based organizational process

asset (OPA). We have outline of our approach and plans for support tools. We are now developing the

pilot implementation of support tools.

References

1. Becker-Kornstaedt et al. "Support for the Process Engineer: The Spearmint Approach to Software
Process Definition and Process Guidance". Matthias Jarke, Andreas Oberweis (Eds.): Advanced
Information Systems Engineering, Proceedings of the 11th International Conference CAiSE'99,
Lecture Notes in Computer Science, Vol. 1626, pp. 119-133. Springer, 1999.

2. Bergner, K., Rausch, A., Sihling, M., Vilbig, A., “A Componentware Development Methodology
based on Process Patterns.” in Proceedings of the 5th Annual Conference on the Pattern Languages of
Programs. 1998.

3. Bolcer, G., and Taylor, R., “ Endeavors: A Process System Integration Infrastructure,” in Proceedings of
the International Conference on Software Process (ICSP4) , December, 2-6, 1996, Brighton, U.K

4. Cheesman, J. and Daniels, J., UML Components: A Simple Process for Specifying Component-Based
Software, Addison Wesley, 2001.

5. CMMI Product Team, “CMMI: CMMI-SE/SW/IPPD Version 1.1,” CMU/SEI, 2001.
http://www.sei.cmu.edu/cmmi/

6. Conradi, R., Fernström, C., Fuggetta, A., Snowdon, R.: Towards a Reference Framework for Process
Concepts. In Lecture Notes in Computer Science 635, Software Process Technology, Proceedings of the
second European Workshop EWSPT’92, Trondheim, Norway, September, 1992, pp. 3-20, J.C.
Derniame (Ed.), Springer Verlag, 1992.

7. Coplien, J. and Schmidt, D., (ed.). Pattern Languages of Program Design, Addison-Wesley,
pp.183-238, 1999.

8. Finkelstein, A., Kramer, J., Nuseibeh B. “Software Process Modelling and Technology.” Research
Studies Press Ltd, JohnWiley & Sons Inc, Taunton, England,1994.

9. Gary, K., Derniame , J.C., Lindquist, T., and Koehnemann, H. “Component-Based Software Process
Support”, in Proceedings of the 13th Conference on Automated Software Engineering (ASE'98),
Honolulu, Hawaii, October, 1998.

10. Gnatz, M., Marschall, F. Popp, G. Rausch, A. and Schwerin, W., “Towards a Living Software
Development Process based on Process Patterns,” In Proceedings of PROFES2001,

11. Iida, H., “Pattern-Oriented Approach to Software Process Evolution,” in Proceedings of IWPSE'99,
pp.55-59, 1999.

12. Kellner, M.I., “Connecting reusable software process elements and components ,” in Proceedings of the
10th International Software Process Workshop (ISPW '96), IEEE press, 1996.

13. Di Nitto et al., “Deriving executable process descriptions from UML,” in Proceedings of the 24th
International Conference on Software Engineering (ICSE2002), pp.155-165, ACM, 2002.

14. Open Management Group, The Software Process Engineering Metamodel (SPEM), OMG document
number: ad/2001-03-08, 2001.

15. Paulk, M. et. al., “CMM: Key Practice of the Capability Maturity Model, Version 1.1,”
CMU/SEI -93-TR-25, CMU/SEI, 1993.

16. Rogerson, D., Inside COM, Microsoft Press, 1997.

17. Sun Microsystems, JavaBeans Documentations, http://java.sun.com/products/javabeans/

 1

Common Meta-Model for a
Living Software Development Processes1

Michael Gnatz, Frank Marschall, Gerhard Popp, Andreas Rausch, Wolfgang Schwerin
Institut für Informatik

Technische Universität München
Arcisstraße 21

80290 München, Germany
(gnatzm|marschal|popp|rausch|schwerin)@in.tum.de

Software engineering focuses on producing high quality software products in a given time and
money budget. Empirical studies and research results have shown that applying a well defined
organization-wide standardized software development process has profound influence on the
magic triangle of time, costs, and quality. Following an explicit development process helps to
increase quality of software products and to make the software production process more pre-
dictable and economic (Cugola 1998).

However, industrial software vendors compete in a highly dynamic market: Customer re-
quirements have an inevitable tendency to change, perpetually new technologies have to be
adopted, and ongoing interaction between developers and customers/clients may imply not
only changes of requirements but also demand for a change of the current software develop-
ment strategy. For example CRC workshops may reveal that a customer has no clear idea of a
system’s required functionality. Therefore a change of strategy towards evolutionary proto-
typing might be advantageous.

In fact there are numerous process models providing different development strategies that
are suitable in different situations. The Objectory Process (Jackobson 1992), the Unified
Software Development Process (Jacobson 1999), the Catalysis Approach (D’Souza 1998), the
V-Model 97 (Dröschel 1999), or eXtrem Programming (Beck 1999) are just some of them.
However, in general it is not possible to combine these different development processes to
obtain a highly optimized process for a given projects specific needs.

Hence, an organization-wide standardized software development process must not con-
strain people to follow a predefined sequence of activities, but provide support and space for
their creative tasks. The software development process must be highly flexible and adoptable
with respect to the frequent changes of the environment in which it is applied. Henderson-
Sellers states that „a method has NO ROLE as a recipe book by which a series of steps is fol-
lowed slavishly“ (Henderson-Sellers 1996).

Existing process models, like the V-Model (Dröschel 1999) or the Rational Unified Proc-
ess (Kruchten 2000), contain static tailoring of the development process at the beginning of
projects. To be successful in a changing environment we also need support for a more flexible
way of process tailoring while the project is running – dynamic tailoring.

1 This work originates form the research project ZEN – Center for Technology, Methodology and Management of

Software & Systems Development – a part of Bayerischer Forschungsverbund Software-Engineering (FORSOFT),
supported by the Bayerische Forschungsstiftung.

 2

Thus a standardized process model is needed that provides (a set of) approved and estab-
lished process building blocks in a modular way to enable static and dynamic tailoring. Static
tailoring comprises the assembly of building blocks, dynamic tailoring their
change/reassembly. Analogous evolution of the process standard means addition, deletion, or
change of a building block. Similar to software systems, modularity and a clear notion of
building block interfaces facilitates evolution by minimizing effects of change. To sum up, an
organization-wide standardized development process model requires

• a well defined skeleton that serves as a basic process model outline a project can start
with and

• process (re-)configuration techniques allowing us to react on unpredictable changes
of the project’s environment.

The challenging task is how to find the balance between flexibility and control in process
models. Therefore we propose a general process meta-model for software development proc-
esses that are sufficiently powerful to meet these requirements.

This meta-model contains basic notions and definitions of process models. It serves as a
common base for the definition and maintenance of a software development process model
that is sufficiently flexible to be adaptable to different project requirements and situations.
The proposed meta-model offers the ability to incorporate the assets and benefits of existing
generic process models, as well as the specific process knowledge of a certain company.
Thus, this meta-model provides

• a platform for a learning organization recording the evolution steps of a companies’
software development process.

For that reasons we claim the need of a common meta-model for a living software devel-
opment process, which allows us to perform evolutionary process improvement together with
static and dynamic tailoring of process models. Our approach is based on the idea of process
patterns (Ambler 1998, Ambler 1999, Bergner 1998a, Bergner 1998b), because its basic idea
of integrating different process fragments seems obviously to correlate with our requirements
to a living development process.

The meta-model serves as common base to describe the process knowledge cabinet of the
living software development process. We introduce the essential concepts and elements of the
proposed meta-model. Therefore we distinguish between two types of process model arte-
facts: work artefacts and process artefacts.

Work artefacts are all kinds of documents that are produced or needed throughout the de-
velopment process. An example of a work artefact is a system specification document that
might be composed out of several other work artefacts, e.g. a set of use case documents and
test cases. Whereas a system specification can be considered as a first order work artefact,
another kind of work artefacts are those which we use to describe relationships between (first
order) work artefacts. For example a test case specification relates a use case document with a
system specification proving the use case’s correct implementation. To document a develop-
ment process we have to describe all these different types of development documents as well
as their relationships.

Process artefacts on the other hand are development tasks of any granularity which are
performed during software development to produce new or enhance existing work artefacts.
Usually existing work artefacts are needed to perform certain tasks. Testing is an example of

 3

a process artefact that needs a component implementation and a test specification document
as input and generates a test report as output. Similarly to work artefacts we have to describe
process artefacts in terms of a process artefact description.

Thus, process artefact descriptions and work artefact descriptions are key elements of the
proposed meta-model. Figure 1 shows an UML class diagram which captures an overview of
the proposed meta-model. The Work Artefacts package contains the class Work Artefact De-
scription. An instance of this class represents a description or a template of a certain work
artefact type. Since we also regard associations among documents as work artefacts we can
use work artefact descriptions to define the complete product model of a software develop-
ment process.

Whereas Work Artefacts can be seen as the static part of a development process, that is
the documents worked on, Process Artefacts cover dynamic aspects. The Process Artefacts
package in Figure 1 contains the class Process Artefact Description. Process artefact descrip-
tions define various types of process artefacts, e.g. whole processes, sub-processes or even
atomic development activities. A process artefact description explains how a process artefact
is applied.

Process Element
Description

Common Model Basis

Work Artefact
Description

Work Artefacts

Work Artefact
Context Description

Work Artefact
Context Description

Element

1 1

* *
initial result

Context

Process Artefact
Description

Process Artefacts

works on1 *

is of type *

1

Figure 1: Conceptual Overview over the Common Process Meta-Model

In order to support tailoring, and dynamic tailoring in particular, a clear and well-defined
interface between process artefacts is required. We can understand tailoring as (re-)
composition of process artefacts. Hence, a process artefact’s interface must provide us with
the information being necessary to build sensible compositions. Therefore a process artefact’s
interface must state in which project situation this artefact is a suitable “next step” and to
which situation this step leads us to.

The Context package contains the concepts to define process artefact interfaces by relat-
ing process artefacts with work artefacts. With these concepts we can describe how a set of
work artefacts is affected by the application of a process artefact. Each process artefact de-
scription refers to exactly one Work Artefact Context Description which relates an initial con-
text with a result context. A work artefact context description (or context description for
short) determines which work artefacts are required, changed or produced when a given proc-
ess artefact is executed. For example a process artefact description “Validate Use Cases”

 4

might require the work artefact descriptions “Use Case Document” and “Test Specification”
as input. The result of the application might be a new work artefact description “Test Report”.

Context Descriptions must enable the project leader to reconfigure the development proc-
ess by choosing different process artefacts based on already elaborated work artefacts during
project execution. Therefore we have to be able to build complex context descriptions, stating
for instance in which way states of work artefacts are changed, and how newly created work
artefacts are related with work artefacts of the initial context. Hence the Context package,
allowing us to define complex structures and dependencies between required, produced or
modified work artefacts.

Some process model information is relevant for both work artefact descriptions and proc-
ess artefact descriptions, like for instance a categorization of process model elements. There-
fore we introduce an additional package Common Model Basis. This package contains the
Process Element Description class which encapsulates all common properties of process
model elements. As depicted in Figure 1 the process element description, and thus all its
properties, are inherited by the process artefact description and the work artefact description.

References

Ambler S. 1998. Process Patterns: Building Large-Scale Systems Using Object Technology.
Cambridge University Press.
Ambler S. 1999. More Process Patterns: Delivering Large-Scale Systems Using Object Te-
chnology. Cambridge University Press.
Beck K. 1999. Extreme Programming Explained: Embrace Change. Addison-Wesley.
Bergner K., Rausch A., Sihling M. and Vilbig A. 1998. A Componentware Development
Methodology based on Process Patterns. Proceedings of the 5th Annual Conference on the
Pattern Languages of Programs.
Bergner K., Rausch A., Sihling M. and Vilbig A. 1998. A Componentware Methodology
based on Process Patterns. Technical Report TUM-I9823, Technische Universität München.
Cugola, G. and C. Ghezzi. 1998. Software Processes: a Retrospective and a Path to the Fu-
ture. In Software Process - Improvement and Practice, 4, 101-123.
Dröschel, W. and Wiemers M. 1999. Das V-Modell 97. Oldenburg.
Gamma E., Helm R., Johnson R. and Vlissides J. 1994. Design Patterns – Elements of Re-
usalbe Object Oriented Software. Addison Wesley.
Gnatz M., Marschall F., Popp G., Rausch A. and Schwerin W. 2001. Towards a Living Soft-
ware Development Process Bases on Process Patterns. In Lecture Notes in Computer Science
2077, 8th European Workshop on Software Process Technology EWSPT, Witten, Germany.
pp. 182-202. Ambriola V. (Ed.). Springer.
Henderson-Sellers, B. 1996. The need for process. In Object Currents – The monthly On-Line
Magazine, December, http://www.sigs.com/publications/docs/oc/9612/oc9612.sellers.html.
Kruchten P. 2000. The Rational Unified Process, An Introduction, Second Edition. Addison
Wesley Longman Inc.
Object Management Group (OMG). 1999. Meta Object Facility (MOF) Specification.

 5

http://www.omg.org, document number: 99-06-05.pdf.
Finkelstein A., Kramer J. and Nuseibeh B. 1994. Software Process Modelling and Technol-
ogy. Research Studies Press Ltd, JohnWiley & Sons Inc.
Conradi R., Fernström C., Fuggetta A. and Snowdon R. 1992. Towards a Reference Frame-
work for Process Concepts. In Lecture Notes in Computer Science 635, Software Process
Technology. Proceedings of the second European Workshop EWSPT’92, Trondheim, Nor-
way, September 1992, pp. 3-20, J.C. Derniame (Ed.), Springer Verlag.
Derniame J.-C., Ali Kaba B. and Wastell D. (eds.). 1999. Software Process, Principles, Meth-
odology, and Technology. Lecture Notes in Computer Science 1500, Springer.
Royce W. 1970. Managing the Development of Large Software Systems: Concepts and Tech-
niques. In WESCON Technical Papers, Western Electronic Show and Convention, Los Ange-
les, Aug. 25-28, number 14. Reprinted in Proceedings of the Ninth International Conference
on Software Engineering, Pittsburgh, PA, USA, ACM Press, 1989, pp. 328-338.
Boehm. B. 1986. A Spiral Model of Software Development and Enhancement. ACM Sigsoft
Software Engineering Notes, Vol. 11, No. 4.
Jacobson I. 1992. Object-Oriented Software Engineering: A Use Case Driven Approach. Ad-
dison Wesley Publishing Company.
Jacobson I., Booch G., and Rumbaugh J. 1999. The Unified Software Development Process.
Addison Wesley Publishing Company.
Paulk M., Curtis B., Chrissis M.-B. and Weber C. 1993. Capability Maturity Model for Soft-
ware, Version 1.1. Software Engineering Institute, CMU/SEI-93-TR-24, DTIC Number
ADA263403.
D'Souza D., Wills A. 1998. Objects, Components, and Frameworks With Uml: The Catalysis
Approach. Addison Wesley Publishing Company.

	Kruc01.pdf
	A Process Engineering Metamodel
	1. Introduction
	2. The conceptual model
	3. Structure of the model
	4. Basic Elements Package
	5. Process Structure Package
	6. Process Lifecycle Package
	7. Process Components Package
	8. Process Guidance package
	9. Summary
	References and further reading

	OOPLSA 2002 Workshop Process Patterns ohne Verschlüsselung.pdf
	Introduction
	Patterns and Process Patterns
	Deficiencies of present Process Pattern Descriptions

	Key ideas of the Process Pattern Description Language (PPDL)
	Explicit definition of problems
	Modularity
	More formal definition of processes
	Specializing and generalizing patterns

	Relationships – What glues Process Patterns toget
	The Process Pattern Description Language
	Choosing UML as the language foundation
	Extending Syntax and Semantics of the UML
	Choosing an appropriate Notation

	Conclusion
	References

