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Abstract

Capturing the system requirements and integrating them into a well
balanced system architecture is a key issue in the development of reactive
software systems. In this report, we explore by means of a case study how
an architecture can be derived systematically for systems whose commu-
nication model is based on broadcasting. We are especially interested in
two important questions: can the derivation of the architecture be auto-
mated by generation algorithms, and are the description techniques used
in practice today an adequate basis for such a development process? We
address the second question by applying UML-RT, a profile of the widely
used Unified Modeling Language (UML) which focuses on embedded sys-
tem applications, on the modeling of requirements and architecture of an
autonomous transport system. Adequate graphical description techniques
for capturing interaction scenarios which include broadcasting are unavail-
able so far. We introduce an extension to the UML’s sequence diagrams
(SDs) to capture broadcasting scenarios. We also address the combinations
of SDs to describe complex scenarios, their hierarchical refinement, and the
embedding of broadcasting into UML-RT’s architectural description tech-
niques, and discuss the specification of additional constraints within the
Object Constraint Language (OCL). To support an automatic syntheti-
zation of an architecture from scenarios, we present an algorithm which
generates capsule diagrams from scenarios modeled using SDs. Further-
more, we discuss the adaption of an existing algorithm which generates
statecharts from MSCs to fit with their dialects used in UML-RT, namely
UML-RT statecharts and sequence diagrams.
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1 Introduction

Capturing the system requirements during analysis and integrating the
various competing objectives into a well balanced system architecture is
one of the decisive tasks in the development of complex software systems.
While this is already a challenging task for arbitrary systems, embedded
real-time systems typically pose additional problems: strict resource lim-
itations, such as timing and memory constraints, complement the usual
functional requirements aspects; moreover embedded real-time software
architectures are often intertwined or constrained by the underlying infras-
tructure, such as real-time operating systems and their specific scheduling
and communication paradigms.

Given the importance of deriving an adequate software architecture
from the captured requirements, two key challenges arise:

• how to document system requirements and architectural decisions in
a precise, yet transparent way such that the important ideas can be
easily communicated to the participants in the development process,
and

• how to transfer the requirements, constraints, and forces captured for
the system under consideration into a matching set of subcomponents
with corresponding interfaces and connections?

For the description part, UML-RT [SR98, Lyo98], a sequel to ROOM
[SGW94], has been suggested as a notation for representing both important
system requirements, namely interaction scenarios and their constraints;
and for modeling architectural aspects, such as hierarchical decomposition
of components, communications relationships and interfaces, and individ-
ual component behavior1. The corresponding description techniques are
sequence diagrams, the object constraint language, capsule (and class) di-
agrams, and a subset of the UML’s statecharts. These are significant aids
in capturing both requirements and important architectural aspects.

Mastering the second challenge can be addressed by both methodologi-
cal and algorithmical support for the mapping of requirements into artifacts
representing parts of the system’s architecture. Scenarios elaborated in the
course of the analysis mostly identify central components of the system to
be developed, and provide an elementary behavior specification for them.
The algorithm presented in [KGSB99, Krü00a] uses this information for a
fully automatic generation of statecharts describing this behavior. These
statecharts serve as an ideal starting point for the design process; thus,
analysis and design can be seamlessly integrated.

1UML-RT is a set of notations extending and complementing the standard UML by concepts
of ROOM for the modeling of architecture and time. It is a major contribution for an improve-
ment of the UML standard in its version 2.0 and a UML profile for scheduling, performance,
and time. Both are currently standardized by the OMG.
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In this report, we assess the potential of applying UML-RT’s require-
ments and architecture modeling capabilities and of algorithms for the
generation of prototypical architectures by means of a case study. The ap-
plication developed within the study, a holonic transport system2 within
an automated production plant, represents a typical application domain
for embedded systems3. To model requirements and architectural aspects
appropriately, we identify extensions of UML-RT for a complete coverage of
the application domain of embedded systems, and structuring mechanisms
for models. To establish a seamless integration of analysis and design, we
adapt the generation of statecharts from scenarios [KGSB99, Krü00a] to
the specifics of UML-RT, and we present an algorithm which also enables
the derivation of the static part of architecture descriptions, i.e. capsules,
ports, protocols and connectors, in a systematic manner.

The work underlying this report is part of the research project In-
Time4 which develops both a methodological and semantical foundation of
the core concepts of UML-RT. The goal of this effort is to support a step-
wise, incremental development process for embedded software systems with
real-time constraints. Based on the foundation of UML-RT, in InTime we
develop methods for propagating requirements into a system architecture,
and define refinement rules which allow for transforming an architecture
into an implementation by correctness-preserving, manageable develop-
ment steps. Together, these techniques and methodological approaches
provide a framework for a rigorous development process from requirements
to an abstract implementation, yet based on practically proven description
techniques. This process is shortly described in the next section.

Outline: The report is organized as follows: Section 2 provides a dense
overview on the ideas which underly the development process adopted in
InTime. It also sketches the key concepts of UML-RT. Section 3 gives
an informal description of the subject of the case study, the transport
system. Section 4 provides an analysis and design model of the system,
which is refined at more detailed abstraction levels in Sections 6, and 7.
Section 3 also contains a principal discussion of the generation of structural
models from the scenarios discovered during analysis. Section 8 discusses
the generation of behavior models for the system components, and finally,
Section 9 summarizes the results of the study and contains concluding
remarks.

2The term holonic transport system is used in the automation domain to denote automated,
autonomously operating vehicles carrying out the transport task.

3The study originates from the priority program “SoftSpez” funded by the Deutsche
Forschungsgemeinschaft and serves as a reference application to compare various modeling
approaches for embedded software systems [fPuAI99].

4Funded by the Deutsche Forschungsgemeinschaft within the priority program “SoftSpez”.
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2 A Brief Overview on the Development

Process

UML-RT brings dearly needed modeling concepts for aspects of software
architecture and real-time into the UML. Being a UML profile, it also in-
herits all notations of the standard UML. The application area of many
diagrams of the UML is not defined clearly; some diagrams partially over-
lap with others in scope (as an example, consider statecharts, sequence
and collaboration diagrams). In this section, we give an overview of the
modeling techniques we use in our approach and shortly describe their
application in the development process. The process is centered around
the architectural modeling concepts originating from UML-RT’s ancestor
ROOM which we briefly recall in Section 2.1. Figure 1 gives an overview
on the interrelation of the modeling techniques used within the analysis
and design phase of development.

Figure 1: UML-RT techniques in the development process

The development process starts with a requirements model of the sys-
tem to be developed. Following prominent methods for object oriented
analysis, this phase is driven by the analysis of use cases in our approach.
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The resulting requirements model is described by three interdependent di-
agrams: Dependencies among the use cases and their relation to major
system components and the environment are modeled using use case dia-
grams.

Exemplary interaction scenarios which appear in the course of a use case
between the system and its environment or between system components
are specified by sequence diagrams. Usually, only the most important of
the possible interaction scenarios for a use case are specified in this phase.
Less important scenarios, e.g. handling of specific errors or exceptions, is
usually not included at this stage of the development process.

The specifications in use cases diagrams and sequence diagrams depend
on a domain model, described by a class diagram, which clearly defines
users, components (as regarded in the analysis) and application concepts
like information interchanged in the course of interactions.

Both sequence diagrams and class diagrams are not expressive enough
to formalize every constraint which may be identified in the course of the
analysis adequately5. For this reason, they may be supplemented by con-
straints expressed in the object constraint language (OCL). In general,
these diagrams are not developed in a predefined sequence but, due to
their various dependencies, in an iterative process.

When the requirements model has evolved sufficiently mature, the pro-
cess is extended for a development of an initial architecture of the system,
which is the starting point of the design process. We describe the structural
part of the system architecture by capsule diagrams and the behavior of
the system components - called capsules - by UML-RT statechart diagrams.
To achieve a seamless integration of requirements and architectural mod-
els, we generate a prototypical architecture directly from the requirements
model, using the algorithm presented in [KGSB99] and a second algorithm
presented in Section 5. All the information needed for this generation is
included in the interaction scenarios described by the sequence diagrams.

Again, the development of the architecture, and the subsequent de-
tailed design, is an iterative process which includes the requirements model.
These interdependencies are illustrated by the two-way arrows in Figure
1, whereas the black unidirectional arrows show the primary information
sources for the generation and refinement steps. Usually first the structural
part of the prototypical architecture is generated. In incremental devel-
opment steps this structure is refined, e.g. by breaking up the generated
capsules into smaller units, or by generalizing component interfaces. These
changes require an update of the scenarios in the requirements model in
order to reflect the refinements, which may also lead to a more detailed
requirements specification.

The generation of behavior descriptions starts after basic components
which are not broken up further have been identified. Based on (refined)
interaction scenarios, statechart specifications are generated by the algo-

5For example, conditions for optional associations in class diagrams.
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rithm presented in [KGSB99]. Again, these statecharts are refined in a
stepwise manner, influencing the system structure and also the require-
ments specifications. Yet, these mostly lead to less fundamental changes
in the models developed before.

To summarize, both the construction of the system and its require-
ments are developed in an iterative, stepwise manner involving numerous
refinement steps. This parallelism in the development process is illustrated
in Figure 2.

Figure 2: Interactive refinement of requirements and system architecture

Developing a system based on the refinement of a prototype directly
generated from the requirements model seems to break with many tradi-
tional approaches and to be fairly constraining at a first glimpse. In fact, it
requires a very strict development process. However, the tight coupling of
requirements analysis and architectural design does not prevent developers
from correcting inappropriate system structures used in the analysis nor
does it enforce to deal with design matters already during the analysis. On
the contrary, changes in the system architecture are part of the presented
development process. Enforcing that changes in the system architecture
are also properly reflected in the requirements specification prohibits that
important requirements get lost during restructuring of the model. This
is an important step towards a seamless chain in the development pro-
cess from the requirements up to an implementation, which allows to keep
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track of the fulfillment of each requirement imposed on the system. Thus,
the integration of automatic generation, which establishes correctness by
construction, and of refinement steps is an important contribution for the
development of dependable systems.

2.1 Essential modeling principles of UML-RT

In this section, we give a short introduction to UML-RT’s core modeling
concepts. We discuss its major structuring principle, the notion of compo-
nents, called capsules, and important principles of interaction and behav-
ior models. We omit a thorough syntactic introduction of UML-RT’s rich
modeling language here; if the reader is not familiar with its notations,
we recommend [RS01] for a short introduction, and [SR98, Lyo98] for a
complete reference.

A major contribution of UML-RT to the standard UML is the addition
of concepts for modeling system architectures. Core principles of UML-RT
include

1. hierarchic components as central elements applicable in the entire
range from logical analysis to technical design and implementation,

2. a transparent non-technical notion of interfaces, defining the binary
communication protocols for the interactions of components,

3. a clear communication concept: interaction between the interfaces
of two components proceeds exclusively via asynchronous signal ex-
change along binary communication links,

4. a clear notion of concurrency - all components are potentially active
units, operating independently from each others, and

5. predefined access to the timing mechanisms of an underlying real-time
operating system.

UML-RT achieves these additions essentially by means of adding three
modeling elements to the UML: capsules, ports, and connectors. A cap-
sule represents a potentially active component in UML-RT whose commu-
nication with its environment proceeds by means of asynchronous signal
exchange via its ports. Each capsule is equipped with a FIFO queue to
store messages sent to it until the capsule is ready to process them; and
the sender of the message is not blocked until it gets a response.

A port is an interface object defining the role of the capsule it belongs to
within a communication protocol. Connectors establish the binary com-
munication links between different ports and define the protocol carried
out on this link. A protocol in UML-RT consists of a set of signals sent
and received along a connector. The port defined to play the role of the
sender or receiver in a binary protocol is graphically represented by a filled
or outlined square, respectively. The receiver role is sometimes also called
the conjugated role wrt. the sender role of the protocol.
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Capsules can nest hierarchically to arbitrary depth; an enclosing cap-
sule communicates with its sub-capsules also via ports and connectors just
as it does with its environment. There is no means for accessing sub-
capsules directly from the environment of their container. The behavior of
each capsule must, in particular, conform to the protocol roles the capsule
commits itself to via its port definitions.

Sequential statecharts, i.e. statecharts without parallel or AND-states,
represent the behavior of individual capsules. Like capsules, states may
nest to arbitrary depth; each state can enclose its own (sub) statemachine.
The syntax of UML-RT’s version of statecharts is similar to the one of the
standard UML; one difference is that in UML-RT there is a strict separation
of hierarchy levels: control flow between a state and its sub-statechart can
only be passed via so called transition points. Naturally, the semantics
of UML-RT’s statemachines differs from the standard UML: Along the
lines of the asynchronous communication model, the UML-RT’s statecharts
base on an asynchronous execution model, allowing the statemachine of a
capsule an arbitrary delay in the execution of an action.
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3 An informal description of the system

In this section we describe informally the underlying case study of this
technical report. The whole system has the task to deburr a number of
workpieces. The system consists of the following devices:

• three machine tools which deburr and wash workpieces, respectively,

• an in storage which provides untreated workpieces,

• an out storage which receives the completed workpieces,

• a holonic transport system consisting of three autonomous working
vehicles - called holons - which carry out the transport of workpieces
between the machine tools and storages.

Each workpiece processed by the system is taken from the in storage,
treated by the first, second, and third machine tool in this order and finally
delivered to the out storage. We call this a rigid flow of material. The
machine tools have in addition to their workplace a buffer for two untreated
workpieces.

The transport of the workpieces between the storage units and the
machine tools is organized by means of negotiations which use broadcast
messages: One machine tool sends a broadcast message when it has fin-
ished one workpiece which has to be carried away. The holons respond
individually to to this order by sending an offer containing the cost of the
transport (i.e. the time it needs to carry out the transport). In that sense,
they have authority to decide over themselves and over the system.

Each holon has a buffer to carry one workpiece. Furthermore, every
holon has an internal database which contains a complete copy of the
working process. They use the database to make their decisions and keep
it up to date with the received broadcast messages.

In the following we briefly list major scenarios of this production sys-
tem:

Initialization of the production:

1. One of the holons asks the out storage about the work plan, i.e. how
many workpieces should be treated.

2. The out storage sends the work plan via broadcast.

3. A machine tool posts a job and sends its status via broadcast and
the production starts.

Negotiation of jobs between a machine tool and the holons:

1. A machine tool posts a job to carry away a treated workpiece. Si-
multaneously it sends its status.

2. The holons receive the message and update their database. They
start to compute a bid.
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3. One holon sends its bid. The other holons listen and send only a bid,
if they can under-bid it. If no holon sends a bid, then the machine
tool will post the job again after a certain time.

4. After a fixed time the machine tool ends the negotiation and the
holon with the lowest bid receives the job.

Transfer of a workpiece:

1. a) A holon requests a workpiece from the in storage or the machine
tool, respectively.
b) A holon requests place from the out storage.

2. a) The Machine tool or the in storage releases the workpiece, respec-
tively.
b) The Out storage releases a place.

3. The holon acknowledges the successful workpiece transfer via broad-
cast.
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4 A Requirements Model of the Trans-

port System

As mentioned in Section 2, in a first step, we explore the tasks of the sys-
tem we are going to develop. From the description given above, we’ve got
a rough idea of the physical components of the system: We have an arbi-
trary number of work pieces which are processed by three machine tools,
transported by three holons and stored in two storage facilities. Our task
is to develop the control software establishing the work piece transport.
The textual scenarios in Section 3 describe how the transport is organized,
albeit in an informal manner. Thus, as a starting point of the development
process we have to make this information more precise and complete.

First, we identify single tasks the holonic transport system (short:
HTS) have to perform, i.e. we develop a use case model. As a second
step, we give a more formal model of the system structure, where we in
particular turn our attention to the information necessary to control the
work piece transport. Based on this model, we can model scenarios which
describe the information flow for each use case using Sequence Diagrams.
Each model is developed in an iterative manner. Also, some alternative
approaches will be addressed.

4.1 Use Cases of the System: A Use Case Dia-

gram

Let us start with a first structuring of the tasks mentioned in the informal
description. The holonic transport system is responsible that a daily stint
of work pieces (defined by the production program) will be produced in
cooperation with the storage units and the machine tools. The informal
description given in Section 3 also identifies a number of sub tasks such
as negotiation of a job and the transport of a work piece. We reflect this
structuring in the use case diagram shown in Figure 3:

First, the diagram constrains the system to be developed as the HTS
transport system. The tasks identified above are modeled as use cases of
the system and interrelated using <<includes>> relations the according to
their structure. We also constrained the possible interacting components
outside the system for each use case. The diagram also shows two separate
use cases which descend from the informal specification: The handling of
errors and moves of the HTS towards more advantageous locations during
idle time. Although any of the mentioned use cases can appear during the
fulfillment of the production program, the last two are not considered as
sub use cases of the organize production program use case since they
(at least the errors) are not intended to occur within it’s execution. The
diagram shown above is not necessarily complete: it may be extended,
for example by extending the use case maintenance. We dispensed them
because we restrict our attention to the described informal specification
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0−10−1

0−1
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negotiation

organize job

organize prodProg

<include><include>

<include><include>
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InStorage

transport workpiece

HTS maintenance

initialization

MachineTool
OutStorage

Figure 3: Use cases taken from the informal specification

given in [fPuAI99].

4.2 Objects in the Domain: A Class Diagram

Now we turn our attention to a structuring of the objects of the system. Let
us start with a quite simple model which just models the known physical
components of the system as classes and shows their interrelations:

InStorage OutStorage

WorkPieceMachineTool

communicationSystem

       HTS
*

**

*

111

Figure 4: A simple class model

Clearly, the work pieces are associated to all physical units of the sys-
tem. An important aspect in the informal specification in the previous
section is that different communication paradigms are used in the system:
Mainly broadcast communication is used, but some local tasks are also
negotiated using peer communication. Thus, the communication system
seems to be a central part of the system and is therefore explicitly mod-
eled as a component. This model also allows us to keep the class diagram
independent of communication specifics but allows to defer that issue for
later, when the component CommunicationSystem is considered. For the
development of the transport system, we need to extend our model for the
information relevant for the planning. Notions mentioned in the informal

13



description which have to be incorporated into the domain model consist of
e.g. a machine status or the daily production program. The class diagram
in Figure 5 extends the model shown above, and does slightly restructure
the classes:

*

1
MachineTool

0−1

       HTS

WorkPiece

1
1

Storage

11

CommunicationSystem

*

0−1

0−1
1

*

0−1

*

*

*
2

0−1

Location

1

1

1

prodProg

DatabaseStatus

11

*

Job

1
1

OutStorageInStorage

Figure 5: A more comprehensive model

Work piece transports are modeled by the class Job. Each job is posted
by one machine tool, negotiated with (a set of) HTS components and fi-
nally delegated and executed by an HTS. Thus, each job is associated with
one machine tool but - due to the negotiation - with arbitrary many HTS,
and each machine tool and HTS is related to arbitrary many jobs. Further,
a job is associated with two Locations which model the source and des-
tination machine/storage unit from/to a work piece is being transported6.
These buffers are associated with machine tools or storage units.

InStorage and OutStorage have analogous capabilities; this is ex-
pressed by a generalization relationship in 5 but OutStorage has some
additional relationships.

As mentioned in the informal specification, the whole process is initial-
ized by the announcement of the daily production program ProdProg by
the out storage unit. This program involves a number of jobs and must be
known by all HTS.

Finally, we include the information in the model that the major com-
ponents maintain their own local data: Each machine tool has a status,
and each HTS maintains its own database in which it stores all necessary
process information to negotiate and carry out jobs.

6We assume that each machine tool has only one interface for the delivery and removal of
work pieces and that organizes its buffers, e.g. by pallets.

14



A note should be made concerning the multiplicities specified for the
associations: Multiplicities are specified where they are implied by the
informal specification and seriously affect the development of models for
the components of the system. They only model constraints on the system
to be developed but neither responsibilities, i.e. which component has to
ensure that the constraints are met, nor ownerships. The latter can be
expressed by arcs at one end of an association. We specified arcs for the
association from class Location to the storage and machine tool class since
this can be specified at this stage of development without being subject to
change later on. We also left several multiplicities open: E.g. the number of
machine tools or HTS components is left open because adding or removing
components should of course always be possible. Note that this differs
from the multiplicity “∗”. Whereas the latter expresses that we intend to
allow an association of arbitrary multiplicity, we defer the decision to later
development steps in the case of unspecified multiplicities.

Constraints There are still a number of sensible constraints which can-
not be expressed by the class diagram in Figure 5. They have to be ex-
pressed using OCL:

• context l: Location inv:

l.machineTool->size + l.inStorage->size = 1

As stated above, each location models a source or destination buffer
of a job. Thus, it may only refer to either a buffer of a machine tool,
the in storage or the out storage.

• context w: WorkPiece inv:

w.machineTool->size + w.hTS->size + w.inStorage->size = 1

Similar: Each work piece has only one association to one of the other
physical units each time.

• context h: HTS inv:

h.prodProg = h.communicationSystem.outStorage.prodProg7

All associations to a daily plan refer to the same plan8.

In this domain model, we focused on the identification of classes and
their associations. Thus, constraints in domain models primarily affect de-
pendencies between those associations. Classes and associations make up
the core of OCL’s navigation mechanism; the language provides a sufficient
set of predicates and functions to express all constraints we identified for
the domain model shown in Figure 5. However, the mechanism to access
every element in a formula by navigation on classes and associations some-
times leads to awkward formulas for simple formalizations: the constraint

7The ’=’-operator is defined for the type OclAny and hence for all types of the model which
are subtypes by definition. The operator evaluates to True, if the both objects are the same.
(see also UML 1.3 p. 7-28)

8Some authors use the stereotype <<singleton>> to express that there is a single instance
of a class, e.g. [Dou98].
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h.prodProg = h.communicationSystem.outStorage.prodProg (and anal-
ogous constraints for MachineTool and Job simply express that at any
time, there exists only one instance of class h.prodProg. Operators which
quantify on object instances instead of classes may be helpful here.

Abstraction levels for domain models The amount of information
we formalized in the domain model discussed above may seem arbitrary.
Based on the informal description which was the starting point of our
model, we can draw a model which is still finer grained. Consider, for
example, the extended model shown in Figure 6 :

2

0−1

Location

WorkPiece*

1
MachineTool

0−1

       HTS
*

*

0−1

1

* *

1
*

offer*

job posting

1
1

Storage

11

CommunicationSystem

*

0−1

0−1
1

*

0−1

*

*

DatabaseStatus

11

*

InStorage OutStorage

1

1

1

prodProg

Job

1
1

Figure 6: Extension to the domain model

The first extension includes various objects involved in the life cycle
of a job: Jobs are advertised for bids by job postings, and the HTS may
respond with offers. The concept of the job is still present in the model.
It means a job that is already delegated to and maybe processed by an
HTS. We have the following relations: A job posting involves zero or more
offers. For a job, there may have been many offers, but an offer may only
lead to one job. Each job is now related to (delegated/carried out) exactly
one HTS. On the other hand, an HTS can be responsible for an arbitrary
number of jobs each time9. The other relations involving, job postings,
offers and jobs are self explanatory.

9While proceeding a job a HTS can already negotiate and accept new jobs for optimal
utilization.
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The second extension of the model makes explicit that the classes job,
offer and job posting are, though they are artifacts which exist indepen-
dently of their representation, stored within the local databases of the
HTS.

Whether these extensions should be included in the domain model,
partly depends on the extent to which we would like to constrain imple-
mentations of the system. Including the classes offer and job posting in the
model would lead us to an implementation which stores the information
on a job also in three different classes. It would also include information
on the negotiation process of a transport task like a job is posted and this
posting is responded by offers, but the HTS do not ask for jobs. Though this
is intended by the informal description, however, the information dealing
with the negotiation process should be modeled in sequence and behavior
models but not in the domain model. Therefore, we do not consider the
extensions of Figure 6 further and stick with the domain model shown in
Figure 5.

4.3 Description of the Use Cases: Sequence Dia-

grams

From the domain model described above, we have got a clearer understand-
ing of the notions of HTS, machine tools, jobs etc. Thus, we can develop
a precise description of what’s going on in the course of the Use Cases
identified in Section 4.1. We achieve this by specifying interaction scenar-
ios for each use case within sequence diagrams (SDs). In the remainder of
this section, we first discuss how to model the communication concept of
broadcasting within SDs, and develop scenarios for the use cases identified
in Section 4.1.

4.3.1 Modeling Broadcasting: Broadcast SDs

The UML’s major modeling technique employed in the requirements anal-
ysis to model interaction scenarios are sequence diagrams. While this de-
scription technique works fine for binary communication, almost surpris-
ingly, there exists no notational means for dealing with broadcast com-
munication. In the following, we show how SDs can easily be extended
to model broadcast communication as well as binary communication, and
to express relations to behavior models. To discuss these extensions, let
us consider an application of the autonomous transport system. Figure 7
shows the scenario for the negotiation of a transport task.

The syntax of the diagram is the same as for classical SDs: vertical
axes – called life lines – represent part of the behavior of the correspond-
ing components which are represented by the labeled boxes on top of the
life line. Labeled horizontal arrows indicate asynchronous communication.
Rectangular labeled boxes in the life line denote local actions of a compo-
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Env

jBid(jobno, h, v)

createJob(jobno, w) createJob(jobno, w)

jEndOfNegotiation(jobno)

jOrder(jobno, buffno, w, s)

:HTS w: MachineTool h :HTS

updateJobStatus( updateJobStatus(
jobno, sold) jobno, sold)

SD NegotiationOfOrder

compute v

Figure 7: Broadcasting within sequence diagrams

nent. Reading the diagram from top to bottom determines the order of
the interactions occurring among the components over time.

Broadcast communication is expressed by communication lines without
arrow heads. An outlined circle marks the originator of the message and
filled circles mark the receivers of the message. This models broadcast and
even multicast communication succinctly. We call this extension broadcast
SDs in the following.

Broadcast SDs enormously reduce the complexity of scenarios: If we
used classical SDs, we would have to model a broadcast component ex-
plicitly, and draw a separate arrow from this component to each recipient
of the message. The resulting models are many times larger than models
using broadcast SDs, on the cost of loss of intuition. Broadcast SDs can be
understood as an abbreviation of these sequence diagrams. The semantics
of the new communication construct is easily embedded into the semantics
of “normal” SDs: Each broadcast line corresponds to a set of messages,
each directed from the originator to one recipient.

A second extension of SDs are state labels which are depicted by la-
beled hexagons. This notation is taken from the ITU MSC 96 specifica-
tion [IT96]. State labels appear on life lines in SDs; they identify control
states of the corresponding component. Using state labels we can com-
bine SDs to more complex scenarios: Different SDs starting with the same
state label express nondeterministic choice; one SD starting and ending
with the same state label indicates repetition. Both simple and combined
scenarios should not be understood as complete behavior specifications.
They are interpreted as exemplary interaction patterns in the sense of
[Krü00a, Krü00b].
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4.3.2 Developing Scenarios for the Transport System

Let us develop scenarios for the identified use cases now. The actions of the
“abstract” use cases organize ProdProg and organize job mainly con-
sist of the actions involved in the more detailed use cases initialization,
negotiation and transport workpiece, which have been mentioned in
the informal description. How these use cases are interrelated with re-
spect to their order of execution, i.e. the specification of condition labels,
is considered later. At the moment, let us concentrate on the interactions
involved in these use cases themselves.

HTS
Originator initialization

HTS
Listener

OutStorage

MachineTool

Figure 8: Initialization of the production process

Env

requestprodProg

prodProg(p)

h: HTS :OutStorage :MachineTool :HTS

 SD Init

Figure 9: Initialization of the production process

We start with the use case initialization: From the informal de-
scription we know that some HTS asks the out storage for the amount of
workpieces to be produced. Thus, instances of the class HTS play two roles
in this use case: One HTS which asks for the production program and pure
listeners. Therefore, we refine the use case diagram for the initialization
in Figure 8. The sequence diagram (Fig. 9) describing the involved inter-
actions is simple: One instance of class HTS sends a broadcast message
asking for the production program and the instance of the class out storage
responds to it, again with a broadcast.

For the use case negotiation we apply the same refinement of intro-
ducing two roles of the class HTS, as shown in Figure 10. An instance of
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negotiation 1

MachineTool

Listener
HTS

Originator
HTS

Figure 10: Use case negotiation of order

Env

jBid(jobno, h, v)

createJob(jobno, w) createJob(jobno, w)

jEndOfNegotiation(jobno)

jOrder(jobno, buffno, w, s)

:HTS w: MachineTool h :HTS

updateJobStatus( updateJobStatus(
jobno, sold) jobno, sold)

SD NegotiationOfOrder

compute v

Figure 11: Sequence diagram of use case negotiation of order

class MachineTool announces a transport order using broadcast commu-
nication. A HTS decides to enter the negotiation process for this order,
computes a price for the transport and sends its bid via broadcast. Af-
ter a predefined delay, the machine tool ends the negotiation. This ex-
ample shows that our syntactical extension of sequence diagrams is not
only suitable for the specification of “pure” broadcasting but also for the
specification of more elaborate communication scenarios: additional con-
straints like timing information can be represented by standard SD syntax,
as shown in Figure 11.

Of course, this is only one scenario among many others: Any HTS may
respond to the order, they may respond interleavingly. Modeling all these
scenarios using sequence diagrams would be exhausting. Our goal for the
moment is to understand the essential interactions of the negotiation. We
defer the complete specification until we specify the behavior of the classes
using statecharts.

The use case transport workpiece shown in Figure 3 consists of the
two use cases HTS takes WP and HTS releases WP, as shown in Figure
12. Further, for these use cases we impose two constraints which can-
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OCL:
context HTS_releases_WP inv:
MachineTool−>size + outStorage−>size = 1

OCL:
context HTS_takes_WP inv:
MachineTool−>size + inStorage−>size = 1

HTS
Originator

0..1 1

HTS releases WP

0..1

transport workpiece
MachineTool

OutStorage

0..1

InStorage

<include>

HTS takes WP

<include>

HTS Listener

Figure 12: Use case transport workpiece

requestWP(wp)

releaseWP(wp)

:HTS 

jTransporting(jobno, h, w, wp)

h :HTS

jobno, transporting)
updateJobStatus( updateJobStatus(

SD takesWP

jobno, transporting)

EnvInStorage
w: MachineTool/

location1
drive to

Figure 13: Scenario of HTS takes workpiece

not be expressed in use case diagrams, using OCL: Either a machine
tool or a storage unit can be involved in the use cases, but exactly one
of them for each instance of the use case. Note that in the literature
OCL constraints are only used in relation with class diagrams and op-
erations defined in class diagrams and not together with other diagram
types. Here we use invariants in context of use case diagrams to constraint
its instances (namely its associated scenarios). The sequence diagram de-
scribing the use case HTS takes workpiece in Figure 13 involves an ac-
tion drive to location1. We do already anticipate that the HTS may
perform actions in advance of an order, but do not specify any details
at this moment. The rest of the scenario is simple: The HTS requests
the release of the workpiece using directed communication, the machine
tool answers, and finally the HTS announces via broadcast communica-
tion that it is carrying out the job now. This message is registered by all
HTS. The sequence diagram in Figure 14 describes the release use case
HTS releases workpiece (including the actiondrive to location2 for a
later specification of the transport) which is quite similar.
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releasePlace

requestPlace

h :HTS :HTS 

jFinished(jobno, h, w, wp)

destroy(jobno)destroy(jobno)

Env

SD releasesWP

OutStorage
w: MachineTool/

location2
drive to

Figure 14: Scenario of HTS releases workpiece

Constraints Although the sequence diagrams presented in this section
provide us with an intuitive description of the scenarios, there remain
questions if we look at them more closely. Most messages in the SDs
have their parameters, and the values of these are not specified clearly.
As an example, let us consider some parameters in Figure 11: the message
jOrder(jobno, buffno, w, s) has four parameters. The type (or range)
of their values is not specified so far. In particular, it is not clear whether
these values can be chosen freely for each message, or whether they are
constrained in the context of the SD. For example, the parameter w should
be the name of the machine tool which originates the message. Also, the
parameters jobno should be the same in all messages. This constraints
seem to be straightforward; yet, a missing definition of the parameters of
the SD can lead to ambiguities: For example, does compute v mean that
v is a parameter? Also, some parameter are intended to be fixed, e.g. sold
in the internal messages of the HTS components.

To avoid such ambiguities, a formal datatype definition language is nec-
essary which can be used if SDs are intended provide a precise specification.
The OCL’s datatype primitives would be sufficient to specify the types of
the parameters used in our diagrams. However, again there is no possi-
bility to relate such definitions with elements of the notation of sequence
diagrams, neither to interpret an SD within the context of a comprehensive
datatype definition, nor to define constraints on values which apply only
to a particular SD (or elements of an SD).

Nevertheless we remove easily some of the ambiguities in the SD de-
scribed above by applying the following simple convention to all SDs: In
the scope of a SD identical parameter names or object names have the
same value. For example, in the scope of SD NegotiationOfOrder (Fig.
11) the parameter name jobno has the same value in all messages like
jOrder, createJob, jBid etc. Similarly, the object name and the parameter
name w, respectively, have the value of the pointer to the instance of the
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class MachineTool represented by axis labeled with w:MachineTool.10

5 Describing the System Architecture

5.1 Modeling Broadcasting in Capsule Diagrams

As we have introduced an extension of the UML’s sequence diagrams to
model broadcasting appropriately in the requirements analysis, we need to
determine which representation of broadcasting is adequate when we define
the system’s architecture. In UML-RT, the essential aspects of architecture
- components, communication relations and interfaces - are modeled with
capsules and capsule diagrams, respectively. We face several options to
include notions for broadcasting in capsule diagrams.

We could, for instance, select a broadcasting-based execution model as
provided by standard statecharts[HP98], and avoid the binary communi-
cation model of UML-RT right away within the requirements analysis and
architecture descriptions. As a consequence we would, however, commit
to a very design- and implementation-oriented description technique and
an execution model at a very early stage in the development process; in
particular, there would be no clear separation of structure and behavior in
the system decomposition. In addition to inheriting all of the other prob-
lems statecharts bring along with respect to their semantics (cf. [Bee94]
for an overview), we would lose much potential for systematic abstraction
and refinement of individual components; this is due to the lack of clear
component interfaces in statecharts.

Another approach which seems to be useful at a first glance is to base
the modeling of broadcast communication on a specialized version of UML-
RT’s ports, namely service provision points (SPPs), and their counterparts,
service access points (SAPs). Indeed, SPPs are one particular way of im-
plementing broadcasting within the current UML-RT toolset. Adding a
broadcast SPP to UML-RT’s virtual machine which can be used by cap-
sules to send and receive broadcast messages would lead to a compact
representation of this communication paradigm. However, the use of SPPs
and SAPs hides the actual communication structure. Furthermore, more
flexible communication regimes than pure broadcasting would lead to a
proliferation of SPPs and SAPs; this, in turn, would contribute to obscur-
ing as opposed to clarifying the system’s architecture11. Also, a component
owning an SAP cannot relay it to subcomponents. This is a severe draw-
back since this breaks UML-RT’s compositional refinement mechanisms; a
component cannot be refined further without considering its environment.

10How to interpret identical parameter names or message names in the scope of one SD is
not defined or discussed in the MSC 2000 Standard [IT99].

11We could also define explicit broadcast capsules equipped with SPPs. However, the draw-
backs arising from the hiding of communication structures would still remain.
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Because of these methodological shortcomings and because of its depen-
dency on UML-RT’s current toolset, SAPs are an inappropriate solution
for the modeling of broadcasting.

As we have outlined in Section 1, we aim at a clear notion of a com-
ponent and its interfaces, as indispensable ingredients for defining and
representing software architectures. Therefore, we stick with UML-RT’s
component, interface, and communication model, and integrate broadcast-
ing into this model by means of explicit components within the software
architecture we aim at. We still face two options on how to model broad-
cast mediums in this approach: First, we could model the medium by a
container capsule which contains all capsules participating in the broadcast
communication. As an example, consider Figure 15. This approach leads
to a compact way of modeling broadcasting, and its hierarchical structure
sustains clarity also for complex communication structures with several
local broadcast mediums. The hierarchical structure facilitates dynamic
communication structures (if desired) since the scope of capsules which
possibly participate in a broadcast communication is controlled by the
container which models the medium; thus new connections can easily be
established. It also coincides with notions of refinement; refining a cap-
sule into a structure which contains broadcasting just means to replace the
component by a container for the broadcast medium and to delegate all
tasks of the refined capsule to sub capsules. However, this approach may
be inadequate if a hierarchical component should carry out additional func-
tionality, or if the hierarchical structure established by the communication
structure is not adequate from a functional point of view.

CommunicationSystem


n


HTS


n


MachineTool


OutStorage


InStorage


RP


BcHTS


RWP


BcMT


BcOS


3

3


PP


Figure 15: Modeling the broadcast medium as a container capsule

To gain more flexibility, we suggest a variant of the recursive control
and subsystem controller patterns described in [Sel98] and [DW98], respec-
tively. Consider Figure 16 for an overview of the basic structural decom-
position we associate with components in our architecture. We distinguish
three kinds of components:

• leaf components, which form the leafs of the component hierarchy,
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• broadcasting components, which play the roles of containers for leaf
components, nested broadcasting components, and an IO system,

• IO system components, which act as mediators for broadcasting mes-
sages received or generated by their container.

*

* 1 IO_SystemLeaf_Cmp

Component

BC_Cmp

Figure 16: Architectural pattern for broadcasting

The idea is that every hierarchically decomposed component has an
IO system which handles the broadcasting of messages among the rele-
vant subcomponents of the container, and between the container and its
environment. Intuitively, to perform a broadcast, a component sends a
message to the IO system of its container. This IO system is then respon-
sible for distributing this message to all other relevant components within
the container, as well as to the IO system of the container’s parent in the
component hierarchy. This ensures that all broadcast messages reach all
components participating in the broadcast communication. As an example,
consider Figure 17. At top level view (a), we have the component ProdSys,
which includes the components HTS, InStorage, OutSorage, MachineTool
and a component BC, which is responsible for the delivery of broadcast
messages. Within nested components such as the HTS, we have again a
component IOSystem. We have no local broadcasting within the HTS;
thus, the IOSystem only has to transfer broadcast messages from and to
the subcomponents to the environment of the HTS.

We note several benefits of this architectural pattern. First, the hi-
erarchic structuring of broadcasting components enables direct applica-
tion of classical techniques for top-down structural system design. From
the viewpoint of broadcasting, to refine a component structurally simply
means adding a new IO system, and connecting it properly to the refin-
ing sub-components, and to the container’s environment. This is directly
supported by UML-RT’s component and interface notion. Second, be-
yond their mere purpose of being mediators for broadcast messages the
IO systems can also filter messages irrelevant for a particular subtree in
the component hierarchy; this can lead to more efficient design and im-
plementation strategies. Furthermore, components not participating in
broadcasting need not have connections to IO system components at all.
Third, the switch from broadcasting to other communication paradigms
is immediately possible by a simple redefinition of the purpose of the IO
systems.
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(a) At top level
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(b) Within nested components

Figure 17: Modeling the broadcast medium as an additional component

In the following paragraph, we show that this pattern seamlessly inte-
grates with the extension of sequence diagrams we use in the requirements
analysis, and how the resulting capsule structures can be derived automat-
ically from requirements scenarios.

5.2 Systematic Derivation from Scenarios

In the following, we suggest a method for developing structure diagrams
using the knowledge captured by the SDs specified during the requirements
analysis. We show how capsules, connectors and protocols can be derived
systematically and discuss the embedding of broadcast communication us-
ing these concepts. The model we obtain serves as a starting point for the
development of a system design, which can be completed, generalized, and
optimized by subsequent refinement steps. The advantage of the proposed
procedure is that we obtain consistency with the requirements analysis by
construction.
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We start with an overview of the steps to get a first sketch of a structure
diagram. The procedure consists of three phases: First, the capsules of the
system are defined (steps 1+2, below). Second, protocols are derived from
the SDs (step 3). Third, the protocols are assigned to ports which are
linked by connectors (steps 4+5). The methodical steps are as follows:

1. (a) Create a capsule for each class which appears in the SDs as an
axis.

(b) Create a capsule which performs the broadcast message passing,
if broadcast communication occurs between axes in the SDs un-
der consideration. We call this capsule broadcast capsule in the
following.

2. Create a container capsule which contains the capsules from step 112.

3. (a) Create a binary protocol for each pair of capsules which exchange
regular messages in SDs and include all respective messages into
this protocol.

(b) If necessary, create an individual protocol for each capsule which
uses broadcast communication.

4. Assign to each capsule its respective ports associated with the respec-
tive protocol roles.

5. Establish a connector between any two ports derived from binary
communication protocols; establish a connector between any port
derived for broadcasting and the broadcast capsule.

After these steps we obtain a first sketch of the structure diagram.
Because we used scenarios to obtain the structure diagram, we could not
expect that the diagram is complete and optimal. Furthermore the com-
munication architecture may not be homogeneous. Hence in most cases,
we have to modify the first sketch manually.

5.3 Deriving capsules for the transport system

In this section, we use the steps described above to develop the structure di-
agram of our holonic transport system. From the sequence diagrams we ob-
tain the capsules HTS, InStorage, OutStorage and MachineTool (step 1a).
The broadcast medium is modeled by the capsule CommunicationSystem

(step 1b). These capsules are embedded in a container capsule ProdSys

(step 2).
The capsule pairs HTS ↔ InStorage, HTS ↔ OutStorage and HTS ↔

MachineTool exchange handshake messages. Therefore the binary proto-
cols RequestWP, RequestPlace and Request are created (step 3a). Table 1
shows the protocols from the view of the capsule HTS. The view of the
corresponding communication partner is obtained by conjugating the pro-
tocols, i.e. interchanging sent and received messages.

12UML-RT requires a top-level container for all capsules of the system.

27



RequestWP
send: requestWP(wp)
receive: releaseWP(wp)

RequestPlace
send: requestPlace
receive: releasePlace

Request
send: requestWP(wp)
receive: releaseWP(wp)
send: requestPlace
receive: releasePlace

Table 1: Handshake protocols

The generation of protocols is a bit more complicated: Since each of the
participants in the communication receives all messages but may send only
an individual subset of these messages, an individual protocol needs to be
generated for each capsule involved in broadcast communication. Table 2
shows the broadcast protocols of HTS, MachineTool and OutStorage (step
3b).

To establish the actual component interfaces, each capsule gets assigned
its respective ports associated with the protocol roles described above (step
4). For instance, HTS obtains four public ports which are associated to
the base protocol roles RequestWP, RequestPlace, Request and Broad-
castHTS.

Finally the connectors between the related handshake ports and be-
tween broadcast ports and container capsule are added (step 5). The result
is the structure diagram depicted in Figure 18. Note that the five steps to
generate the structure diagram could be performed automatically.

MachineTool
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BroadcastSystem
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RWP


BcMT
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Figure 18: First sketch of capsule ProdSys

As mentioned before the obtained structure diagram may be not com-
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BroadcastMT

send: jOrder(jobno, buffno, w, s)
send: jEndOfNegotiation(jobno)
receive: requestProdPrg
receive: ProdPrg(p)
receive: jOrder(jobno, buffno, w, s)
receive: jBid(jobno, h, v)
receive: jEndOfNegotiation(jobno)
receive: jTransporting(jobno, h, w, wp)
receive: jFinished(jobno, h, w, wp)

BroadcastHTS

send: requestProdPrg
send: jBid(jobno, h, v)
send: jTransporting(jobno, h, w, wp)
send: jFinished(jobno, h, w, wp)
receive: requestProdPrg
...

...
receive: jFinished(jobno, h, w, wp)

BroadcastOutStorage

send: ProdPrg(p)
receive: requestProdPrg
...

...
receive: jFinished(jobno, h, w, wp)

Table 2: Broadcast protocols

plete or does not match completely with our imagination about the system.
Not surprisingly, transforming the generated structure diagram into a com-
plete and stable architecture description is subject to further subsequent
steps.

The first step we have to carry out is to specify the cardinality of the
capsules in the diagrams. According to the informal specification of the
system, we specify the existence of three HTS and MachineTool capsules
and appropriate replications of the ports of components communicating
with these. Figure 19 shows the corrected diagram.

As second step, we perform a few optimizations. We replace the proto-
col Request and the respective ports by the use of the protocols RequestWP
and RequestPlace, because the protocol Request is the only union of
RequestWP and RequestPlace. Furthermore, we introduce the protocol
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Figure 19: Capsule ProdSys with corrected cardinalities

ProductionProgram shown in Table 3 which allows us to set the Produc-
tionProgram in the OutStorage.

ProductionProgram

send: setProdPrg(p)

Table 3: Protocol ProductionProgram

Finally, we obtain the completed and optimized structure diagram of
CommunicationSystem shown in Figure 20. In the following sections, we
refine the capsule HTS into appropriate sub structures.
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Figure 20: Final version of capsule ProdSys
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6 First iteration: Refining the HTS

6.1 Objects in the Domain: A Class Diagram

In this paragraph we develop the substructure of a single HTS. An already
known component of a HTS is the database. The database stores all the
data which the HTS needs to perform its tasks. If we look at the informal
description and the use case diagrams, we can derive two main tasks of
an HTS: the negotiation of jobs and the execution of a job which includes
the driving and the handshakes. Hence, we introduce a class Disponent

which is responsible for the negotiation and a class SingleJobControl

which is responsible for the execution of the current job. Following the
design pattern for broadcasting introduced in Section 5.1, we introduce a
fourth component called IOSystem. IOSystem handles the communication
between the broadcast channel and the other components. It is responsible
for the forwarding of broadcast messages to the CommunicationSystem
and vice versa. Hence, IOSystem is associated to Disponent, Database
and SingleJobControl, respectively.

1

IOSystem

DatabaseDisponent

SingleJob−
Control

11

1
HTS

Figure 21: Domain of the HTS

Disponent and SingleJobControl get data from the database. Thus,
they have an association to the database. The SingleJobControl performs
the handshakes between the HTS and the MachineTool capsules, the In-
Storage and the OutStorage which is also expressed by associations. The
obtained class diagram is shown in Figure 2113.

6.2 Description of the Use Cases: sequence dia-

grams

In the following we develop sequence diagrams which show the communi-
cation between the components of one HTS. Each of the following sequence
diagrams has to be consistent with its corresponding sequence diagram in
the overall view (described in section 4.3.2), i.e. every message in a se-
quence diagram of the overall view must exist in the decomposed view as
message to/from the environment and the order of the messages has to be

13For clarity, we used graphical containment to indicate the composition relationship between
the HTS and its subcomponents. This variant is also supported by the UML and frequently
used e.g. in [Dou98]
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correct, too. In the decomposed view we use also the notation of broadcast
SDs which we have introduced in section 4.3.2, but all broadcast messages
end and originate at the lifeline of the IOSystem which manages the com-
munication between the capsule CommunicationSystem and the HTS.

Let’s look at the simplest sequence diagram init, focusing on the
lifeline of the HTS with originator role. The HTS sends the message
requestProdPrg and receives a message ProdPrg(p). Thus, these mes-
sages must appear in the decomposed sequence diagram HTSInit depicted
in Figure 22 as messages which are sent and received to the environment,
respectively. Messages which are sent to or received from the environment
are drawn with arrows or broadcast lines which end or originate at the bor-
dering box. The resulting SD shows that the received production program
is stored in the database.

SD HTSInit

prodProg(p)

prodProg(p)

requestprodProg

:Database :Disponent:IOSystem :SingleJobControl

idle

Figure 22: SD HTSInit corresponding to SD Init

The sequence diagrams in the Figures 23 and 24 refine the sequence dia-
gram NegotiationOfOrder (Fig. 11). At the beginning, these sequence dia-
grams show the same scenario: after the message jOrder was received from
the environment by the IOSystem, the latter forwards it to the disponent
and the database. The disponent calls the database for the data needed
for the computation of its bid. After receiving the data, it computes a bid
v for the posted job, depicted by an action box. At this stage it is left open
how the computation works. Note that during the computation other HTS
may send arbitrary many bids for the job. Respective jBid messages are
received by the IOSystem and forwarded to the database, expressed by the
loop statement. The database stores the corresponding bid value v∗ and
the respective HTS h∗ if the bid is better than the previous one. After
the disponent has finished the computation, it asks the database: what is
currently the best bid? Depending on the result of the query the disponent
proceeds the negotiation or cancels it.

The scenario in Figure 23 depicts the case that a better bid of a other
HTS is stored in the database, expressed by the condition v′ ≤ v. Hence the
disponent does not send his bid and the idle condition is reached after it re-
ceives the message jendOfNegotiation(jobno). We refer to this scenario
as the listener role (thus the SD is named HTSNegotiationOfOrderL).

The SD shown in Figure 24 shows that the disponent has computed a
better bid (condition v′ > v). Hence, it sends its bid v to the IOSystem,
which forwards it to the environment and to the database. After the re-
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jOrder(jobno, buffno, w, s)

:IOSystem :Database :Disponent

jOrder(jobno, buffno, w, s)

jOrder(jobno, buffno, w, s)

getStatus

getBid(jobno)

bid(v’)

loop<1, inf>

jBid(jobno, h*,v*)
jBid(jobno, h*,v*)

when

status

SD HTSNegotiationOfOrderL

jEndOfNegotiation(jobno)
jEndOfNegotiation(jobno)

jEndOfNegotiation(jobno)

v’ < v

idle

when idle

bid v
compute

Figure 23: SD HTSNegotiationOfOrderL (listener role)

ceipt of the message jendOfNegotiation(jobno) the disponent asks the
database which HTS has made the best bid because there may have been
other bids in the meantime, depicted by the second loop box. If it is itself –
expressed by the condition h′ = h – then it sends the message inqueueJob
to the database. Otherwise only the idle condition is reached, without
sending any further message. We refer to this scenario as the originator
role.

Let us turn to the scenarios describing the execution of a job, i.e. trans-
porting and handing over the work pieces. As mentioned before, the exe-
cution of jobs is carried out by the capsule SingleJobControl. Thus, most
messages originate from and end at the respective lifeline.

In the SD shown in Figure 25, SingleJobControl requests the source and
destination locations location1 and location2 for the next job to be ex-
ecuted from the database by sending the message getNextJob. Depending
on the result of the query, the condition idle or newJob is reached.

The SD shown in Figure 26 describes the actual transport: If the condi-
tion newJob holds, SingleJobControl starts to drive to location1 (depicted
by an action box). Then the workpiece is taken over, modeled by the mes-
sages requestWP(wp) and release(wp), and the other HTS are informed
of the start of the transport to the destination by a broadcast message.
Here upon the condition transport is reached by SingleJobControl.

The SD in Fig. 27 analogously shows the completion of the transport:
After driving to location2, the workpiece is handed over and the broad-
cast message jFinished(jobno,h,w,wp) is sent. Thereupon the database
deletes the finished job. Finally SingleJobControl returns to the condition
idle and waits for the next job (see 25).

For the sake of completeness we add the SDs shown in Fig. 28. They
describe the receipt of the jTransporting and jFinished messages by the
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:Disponent:IOSystem :Database

jOrder(jobno, buffno, w, s)

SD HTSNegotiationOfOrderO

status

inqueueJob(jobno)

jBid(jobno, h*,v*)
jBid(jobno, h*,v*)

jBid(jobno, h*,v*)
jBid(jobno, h*,v*)

loop<0, inf>

loop<0, inf>

bidder(h’)

getBidder(jobno)

jBid(jobno, h, v)
jBid(jobno, h, v)

jBid(jobno, h, v)

bid(v’)

getBid(jobno)

getStatus

jOrder(jobno, buffno, w, s)

jOrder(jobno, buffno, w, s)

jEndOfNegotiation(jobno)

jEndOfNegotiation(jobno)
jEndOfNegotiation(jobno)

opt

compute

when h’ = h

bid v

when v’ > v

when idle

idle

Figure 24: SD HTSNegotiationOfOrderO (Originator role)

getNextJob

alt noJob

job(location1, location2)

:Database:SingleJobControl

msc HTSWaitingForJob

newJob

when idle

idle

Figure 25: SD HTSWaitingForJob

other HTS.
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:Database :SingleJobControl:IOSystem
SD HTStakesWP

jTransporting (jobno, h, w, wp)
releaseWP(wp)

requestWP(wp)

jTransporting 
(jobno, h, w, wp)

(jobno, h, w, wp)
jTransporting 

transport

location1

newJobwhen

drive to

Figure 26: SD HTStakesWPintern corresponding to SD HTStakesWP

jFinished (jobno, h, w, wp)

:IOSystem :SingleJobControl:Database

(jobno, h, w, wp)

SD HTSreleaseWP

(jobno, h, w, wp)

(jobno, h, w, wp)

jFinished

jFinished

requestPlace

releasePlace

when transport

idle

location2
drive to

Figure 27: SD HTSreleaseWPintern corresponding to SD HTSreleaseWP

jTransporting
(jobno*, h*, w*, wp*)

jTransporting
(jobno*, h*, w*, wp*)

msc HTSListen1

:Database:IOSystem

(jobno*, h*, w*, wp*)

(jobno*, h*, w*, wp*)

:Database

msc HTSListen2

jFinished

jFinished

:IOSystem

Figure 28: SD HTSListen1/2

35



6.3 Describing the HTS architecture: Capsules

In this section we sketch the derivation of the structure diagram for the
HTS capsule from the sequence diagrams discussed in the previous section.
We perform the same steps as in Section 5.2.

As before, we introduce a capsule for each class which appears as a
lifeline in a sequence diagram of the HTS domain. These are IOSystem,
Disponent, Database and SingleJobControl (step 1). The container capsule
HTS with its public ports has already be derived in Section 5.2 (step 2).

IOSingleJobControl

send: jTransporting(jobno, h, w, wp)
send: jFinished(jobno, h, w, wp)

IODisponent

send: jBid(jobno, h, v)
receive: jOrder(jobno, buffno, w, s)
receive: jendOfNegotiation(jobno)

IODatabase

receive: ProdPrg(p)
receive: jOrder(jobno, buffno, w, s)
receive: jBid(jobno, h, v)
receive: jEndOfNegotiation(jobno)
receive: jTransporting(jobno, h, w, wp)
receive: jFinished(jobno, h,w, wp)

Negotiation

send: getStatus
send: getBid(jobno)
send: getBidder(jobno)
send: inqueueJob(jobno)
receive: status
receive: bid(v)
receive: bidder(h)

Transport

send: getNextJob
receive: noJob
receive: job(location1, location2)

Table 4: Protocols within the HTS

Next, we observe the communicating capsule pairs: IOSystem commu-
nicates with all other capsules within the HTS. Thus, we create the proto-
cols IODisponent, IODatabase and IOSingleJobControl w.r.t. the commu-
nications with disponent, database and SingleJobControl. Additionally,
we have to create protocols for the communications disponent↔ database
and database ↔ SingleJobControl (step 3a). All protocols are shown in
Table 6.3.

At last, we need to consider the communication pairs IOSystem↔ envi-
ronment and SingleJobControl↔ environment. These communications are
delegated from the HTS to its sub capsules. Thus, the appropriate pro-
tocols BroadcastHTS, RequestWP and RequestPlace have already been
derived in Section 5.2.
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As in Section 5.2, we assign to each capsule ports associated to ap-
propriate protocol roles (step 4). Further, we add connectors between the
capsules IOSystem, Disponent, Database and SingleJobControl. Informa-
tion on how to connect the ports RWP, RP and BcHTS is taken from the dia-
gram derived in Section 5.2: The port BcHTS handles broadcast messages
which are forwarded from and to the respective capsules by IOSystem, and
RP and BcHTS are connected to the public ports of the HTS handling the
takeover of workpieces (step 5).

From these steps, we obtain the structure diagram shown in Figure 29)14.

HTS


Disponent
 Database


SingleJobControl

BcHTS
 IOSJC


IOD


N


T


RWP


RP

IOSystem


IODB


Figure 29: Structure diagram of capsule HTS

14For brevity, the protocol names are omitted in Figure 29.
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7 Second Iteration: Refining the Cap-

sule Database

In this section, we turn our attention on the capsule Database. Clearly, for
a detailed design we are interested in the data structures which represent
the concepts of jobs, machine status information and so on. Especially,
we are interested in the distribution of the data, i.e. which information is
kept locally by each HTS database. This is a crucial matter since we need
to know, e.g. for later optimizations - which information can be received
from the database and whether it is reliable or not.

At a first glimpse, we might expect that the data modeling is the only
interesting part of the database model, for the database just stores infor-
mation and delivers it when demanded later on. However, as we will see
both in section 7.3 and section 8, there are also interesting behavioral as-
pects associated with the data model. In the following, we will first refine
the data model and the use cases in which the database is involved. We
will also consider the component structure of the database capsule.

7.1 Information Model of the Database: A Class

Diagram

prodProg

Database

jobQueue

JobMTstatus

*

11

*** HTSstatus

(a) Database

jobno: int
postTime: Time
startTime: Time
bid: Value
bidder: HTS
caller: Location
source: Location
destination: Location

Job

(b) Job

Figure 30: Domain of the database

The class diagram in (30a) shows the conceptual data structures which
are contained by the database class. Clearly the database has to store an
arbitrary number of Jobs being currently negotiated or executed. For the
jobs which are to be executed by the “own” HTS (accepted bids), it is
convenient to have a separate data structure - one jobQueue15. For the
computation of bids, the database stores status information about the HTS

15A star in the left upper corner of the Job class indicates that there are zero or arbitrary
many jobs stored in the database. If the quantity is known, it is specified by a number specifies
as for the jobQueue.
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itself and about the machine tools. The latter enables the HTS to deter-
mine whether a job can be carried out without delay or if it has to wait the
second machine/ storage unit involved in the job. Finally, the database
stores the informations about the production program prodProg. As men-
tioned above, this class diagram shows conceptual data structures which
need to be refined in the course of later development steps. For the mo-
ment however, it fits our needs.
Figure (30b) shows the attributes of the class Job. Of course it contains
the relevant information about a job, such as job number, points of time,
bid etc. Let’s have a closer look at the attributes caller, source and des-
tination. The Attribute caller is a reference to the location which sent
the jOrder-message. Source and destination are the locations between the
workpiece has to be transported. Hence we have to express that caller is a
machine tool and that the same machine tool has to be either the source
or destination.

Constraints The constraint is expressed in OCL:

context Job inv:

caller.oclIsTypeOf(MachineTool) and

(caller = source xor caller = destination)

7.2 Component Structure of the Database: A

Capsule Diagram

Database


IOSystemDB


� �
n


Job


IO


J


IO


T
 N


J


IO


Figure 31: Capsule diagram of the database

In some cases, before considering the scenarios taking place within a
refined component, it is helpful to develop a complete specification of its
internal structure. The database keeps three communication relations and
contains a conglomerate of jobs, job related data and status information.
For the interests of neighbor components in the information stored in the
database partially overlaps, a clear communication concept is necessary.
Thus, we first develop the internal structure of the database and refine
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the SDs in which the database is involved afterwards, w.r.t. this struc-
ture. From these, protocols can be derived as shown in Section 5.2 (since
the generation trivially follows the scheme presented in Section 5.2, it is
omitted here).

The capsule diagram in Figure 31 shows that we model each job stored
in the database as a capsule. All other information is maintained as data
objects directly by the database. Since the database receives broadcast
messages via the HTS, we apply the pattern presented in Section 5.1 and
add an IOSystem to the subcapsules of the database. The existence of
an IOSystem within the database may seem superfluous at a first glimpse
but has several advantages: First, it facilitates further refinements of the
database, e.g. by defining additional subcomponents. Further, it divides
the concerns of the database itself and the contained jobs. Whereas mes-
sages affecting the data of a particular job are handled by the respective
job capsule, messages concerning the management of jobs - creation and
destruction - and of status information are processed by the database itself.
In order to separate the concerns of the database and its jobs consequently,
we apply a slight extension of the IOSystem pattern: Within the database,
the IOSystem additionally handles the messages sent and received along
the port T and N. This structure enables the derivation of comprehensible
and compact behavior models which are discussed in Section 8.

Note that drawing this capsule diagram is not a fundamental change
of the development steps described in the previous sections. We do only
identify capsules and bindings here, which is also possibly a partial view
on the database. It structures helps structuring the refinement of the
interaction scenarios in which the database is involved, but can also be
refined itself during these development steps. In particular, no protocol
is defined in advance. Protocols have to be derived from the sequence
diagrams, using the same generation steps as described above.

7.3 Refining the Use Cases of the Databases: Se-

quence Diagrams

In the following, we refine the use cases scenarios in which the database
is involved. We will only consider scenarios here which require nontrivial
internal interaction within the database, that is, interactions which affect
jobs. All remaining scenarios are assumed to treat incoming messages by
just storing their values appropriately and outgoing messages by sending
the according attributes from the database.

Figure 32 reveals most of the interaction with the environment is del-
egated to capsules of class Job. Thus, 32 refines the sequence diagram
shown in 24 in a straightforward way. The refinement of the sequence
diagram in Figure 23 is quite similar and omitted here.

The database is responsible for the creation and destruction of jobs,
and for the maintenance of status information which does not belong to a
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msg(IO,getBid)

SD DBNegotiationOfOrderO

IO <| jOrder(jobno, buffno, w, s)

send(N,bid(value)) N |> bid(value)

jobno:Job

db.io: IOSystem

N <| getBid(jobno)

par

(jobno, buffno, w, s))

register(jobno)

db: Database

msg (N,getStatus)

send(N,status)

send(N,bidder(h’))

msg(IO, jEndOfNegotiation)

msg(IO, bid(h*,v*))

msg(h, bid(h, v))
IO <| jBid(jobno, h, v)

create(jobno, buffno,w,s)

msg(IO,jOrder(

N |> bidder(h’)

N <| inqueueJob(jobno)
msg(IO,inqueueJob(jobno))

msg(IO,getBidder)

IO <| jEndOfNegotiation(jobno)

N <| getBidder(jobno)

IO <| jBid(jobno, h*,v*)

N |> status

N <| getStatus

append(jobQueue,jobno)

opt

loop<0, inf>

not database.job−>includes (jobno)when

negotiation start

PSfrag replacements

WZM1
Disp

HTS2

Figure 32: Negotiation from the databases viewpoint

particular job16. The forwarding of messages from and to jobs is carried out
by the IOSystem. A message, together with an indication of the original
sender, is forwarded to the database or the respective job if this job exists.
Typically, the condition that this job exists is checked locally for each
communication step by an implementation of the IOSystem. We could have
refined this scenario by adding the appropriate conditions; however this
would lead to unreadable SDs. In Figure 32 this constraint is superfluous
because the job is created by the database before messages for the job are
received. Yet, it is of interest how the whole database component behaves
on the receipt of unexpected messages due to communication failures. This

16The maintenance of status information could also be delegated to dedicated capsules which
would be more consequent. For brevity, we omit this decomposition.
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part of the database behavior and appropriate conditions for the message
forwarding by the IOSystem are specified in the scenarios shown below.

loop<0, inf>

register(jobno)create(jobno,buffno,w,s)

db:Database

msg(IO,jOrder(jobno, buffno, w, s))

dublicateJob,jobno))

jobno, buffno, w, s)
IO <| jOrder(

(Cancelled,jobno))

SD DBIllegalOrder

send(IO,error(dublicateJob,jobno)

jobno:Job

destroy

SD DBMissingOrder

msg(IO,errResponse(w,Cancelled,jobno))

IO <| errResponse(h**,joIsNew msg(IO,errResponse(h**,joIsNew

,jobno,buffno,w,s))

,jobno,buffno,w,s))

msg(IO,errResponse(h*,joIsNew

,jobno,buffno,w,s))

IO <| errResponse(h*,joIsNew 

,jobno,buffno,w,s))

IO |> error(h,

IO |> error(h,dublicateJob,jobno)

IO <| errResponse(w, 

send(IO,error(dublicateJob,jobno))

msg(IO,jOrder(jobno, buffno, w, s)) jobno, buffno, w, s)
IO <| jOrder(

:IOSystem

:IOSystem

jobno:Job db:Database

when

negotiation start

when database.job−>includes (jobno)

database.job−>includes (jobno)

PSfrag replacements

WZM1
HTS2

Figure 33: Duplicate jobs when an order arrives

Figure 33 considers situations when illegal bids are broadcasted, i.e. bids
for jobs which are not known by all HTS databases. This may happen for
the communication was disturbed earlier, an HTS was off-line or one of
the components encountered an error. If the database encounters such an
error by the receipt of a jOrder message17, it requests the IOSystem to
send broadcast message describing the error. If the conflict is due to the
data in the database is not up to date, it gets corresponding messages by
the other bases, revises it’s information base, and creates the new job. Af-
terwards, we can proceed with the “normal” processing of the order18. If
the database is in the role of receiving an error message which is confirmed

17The message jOrder triggers the creation of a job and is therefore handled by the database.
18We concentrated on the error handling here to keep the sequence diagrams short. The

interrelation with the sequence diagram 32 will be considered in Section 8.
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by an other HTS, the database recognizes that the job is no longer valid,
destroys it and informs the disponent about the error.

A similar situation is addressed in Figure 34. Here, the database re-
ceives a status information or information request concerning a job which
is not available in the base. Since the IOSystem which receives the job has
no information how to forward the message, it notifies the database cap-
sule about the missing job which responds with the request to broadcast
an error message. Three scenarios are of interest:

The job may be valid, e.g. it has not been stored in the database re-
garded in the scenarios because of communication failures but is known
by the databases of all other HTS. Some other component notifies the
database of the existence of the job, providing the status information. The
job is created and the processing of the order can proceed in the normal
manner.

In the second case (SD DBIllegalBid), analogously, an error message
for a bid which is considered to be illegal is generated. This time, the
message is responded by the cancelation of the originator of the erroneous
bid.

In the third SD, the bid was invalid. The bid has been generated by the
disponent of the modeled databases container (HTS i) and is considered
to be valid by the database although the corresponding job does no longer
exist in the databases of the other HTS. Since the bid is also received by
the other HTS, the database receives error messages from them. By means
of these messages, the database recognizes the error, deletes the erroneous
job and informs the disponent about the error.

The refinement of the remaining scenarios in which the database is in-
volved is straightforward. Figure 35 shows the interactions of the database
during the execution of a job. The database capsule maintains the priority
list of successfully negotiated jobs and is responsible for the destruction of a
job capsule after the corresponding job has been finished. Status messages
are forwarded directly to the corresponding job capsule. Of course, also
the scenarios 25, 26, 27, and 28 have to be refined. Because this requires
only trivial message forwarding or actions on local data structures which
are not expressed by sequence diagrams, we omit an them here.

Constraints The sequence diagrams for the database pose problems
w.r.t. constraining the values of component names and message parameters
which are similar to the constraints discussed in Section 4.3.2. Obviously,
we expect the database to send messages to the right job; similarly, the
database should only create a job if a job with a given number does not
exist. To specify these constraints, we access the subcomponents of the
database by constraints like when database.job->includes (jobno).
This works if the create operation yields a component with an appropriate
jobno. This is not defined by UML-RT’s semantic so far, since the semantic
of capsules doesn’t refer to OCL, but this could be easily formalized.
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N |> error(missingJob,jobno)send(N,error(missingJob,jobno)

:IOSystem

destroy

jobno:Job

db:Database

noSuchJob,jobno)

missingJob,jobno))

send(IO,error(missingJob,jobno))

db:Database :IOSystem

error(missingJob,jobno)

SD DBIllegalOrderForBid

:IOSystem

jobno:Job

send(IO,error(missingJob,jobno))

SD DBMissingOrderForBid

IO |> error(h,missingJob,jobno)

msg(IO,errResponse(h**,noSuchJob,jobno)

IO <| errResponse(h**,

msg(IO,error(h*,missingJob,jobno))

 IO <| (error(h*,

IO |> error(h,missingJob,jobno)

msg(IO,jBid(jobno, h,v))
IO <| jBid(jobno, h,v)

msg(IO,cancelled(jobno, h*,v*))
IO <| cancelled(jobno, h*,v*)

IO <| jBid(jobno, h*,v*)

msg(IO,errResponse(h**,jobExists,

jobno,buffno,w,s))

IO <| errResponse(h**,jobExists,
jobno,buffno,w,s))create(jobno,

buffno,w,s)

IO <| jBid(jobno, h*,v*)

SD DBIllegalBid

error(missingJob,jobno)

db:Database

when

not database.job−>includes (jobno)when

when bidder = self

negotiation start

not database.job−>includes (jobno)

Figure 34: Missing jobs for bids

However, there is also the need for the specification of constraints which
cannot be specified by condition labels, since they also affect data not vis-
ible in the diagram. For example, the message getExecInfo in the sce-
nario DBtakesWP is only sent to the first job in the job queue. This could be
specified by a condition like database.jobQueue->first = jobno. These
constraints can be formulated by an extension of OCL’s navigation mech-
anism to relationships between capsules.

Again, a problem is the scope of such constraints. Parameters like
jobno must be defined to be variables for a particular sequence diagram.
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send(T,job(location1, location2))

getExecInfo

SD DBreleasesWP

jobno:Job :Database

T <| getNextJob

T |> job(location1, location2)

msg(T,getNextJob)

SD DBtakesWP

:IOSystem

:IOSystem

destroy

T <| jFinished (jobno, h, w, wp)

:Databasejobno:Job

msg(T,jTransporting(jobno, h, w, wp)

T <| jTransporting (jobno, h, w, wp)

msg(T,jFinished(jobno, h, w, wp))

when database.job−>includes (jobno)when

database.job−>includes (jobno)when

database.job−>includes (jobno)

Figure 35: Response of the database on transport messages

Further, it has to be defined how such scopes of parameters are affected
by the combination of two SDs via condition labels. Also, to support
constraints like the one mentioned above, it is necessary to extend the
notation of condition labels we have adapted from [IT96].
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8 Third Iteration: Deriving Behavior De-

scriptions

In this Section, we develop behavior specifications for the capsules iden-
tified above, using UML-RT statecharts. Using the generation algorithm
presented in [KGSB99, Krü00a], this development step seamlessly inte-
grates with the development of scenarios and capsule structures presented
in the previous Sections. Behavior models of the capsules can be generated
fully automatically. The generated statecharts can mark the starting point
for the development of the behavior of the capsules. The early models will
usually be neither complete nor as detailed as needed for implementation
purposes. Nevertheless, they cover all important aspects of the system
to be developed. Using refinement steps for each aspect which has to be
added or reconsidered, the generated models are transformed into more
detailed and implementation specific ones. This is the actual work which
has to be carried out by the developer.

In the following, we will focus on a high level design of the transport
system. In particular, we will consider the automatic generation of state-
charts from the sequence diagrams developed in the previous Sections. We
will consider the conditions necessary for the generation, but also some in-
termediate results of the generation in order to discuss the adequateness of
the algorithm for the UML-RT modeling languages. Further, we will dis-
cuss refinements which address constitutional design decisions to provide
evidence that the generated models and UML-RT statecharts used in our
approach are a useful combination within practical system development.

8.1 The Transformation Algorithm - an Overview

Before we turn toward the concrete models, we recall the basic steps of
the transformation algorithm from and discuss some principal questions
concerning its application in our setting. Details can be found in [KGSB99,
Krü00a]. The generation algorithm consists of the following five steps:

Projection: We are to generate one statechart for each capsule. For be-
havior of the capsule, only the lifeline in the sequence diagrams which
represent the capsule to be processed is of interest.

Normalization: The principal question in the generation is which inter-
action traces are defined by a given set of sequence diagrams, i.e. at
which points in the execution traces the modeled scenarios occur.
This information is taken from conditions which appear in the se-
quence diagrams: the corresponding scenarios can occur at a point
in an execution trace if the state condition are fulfilled at this point.

To allow the sequence diagrams to be processed in a uniform way,
they are normalized: Each SD has an initial and a postcondition. The

46



precondition must be met before the scenario starts, and the post-
condition is established at the end of the SD. If a sequence diagram
does not have a condition at the beginning or the end, a condition
initial is added as prerequisite / postcondition. A SD starting with
this condition can occur at the beginning of an execution, and at any
point when it is established by the postcondition of the preceding
scenario. If a sequence diagram has more than two conditions, it is
split into two or more sequence diagrams with exactly two conditions.

Transformation into an SD-Automaton: Since conditions represent
states and we have sequence diagrams which start and end in such
a state, sequence diagrams can be taken as transitions to generate
an automaton describing the high-level behavior of the capsule: the
SD-automaton.

Transformation into an automaton: Each sequence diagram is repla-
ced now by the concrete interactions. For each sent or received mes-
sage, a single transition is generated. Each two subsequent transitions
are separated by an intermediate state.

Optimization: The resulting automaton usually can be optimized in sev-
eral ways. For example, standard algorithms like removing ε-transi-
tions and/or making the automaton deterministic can be applied.
Other optimizations include e.g. the merge of a set of transitions
into a single transition. Examples will be discussed in the following
sections.

8.1.1 Application of the Algorithm on UML-RT

The steps 1-4 of the algorithm can be applied almost straightforward to
UML-RT sequence diagrams to generate UML-RT statecharts. Details
regarding these steps are discussed in the following sections. Only the
optimization step needs to be considered in-depth. Since it depends on
the semantics of sequence diagrams and statecharts which optimizations
are “legal”. In this subsection, we discuss some optimizations which are
legalized by the behavioral semantics of UML-RT. These optimizations are
applied in the Sections 8.2 through 8.4.

UML-RT statecharts are based on an asynchronous execution model.
This means, that the time instance when a transition fires is chosen in
a nondeterministic manner. This is described in more detail in [San00]19.
The semantics ensures only that the transition fires not before the triggering
conditions become true, and the delay is finite. Based on this semantics,
we are allowed to merge subsequent transitions into one for additional
conditions:

19Other variants of automata fix the time instance of the firing of transitions deterministic.
For example, [Inc02, Gmb02] enforce specification of a tact rate of a discrete global clock. Each
automata in a system fires on transition when the clock ticks. We use such an execution model
in InTime when we move to implementation and verification in the development process.
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• An action transition (e.g. a send operation) can be merged with
an immediately preceding triggering transition (e.g. rec Database

bidder(h’), if the intermediate state possesses no other incoming or
outgoing transitions..

• Also –on the same condition– subsequent action transitions can be
merged into a single transition provides that it preserves the ordering
of the actions20.

• If an intermediate state has two incoming or two outgoing transitions,
as illustrated in Figure 36, then the transformations mentioned above
are legal if they are legally carried out on both branches.

triggered by: {cond 1}
action: {act 1}

action: {act 1}

triggered by: {cond 1}

action: {act 2}

triggered by: {cond 1}
action: {act 2} action: {act 1}action: {act 1}

triggered by: {cond 2}triggered by: {cond 1}

action: {act 1}

triggered by: {cond 1} triggered by: {cond 2}

Figure 36: Examples for optimizations

• Of course, similar transformations are possible for more complex situ-
ations. We do not consider them here because they lead to significant
structural changes of the resulting statechart. Thus, they can rep-
resent serious obstacles for traceability. If convenient, they can be
applied manually.

The rules above eliminate superfluous states and transitions in the gen-
erated statechart. The resulting statechart is not minimal. We do not
apply the known minimization algorithms and further optimization algo-
rithms from automata theory like removal of ε-Transitions or non deter-
minism (as shown in [HU79] and others) for methodological reasons:

We plan to extend our approach towards an incremental development
process. The resulting statechart is only the starting point of the design
process of the system’s components. Thus, it will be refined in many
further design steps. To be able to deal with common situations such as
the addition or change of requirements during the design phase, we aim at
structure preserving transformations that facilitate traceability of changes
in scenarios and/or design.

For this reason, we impose a constraint on the application of the mini-
mization steps presented above: No state generated from a condition label
may be deleted by a minimization step.

20This optimization corresponds with common notions of refinement. This behavior corre-
sponds to firing of the first transition with the same delay and the firing of the subsequent
merged transitions without delay. This is a legal behavior for the non optimized statechart.
Thus, the optimization leads to a more deterministic timed behavior.
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8.2 Developing a Behavior Description for the

Disponent

N |> getStatus

IOD |> jOrder(jobno, buffno, w, s)

Disp.

IOD |> jOrder(jobno, buffno, w, s)

IOD |> jEndOfNegotiation(jobno)

Disp.

N <| status

N <| bid(v’)

IOD <| jBid(jobno, h, v)

N |> inqueueJob(jobno)

N |> getStatus

N |> getBid(jobno)

N <| bid(v’)

IOD |> jEndOfNegotiation(jobno)
N |> getBidder(jobno)

N <| bidder(h’)

SD DispNegotiationOfOrderL SD DispNegotiationOfOrderO

N <| status

N <| getBid(jobno)

opt

idle

compute

when h’ = h

when v’ > v

when idle

bid v

when v’ <= v

compute
bid v

when idle

idle

Figure 37: Projection of the scenarios on the lifeline of the disponent

For the generation of a statechart which specifies the behavior of the
disponent, we have to consider only the sequence diagrams shown in Fig-
ures 23 and 24. In the first step of the generation, the sequence diagrams
are projected on the lifeline representing the disponent, as illustrated in
Figure 37.

The next step is to normalize the sequence diagrams. Start and end con-
ditions are given. We only have to split the sequence diagrams into smaller
ones because of the conditions v′ ≤ v, v′ > v and h′ = h. Because the se-
quence diagram HTSNegotiationOfOrderO and HTSNegotiationOfOrderL

coincide in their first part, we get one sequence diagram twice and can
omit one copy. The treatment of logical conditions requires an extension
of the generation algorithm in as presented in [KGSB99, Krü00a] where
only condition names are considered. For condition labels which only con-
tain logical conditions, we need to introduce condition names in order to
maintain the ordering relation of the SDs shown in Figure 37. Unique
condition names for each label could be generated automatically . How-
ever, since these conditions carry important state information, we suggest
to perform this step manually by specifying suggestive names. A further
minor extension is needed to treat alt- and opt-boxes: They need to be
syntactically transformed into a set of sequence diagrams which represent
the cases. This split is straight forward, thus we do not discuss this step
in detail here. The result of the normalization is shown in Figure 38.

From these SDs, a SD automaton can be generated. Again, logical con-
ditions require a slight extension of the generation algorithms. They always
occur at the start of an sequence diagram as preconditions of the following
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N |> getStatus

N <| Status

N |> getBid(jobno)

Disp.

Disp.

Disp.

N |> getBidder(jobno)

N <| bidder(h’)

IOD |> jEndOfNegotiation(jobno)

IOD <| jBid(jobno, h, v)

IOD |> jEndOfNegotiation(jobno)

SD TooExpensive SD NegotiationLost

SD GotTheJobSD SubmitBidSD ComputePrice

Disp.

Disp.

N |> inqueueJob(jobno)

IOD |> jOrder(jobno, buffno, w, s)

N <| bid(v’)

when idle
idle

when winner determined & h’ = h

when winner determined & h’ != h

idle

bid v
compute

bid computed 

winner determined

idle

when bid computed & v’ > v

when bid computed & v’ <= v

Figure 38: Adding missing state conditions to the sequence diagrams

sequence. Thus, they are attached as preconditions to the corresponding
transition in the SD automation. For the disponent, this generation step
leads lead to the SD automaton shown in Figure 39:
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bid computed

winner determined

idle

Figure 39: SD automaton for the disponent

This automaton is the basis of the generated statechart. The next au-
tomatic step is simple: Each transition labeled by an sequence diagram is
replaced by a sequence of transitions and states. For transitions which also
contain a precondition resulting from the extension of the generation algo-
rithm, this precondition is added as a precondition to the first transition
of the sequence by which the “sequence diagram transition” is replaced.
This leads to the statechart shown in Figure 40.

The statechart generated by this simple algorithm already serves as a
good starting point for the development of a statechart for the disponent.
Still, some parts of the chart are unnecessarily complex. However, we can
reach a significant reduction of the complexity by applying the optimiza-
tions discussed in section 8.1.1. Figure 41 shows the application of these
optimizations on the generated statechart.

We omitted the optimization for one state: We haven’t reduced the
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action: {send N getBid(jobno)}

triggered by: {rec N bid(v’)}

triggered by: {rec IOD jOrder(jobno, buffno, w, s)}

action: {send N getBidder(jobno)}

triggered by: {rec N bidder(h’)}

triggered by: {rec IOD jEndOfNegotiation(jobno)}

action: {send IOD jBid(jobno, h, v)}
triggered by: {v’ > v}
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bid computed

idle

winner determined

Figure 40: Generated statechart for the disponent

triggered by: {rec IOD jOrder(jobno, buffno, w, s)}
action: {send N getStatus}

triggered by: {rec N Status}

action: {send N getBid(jobno)}

triggered by: {rec N bid(v’)}

action: {send N getBidder(jobno)}
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action: {send IOD jBid(jobno, h, v)}

triggered by: {rec IOD jEndOfNegotiation(jobno)}
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Figure 41: An optimized statechart for the disponent

state compute bid v because this state is subject to refinement in later
development steps. Since such decisions need interaction with the devel-
oper, we suggest to perform the first four steps of the generation algorithm
fully automatic, and perform the optimization step with tool support in-
teractively.

8.3 A Statechart for the SingleJobControl

The generation of statechart for the capsule SingleJobControl starts
with projections of sequence diagrams from the Figures 25, 26 and 27.
The projected SDs are shown in Figure 42. The normalization of the SD
SJCWaitingForJob and the following steps are straightforward, the gener-
ation yields the statechart shown in Figure 43.

Of course, this statechart can be refined in numerous ways. For ex-
ample, we use a very simple communication protocol between the Single-
JobControl and the database here. Surely, it is not appropriate for an
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RP |> releasePlace

RP <| requestPlace

location2)
T <| job(location1,

T <| noJob

T |> getNextJob

SD SJCreleasesWPSD SJCtakesWPSD SJCWaitingForJob

IOSJC <| jFinished (jobno, h, w, wp)

:SingleJobControl

IOSJC <| jTransporting (jobno, h, w, wp)

:SingleJobControl

alt

:SingleJobControl

RWP <| requestWP(wp)

RWP |> releaseWP(wp)

newJob

idle

newJob transport

drive to

when

location2

transport

idle

when

drive to

idlewhen

location1

Figure 42: Input SDs for the generation of the SingleJobControl
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action: {send T getNextJob}

action: {send IOSJC jTransporting(jobno,h,w,wp)}

action: {send RWP requestWP(wp)}

triggered by: {rec RWP releaseWP(wp)}

action: {send RP requestPlace}
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new Job

drive to location 1

drive to location 2

idle

Figure 43: A statechart for the SingleJobControl

implementation since it involves busy waiting. However, for the moment
we are interested in a conceptual model. Thus, the simplicity of the proto-
col gained by avoiding message queuing and timing concerns is convenient
at this state of modeling. We can refine this protocol to an efficient one
by applying interface refinement on the interface towards the database,
letting the database actively signal when a new job has been successfully
negotiated. We also will refine the states drive to location1 and drive

to location2 into a sub chart which controls the traveling. This is sub-
ject to future work on the application of refinement calculi on UML-RT
models, especially with respect to the treatment of real-time aspects.

8.4 A Statechart for the Database

In Section 7, we have refined the database into a container capsule which
delegates a part of the interaction at its ports to a set of sub capsules:
Job capsules maintain job information and the forwarding of received and
sent messages is performed by the sub capsule IOSystemDB. The container
capsule Database is responsible for the creation and deletion of job capsules
and for the maintenance of job independent status information. Thus, the
generation of behavior models needs to consider the respective capsules.
In this presentation, we restrict ourselves on the generation of the behavior
of the database and the job capsule. Since the database is involved in all
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scenarios of negotiating and executing transport tasks, we have to deal
with a more complex set of scenarios here.

8.4.1 The Database

IO |> send(N, status)

IO <| msg (N, getStatus)

register(jobno)
J <| create(jobno,buffno,w,s)

IO <| msg(IO,jOrder(

J <| getExecInfo

IO <| send(T, noJob)

IO <| msg(T, getNextJob)

SD HTSInitP

:Database

IO |> prodProg(p)

SD DBNegotiationOfOrderSD DBreleasesWP

IO <| msg(IO, inqueueJob(jobno))

IO <| msg(T,jFinished(jobno, h, w, wp))

J <| destroy

:Database

alt

msc DBWaitingForJob

:Database

(jobno, buffno, w, s))

readStatus

db: Database

append(jobQueue, jobno)

opt

exists database−>jobnowhen

not database.job−>includes (jobno)

idle

when

idlewhen

idle

when

when

database.job−>includes (jobno)when database.job−>includes (jobno)

idlewhen

not empty(jobqueue)when

idle

empty(jobqueue)when

idle

idle

init

Figure 44: Refined SDs for the database

Let us start with the database: For this component, we have specified
almost no state information until now, only that the sequence diagram
HTSInitialization ends in the state idle. Leaving it with that for the
generation would yield a statechart which was surely not intended: All
sequence diagrams start in an initial state and end in the same state ex-
cept HTSInitialization which would end the execution. At this point,
the developer has to decide which ordering of the sequence diagrams is
important for the database.

Similar to the components generated in the previous sections, we need
to specify state information regarding the execution ordering of the SDs.
However, the ordering of the actions of the database need not to follow
the complete negotiation scenarios. For the database, it suffices to identify
transactions which need to be carried out atomically to ensure consis-
tency. This can be specified by adding explicit state conditions that the
database returns to a listen state – also named idle – after each mes-
sage request. Thus, we reconsider the sequence diagrams for the database,
and specify the state conditions shown in the projection of SDs in the
Figures 44 and 45. For brevity, we skipped the projection of the SD
HTSNegotiationOfOrderL (Fig. 23) and of trivial sequence diagrams such
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db:Database

IO |> send(IO,error(dublicateJob,jobno)

loop<0, inf>

db:Database
db:Database

buffno,w,s) register(jobno)

IO <| msg(IO,errResponse(h*,jobIsNew
,jobno,buffno,w,s))

IO <| msg(IO,errResponse(h**,jobIsNew,...))

buffno,w,s)
J <| create(jobno,

jobno,buffno,w,s))

IO <| msg(IO,errResponse(h*,jobExists,

IO <| msg(IO,cancelled(jobno, h*,v*))

IO <| msg(IO,jOrder(jobno, buffno, w, s))

IO <| msg(IO,error(missingJob,jobno))

IO <| msg(IO,errResponse(noSuchJob,jobno)

IO |> send(IO,error(dublicateJob,jobno))

IO <| msg(IO,errResponse(w,Cancelled,jobno))

J <| create(jobno,

db:Database

IO |> send(IO,error(missingJob,jobno))

error(missingJob,jobno)
db:Database

J <| destroy

J <| destroy

IO |> send(N,error(missingJob,jobno)

IO |> send(IO,error(missingJob,jobno))

error(missingJob,jobno)

SD DBMissingOrder SD DBIllegalBid

SD DBIllegalOrder

SD DBMissingOrderForBid

SD DBIllegalOrderForBid

IO <| msg(IO,jOrder(jobno, buffno, w, s))

when
when idle

idle

when database.job−>includes (jobno)

idle

bidder = self

when idle

when

when database.job−>includes (jobno)

idle

idlewhen

idle

idle

idle

when idle

Figure 45: Refined SDs for the database

as HTSListen1 in the presentation21. Since the order of the messages occur-
ring in negotiations and transport tasks are not relevant for the database,
they do not affect the state of the database. This is made explicit by
adding condition labels that show that the database always returns to the
idle state after the processing of each message.

From these scenarios, the steps 1 to 4 of the generation algorithm (with-
out the optimization) yield the statechart shown in Figure 46. Obviously,
this statechart is too complex for a readable specification. This reflects the
fact that the database has to carry out by for most of the interactions of
the components we have considered.

Fortunately, the complexity of Figure 46 can be reduced significantly:
First, in many cases subsequent transitions can be combined to single tran-
sitions by the optimizations presented in Section 8.1.1, Figure 36. We defer
this optimization step in support of a more powerful improvement: refining
the statechart into a hierarchical statechart by wrapping single states and
transitions into a hierarchical state. Carrying out this refinement before
the optimization avoids that this step combines transitions which should
belong to different levels of abstraction in the hierarchical chart. The op-
timizations are applied on the toplevel statechart and each sub statechart
afterwards.

The Figure 47(a) shows the toplevel statechart of the refined behav-

21Please recall from Section 7.3 that the database capsule is not involved in the forwarding
of job information. This is handled directly by the IOSystem and the respective job.

54



triggered by: {rec IO msg(IO, jOrder(jobno, buffno, w, s)}

action: {destroy(jobno)}

triggered by: {rec IO prodProg(p)}

triggered by:{not database−>job includes jobno}

action: {send IO send(IO, error(dublicateJob,jobno)}

triggered by:{database−>job includes jobno}

action: {create(jobno,buffno,w,s)}

triggered by: {rec IO msg(IO, errResponse(w,cancelled,jobno)}

action: {send IO send(N,status}

triggered by: {rec IO msg(IO, getStatus}

triggered by: {rec IO msg(IO, errResponse(h**,jobIsNew,...)}

triggered by: {rec IO msg(IO, errResponse(h*,jobIsNew,jobno,buffno,w,s)}

triggered by: {rec IO msg(T, jFinished(jobno,h,w,wp);

triggered by: {database−>job includes jobno}

action: {remove(joblist,jobno);destroy(jobno)}

action: {create(jobno,buffno,w,s)};

triggered by: {rec IO msg(IO,cancelled(jobno,h*,v*)} (h**,jobExists,jobno,buffno,w,s)}triggered by: {rec IO msg(IO, errResponse

action: {send IO send(IO, error(missingJob,jobno)}

triggered by: {rec IO error(missingJob,jobno)}

action: {register(jobno)}
action: {init(v=inf)}

action: {create(jobno,buffno,w,s)}

action: {append(jobQueue,jobno)}

triggered by: {rec IO msg(IO, inqueueJob(jobno))}

triggered by: {database−>job includes jobno}

action: {register(jobno)}

action: {init(v=inf)}

triggered by: {empty(jobqueue)}

triggered by: {rec IO msg(T,getNextJob)}

action: {send IO send(T,noJob)}

action: {send firstJob sndExecInfo(T)}

triggered by: {rec IO msg(IO,error(h*,missingJob,jobno)}

(h**,noSuchJob,jobno)}triggered by: {rec IO msg(IO, errResponse

action: {send IO send(N,error(missingJob,jobno))} action: {destroy(jobno)}

triggered by: {not empty(jobqueue)}

idle

init

�������
�

Figure 46: Statechart for the database without optimizations

ior specification. It summarizes the treatment of job orders, missing and
duplicate jobs and the deletion of jobs in individual sub statecharts, lead-
ing to a clear structuring of the behavior of the database. We could have
refined the database capsule further by separating the maintenance of sta-
tus information of the HTS and of the job queue by isolating them in an
individual capsule of by introducing an uniform communication protocol.
Since we focus on the application of the generation algorithm from SDs to
statecharts here, we do not discuss further refinements in detail.

Also, the sub statecharts the database can simplified significantly by
optimizations and refinements: The sub statechart treat new order in
Figure 47(b) specifies the treatment of orders in a more compact manner
than Figure 46 by applying the optimizations from Section 8.1.1, Figure 36.
Again, first a refinement step has been carried out: joining the two separate
paths from Figure 46 which create a new job capsule into a single path
before combining the involved interactions into a single transition.

The sub statechart delete finished job in Figure 47(c) shows an
important advantage of the use of combining the strengths of SDs and
statecharts in the development process using our generation algorithm:
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triggered by: {rec IO prodProg(p)}

triggered by: {rec IO error(missingJob,jobno)}

triggered by: {rec IO msg(IO,error(h*,missingJob,jobno)}

triggered by: {rec IO msg(T, jFinished(jobno,h,w,wp);

triggered by: {rec IO msg(IO, jOrder(jobno, buffno, w, s)}

triggered by: {rec IO msg(T,getNextJob)}

triggered by: {rec IO msg(IO, getStatus}
action: {send IO send(N,status)}

inqueue_job

triggered by: {rec IO msg
(N, inqueueJob(jobno))}

jobIsNew,...)}triggered by: {rec IO msg(IO,errResponse(h**,

triggered by: {empty(joqueue)}
action: {send I send(T,noJob)}

action: {send firstJob sndExecInfo(T)}
triggered by: {not empty(joqueue)}

idle

treat_new_order

treat_missing_job

delete_finished_job

treat_duplicate_job

init�������
�

(a) Toplevel statechart

triggered by: {rec IO msg(IO, errResponse(h*,jobIsNew,jobno,

triggered by: {rec IO msg(IO, Erresponse(w,cancelled,jobno)}

register(jobno)}init(v=inf);action: {create(jobno,buffno,w,s);

treat_new_order

triggered by:{not database−>job includes jobno}

buffno,w,s)}
action: {destroy(jobno)}

triggered by:{database−>job includes jobno}
action: {send IO send(IO, error(dublicateJob,jobno)}

(b) Substatechart treat new order

action: {send IO send(N, error(noSuchJob,jobno)}

triggered by: {rec IO msg(IO, errResponse(h*,jobExists,jobno,buffno,w,s)}
register(jobno)}init(v=inf);action: {create(jobno,buffno,w,s);

triggered by: {rec IO msg(IO, errResponse(h*,doesnotexist,jobno)}

inqueue_job
triggered by: {not database−>job includes jobno}

action: {append(jobQueue,jobno)}

action: {send IO send(IO, error(missingJob,jobno)}

triggered by: {database−>job includes jobno}

(c) Substatechart inqueue job

Figure 47: Toplevel statechart for the database

The scenarios developed in the previous sections do not cover the case when
a job to be deleted does no longer exist due to previous communication
errors similar to the scenarios considered for duplicate and missing jobs.
Such incompletenesses can be easily detected in statechart specifications
and fixed by specifying appropriate alternatives as shown in Fig. 47(c).

Of course, our model is also far from being complete: We haven’t
covered a lot of errors so far, and we could also think of extending the
state model to further data structures such as the job queue (e.g. empty,
nonempty). However, in this report, we are in conceptual models. There-
fore, we leave such refinements of the model to further development steps
transforming this model into an implementation.
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8.4.2 A State Model for Jobs

The generation of a statechart for the capsule Job uses the sequence dia-
grams DBNegotiationOfOrder, DBtakesWPintern, DBreleasesWPintern
and also the sequence diagrams which deal with error handling and cre-
ate or destroy jobs. Again, we have specified no state information on the
lifelines of the capsule job in the named sequence diagrams so far. The
projections of the SDs with added state conditions are shown in Figure 48.
For short, the figure shows only a subset of the scenarios dealing with the
handling of errors.

:Job

D <| destroy

:Job

:Job

D <| destroy

D <| create(jobno,buffno,w,s)

D <| create(jobno,buffno,w,s)

IO <| msg (N,getBid)

:Job

IO <| msg (w, jEndOfNegotiation)

IO <| msg (N, getBidder)

IO |> send (N, bidder(h’))

IO <| msg (h*, bid(jobno,h*,v*))

IO |> send(T,job(location1,location2))

:Job

IO |> send (N, bid(value))

:Job

:Job

SD JobNegotiationOfOrderP1

SD JobNegotiationOfOrderP2

SD JobMissingOrderForBid

SD JobNegotiationOfOrderP3

SD JobNegotiationOfOrderP4

SD JobIllegalOrderForBid

SD JobreleaseWPP

SD JobtakesWPP

D <| getExecInfo

:Job

readStatus

IO <| msg(T, jTransporting(jobno,h, w, wp)) 

when

accepted

accepted

transporting

when transporting

when

ready for bids

ready for bids

any_state

ready for bids

ready for bids

ready for bids

ready for bids

ready for bids

Figure 48: Normalized sequence diagrams for the capsule job

In the modeling approach taken in Figure 48, the state model of the
capsule job follows closely the states of the actual job which is negotiated
and executed. This design decision follows a common design pattern to
concentrate the information model of a task which has to be carried out
by the system into a separate capsule class. The start and termination of
computations of job need not to be specified by conditions since they are
implicitly specified by creation and destruction of the capsule class.

Still, we need to pay attention to the interrelation with the error han-
dling. When a job is created during an error recovery procedure, the new
created job needs to be put in the same state as its counterparts in other
databases since this state reflects the state of the negotiation or execution
of the respective transport. The scenario JobIllegalOrderForBidP1/2/3
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leads to the state ready for bids – the same start as the regular creation
of the job. The destruction of jobs in the course of an error handling pro-
cedure can occur at any time during the lifetime of a job. This is expressed
by the condition any state in the SD JobMissingOrderForBid. Apply-
ing the generation algorithm on these scenarios, we obtain the statechart
shown in Figure 49.

triggered by: {rec D destroy}

action: {send IO send(N, bidder(h’)}

triggered by: {rec D destroy}

triggered by: {rec D create(jobno,buffno,w,s)}

triggered by: {rec IO msg (h*, bid(jobno,h*,v*)}

triggered by: {rec IO msg(IO, jEndOfNegotiation)}

triggered by: {rec IO msg(IO, getBidder}

triggered by: {rec IO msg(T, jTransporting(h, w, wp))}

action: {send IO send(N,job(location1,location2))}
triggered by: {rec D getExecInfo)}

        transporting

ready for bids 1

finished

triggered by: {rec IO msg(IO,getBid)}
action: {send send(N, bid(value)}

�������
�

Figure 49: A statechart for the capsule job

Again, this statechart is only a prototype which represents the starting
point of the design process. For example, the ordering information in the
job statechart can be used to detect additional protocol errors, e.g. de-
tecting jTransporting messages before the end of the negotiation. Such
extensions can be added in the course of subsequent development steps.

8.5 The IOSystem

The remaining capsule within the HTS is IOSystem. The IOSystem is in-
volved in almost any communication but - analogous to the database - it
does not care about the order of the messages, it just forwards them to the
addressee. Since we didn’t add any scenarios which require state informa-
tion, the statechart of the IOSystem is trivial: One state and one looping
transition for each message type. Nevertheless, it is possible to develop
useful statecharts for this capsule: For example, a protocol could be added
which allows the sub capsules of the HTS system to notify the IOSystem
about messages in which it is interested, to allow a flexible message for-
warding. Further, we could think of recovery strategies for communication
errors. These mechanisms can be introduced by applying interface refine-
ment. Thus, the generation of a statechart for the IOSystem capsule is
not interesting at the stage of development considered in this report but
only at a more implementation oriented stage of development. Since tech-
nical modeling and interface refinement is out of scope of this report, the
statechart is omitted here.
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9 Conclusion

We have presented an approach at incorporating broadcast communica-
tion into the modeling of architectural design using UML-RT. We have
shown that by means of only few syntactic extensions we can employ the
UML’s sequence diagrams for transparently capturing broadcasting scenar-
ios. This enables concentrating on use cases and service-oriented specifica-
tion techniques also in the development process for broadcasting systems.
Making these extensions an integral part of the language allows both for a
compact modeling of broadcasting and for adopting these aspects system-
atically into the systems architecture. Furthermore, integration of timing
aspects, such as the durations of communications, can be easily integrated
along the lines of what is already available for regular sequence diagrams
in the UML [Rat98]. To cope with the complexity of “real” systems, no-
tational extensions taken from message sequence charts have proven to be
useful; especially the concept of condition labels allows to split complex
scenarios into manageable parts. With these extensions, sequence dia-
grams can be used to describe interaction scenarios at any level of detail,
although the notion of refinement of scenarios can only be mimicked within
their syntax; yet there is no immediate support for their refinement.

To model broadcasting at the level of architecture, we have introduced
and employed a pattern for capturing broadcasting by means of explicit
components on all levels of the component hierarchy. This introduces
broadcasting seamlessly on the basis of UML-RT’s binary communication
model. Dealing with broadcasting explicitly on the level of a logical archi-
tecture of the system under consideration has several advantages. It sup-
ports classical top-down structural system decomposition, and introduces
a flexible, adaptable, and configurable communication mechanism we can
exploit during further stages of requirements analysis and specification.

Using the algorithm developed in Section 5.2 and a the algorithm pre-
sented in [KGSB99], a prototypical architecture can be generated auto-
matically from broadcasting scenarios captured by means of SDs. The re-
sulting model includes all essential architectural aspects: component struc-
tures, component interfaces, and communication structures are described
by capsule diagrams and protocols, and component behavior is described
by UML-RT statecharts. The generated diagrams provide a high level ar-
chitecture description and are ideally suited to serve as a starting point for
the actual design of the system to be developed, because they guarantee
consistency with the requirements analysis by construction. The level of
detail at which a prototype of the systems architecture is generated can be
freely chosen by the developers: As we have shown, exploring interaction
requirements and developing the systems structure is an iterative process,
and the generation of an architecture can be applied at an abstract level
as well as at the level of refined scenarios. The initial architecture can be
refined in subsequent development steps: For example, new messages can
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be introduced or entire interaction protocols can be reorganized in order
to develop more general capsule interfaces. A structuring of these develop-
ment steps can be based on formal notions of refinement, even supported
with guidance given by constructive rules (see for instance [Krü00a]).

With UML-RT, we have employed a powerful and widely used model-
ing language to demonstrate the benefits of our approach. Yet, the basic
concepts are not limited by dependencies on specifics of the language: Ar-
chitectural description techniques such as provided by UML-RT will also
be essential improvements of the standard UML in its version 2.0. Our
approach has the potential to support the integration of flexible commu-
nication regimes beyond broadcasting into arbitrary software architecture
descriptions. Incorporating this support as a general design principle into
corresponding case tools, which includes the integration of notational ex-
tensions into a formal semantics of UML-RT, is a necessary and promising
area of further development of our approach.
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