T UM

INSTITUT FUR INFORMATIK

Designing, Documenting, and Evaluating Software
Architecture

David Bettencourt da Cruz, Birgit Penzenstadler

TUM-10818
Juni 08

TECHNISCHE UNIVERSITATMUNCHEN

TUM-INFO-06-10818-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©2008

Druck: Institut f ur Informatik der
Technischen Universit at Munchen

Designing, Documenting, and Evaluating
Software Architecture

David Bettencourt da Cruz Birgit Penzenstadler
June 25, 2008

Abstract

Part of any engineering discipline is the use of systematic, repeatable
and traceable processes, methods and procedures. Software architecture
is a branch of the discipline of software engineering. However, software
architecture design, documentation and evaluation is still lacking a sound
basis of systematic, repeatable and traceable procedures. At present soft-
ware architecture is still more of an art open only to skilled and experi-
enced experts rather than an engineering discipline open to the majority
of software engineers.

As software systems become more and more complex the importance of
software architecture throughout the whole development cycle increases.
Software architecture is not only a means to tackle complexity of large
software systems but also a means to enable system qualities. Hence, it
is becoming more and more important to include software architecture
engineering into the software engineering discipline and the software de-
velopment process.

In this report we present systematic, repeatable and traceable methods
of developing, documenting and evaluating software architectures in order
to provide a basis for further research.

Keywords: ATAM, POSAAM, POSA, Architecture Analysis, Archi-
tecture Evaluation, Architecture Documentation, Architecture Construc-
tion, Software Patterns.

Acknowledgement: We would like to thank Gerd Beneken for his
valuable comments and feedback.

Contents

Introduction

Running example: Navigation system

2.1 Business Needs oo .
2.2 Requirements Specification 000
2.3 System Specificationo oL o
2.4 Project Plan and Management

Designing an Architecture

3.1 Directive Criteria
3.2 Functional Criteria,
3.3 Quality Criteria oo
3.4 Architectural Criteria L.
3.5 Decomposing the system according to the criteria
3.6 Further guidance L.

Documentation
4.1 Shortcomings of Architecture Documentation
4.2 Documenting Layers, Views, and Rationale

Shortcomings of Common Architecture

Analysis Methods

5.1 Analysis of the Systematic Guidance for Architecture Evaluation
in ATAM e

5.2 Goals for a New Qualitative Architecture Evaluation Method . .

Evaluating an Architecture Using POSAAM

6.1 Moving from Requirements to Patterns

6.2 Networking: Using Pattern Relations

6.3 Using Pattern Knowledge for Evaluation

6.4 Special Issues oL oL
6.4.1 Evaluating Using Principles
6.4.2 Structuring Expertise Stored in Patterns.

Related Work

Conclusion
8.1 How the goals of POSAAM have been addressed
8.2 Furtherwork

References

11
11
12
13
14
14
16

18
18
19

24

24
26

27
28
28
29
30
30
32

35

37
37
38

43

1 Introduction

Besides the fulfilment of functional requirements, quality requirements have be-
come an important factor to the success of software products. It is generally
recognized that the software architecture has an influence on the quality at-
tributes of a system [3]. However, the task of systematically designing software
architectures has not been discussed thoroughly. Furthermore, the role of soft-
ware architecture is not limited to early blueprints and the organization of the
division of labour during development, but also serves as basis for understanding
a system and later on integrating and evolving it. This wide-stretched notion
of architecture requires not only to analyse and explain the design, but also
the documentation of an architecture. Finally, when laying an emphasis on the
quality attributes of a system, the continuous analytical and constructive qual-
ity assurance during the development process is an obligatory practice. One
of the earliest products in software development and at the same time one of
the most influencing for the overall quality of the development process is the
software architecture specification — the architect’s vision of the system to be
developed. The quality of the resulting system can and should already be as-
sessed at this early stage. At the latest, before starting with the implementation
of the system. As architecture evaluation happens early in development, it can
be a cost effective way to discover misconceptions which could lead to decreased
quality or even costly reengineering of the final software product.

In this report, we detail how to design, document, and evaluate an architec-
ture, illustrated with the example of a navigation system.

We show which criteria other than the quality attributes have an influence
on the software architecture to be developed and how these criteria should be
addressed within the design stage. For this purpose we give an explanation
of the criteria, which are categorized into directive, functional, quality and ar-
chitectural criteria and demonstrate how these should be used to lead to the
systems architectural decomposition.

In software architecture documentation the concept of using views is widely
accepted (e.g. [26, 15]). However, the design of software architecture is largely
a process of considering alternative possibilities and explicitly taking the de-
cision for a chosen alternative for specific reasons. The software architecture
documentation should reflect this process because the decisions taken should be
traceable for development and later evolution and maintenance processes. Our
proposal on how to document software architectures consist of a combination of
using views and of using decision templates as proposed by Tyree et al. [47].

In [16] Clements et al. correctly state that if it is possible to influence a
system’s quality attributes through the system’s architecture, then it must be
possible to determine whether a given architecture has the influence on quality
attributes which is desired. However, the methods available for evaluating soft-
ware architectures do not focus on this aspect of evaluation. Rather do they
set their focus on correctly eliciting requirements and on different aspects of
social engineering during the evaluation process. Furthermore, it is only natu-
ral to discover that the specified architecture does not address the stakeholders

requirements if these were not known to the architect in the first place.

We believe that architecture evaluation should answer the question: “Did
the architect consider the accepted well-known techniques used to achieve the
required qualities? And if not, why?”. To answer this question we analyse what
the accepted techniques to achieve qualities are, i.e. how an architecture should
be designed in the first place, and how this knowledge can be used to perform
an architecture evaluation.

Within our architecture evaluation method we assume that the requirements
have already been elicited and that an architectural description is available.
While the description of quality requirements as scenarios (as defined by [3]),
which is also used in other common architecture evaluation methods [16], is
perfectly useful for us, the description of software architecture we require needs
to be specified before our method can be presented. Therefore we address
the description of software architecture just before presenting our evaluation
method.

Contribution: We explain our understanding of how to construct and doc-
ument architectures. Based on that, we discuss the shortcomings of common
architecture evaluation methods and present a method for architecture analysis
that offers a solution for the described insufficiencies.

Outline: For demonstration purposes we introduce a fictitious example in
Section 2, which we will refer to throughout the remaining sections. We explain
how to include the different influences on the architecture during design in Sec-
tion 3 and how we require architecture to be documented for our evaluation
method in Section 4. In Section 5 we present the shortcomings of traditional
software architecture evaluation methods and derive goals for our own evalua-
tion method POSAAM which is detailed in Section 6. Finally, Section 7 relates
to other work and Section 8 draws conclusions, presents how the goals for eval-
uation methods have been addressed by POSAAM and identify starting points
for further work.

2 Running example: Navigation system

The running example we will use throughout the paper is a car navigation
system, which we will refer to as NAVI. This section describes its requirements,
setting, and constraints. It is a fictitious system of a navigation system featuring
normal address routing and point-of-interest search.

We have structured the presentation of NAVT according to the Requirements
Engineering and Management model (REM) developed by Geisberger et al [23].
Within REM there are three content categories for specification development
artefacts: Business Needs, Requirements Specification, and System Specification
— as can be seen in Fig. 1. Apart from the three content categories, there is
the orthogonal aspect of project planning and management that captures the
process requirements and constraints.

The arrows from left to right indicate the refinement relationships between
the business needs, the requirements specification and the system specification.
This does not imply that the process of developing and refining the requirements
is waterfall-like. The feedback loops contained in REM have been omitted in
the figure for simplicity reasons. The arrows from the content categories to the
project management indicate dependency on the process.

Business Needs Requirements Specification System Specification

Business Objectives Functional Analysis ‘ User Documentation
Customer REQ

Domain Model

System Vision

Functional
System Concept

General Conditions

Scope & Limitations Quality REQ

External Interfaces / Ul

Assumptions &

ROI Dependencies

Business Risk b Design Constraints P ‘ Design Constraints ‘
Sys. Success Factors Acceptance Criteria ‘ System Test Criteria

PM & Project Plan Process Requirements & Constraints

Figure 1: Artefacts of the Requirements Engineering and Management (REM)
Model

In the following we will explain REM only as far as necessary to present our
example, NAVI. For detailed information about REM the reader should refer
to [23].

2.1 Business Needs

The Business Needs capture business objectives and customer requirements, the
system vision, general conditions and constraints, business risks and ROI, and
system success factors. To completely capture the relevant business needs, it
is important to consider all stakeholders, e.g. customers, managers, developers,
hardware suppliers, and service personnel. For the navigation system, some
examples are:

e Business objectives:

— Optimize service for customers.

— Operate on different platforms to be independent of supplier.
e Customer requirement: Easy to handle, comfortable navigation system.

e System vision: Driver assistance system with navigation to geographic
destinations and points-of-interest (POI).

e General conditions:
— Usability: “Handling without looking” according to road traffic reg-

ulations (in Germany: StVO).

— HMI: Given human machine interface (graphical display / input but-
ton).

— Communication: Requires satellite connection.

e Business risks and ROI: adequate marketing to ensure that the customer
realizes the advantages of this particular navigation system.

e System success factors: be first on the market with the privacy feature in
combination with navigation.

2.2 Requirements Specification

The Requirements Specification contains a functional analysis model, a domain
model, quality requirements (including assumptions, dependencies and design
constraints), and acceptance criteria. The functional analysis model contains a
description of functional requirements. For illustration purposes we present a
short list of functional requirements including brief descriptions in the following.
Graphical representations of the functional requirements may also be included
as the use cases depicted in Fig. 2.

Functional requirements

F1 Navigation: The main functionality of the system. Directs the user from
the current location to the chosen destination.

F1.1 Choose destination

NAVI

%

Driver

navigate
JAN JAN

navigate to POI navigate to address
.
! .
. i
D i
i .

.

'
1 <<Include>>

!
y
A V.
A A
select POI by select recent POI Select address from select recent address
category address book

Figure 2: Use cases of the NAVI System

1/ <<Include>>

'
'
y
select

F1.2 List recent destinations
F1.3 Choose route
F1.4 List recent routes
F1.5 Provide alternative route
F1.6 Toggle view (2D / 3D)
F1.7 Expected time of arrival
F1.8 Show current speed
F1.9 Distance to destination

F1.10 Time to destination

F1.11 Adapt view to current speed

F2 Points-of-interest: The points-of-interest are locations of interest of a cat-

egory (e.g. hospital, restaurant, hotel, recreation, ...)
F2.1 Show next POI from current location
F2.2 Distance to next POI
F2.3 Duration to next POI
F2.4 Update of POIs through internet
F2.5 Manual update of POIs

F3 Map: Shows the current location in the map, which is updated as the
system changes its location.

F4 Address administration: Provides functions to administer addresses.

F4.1 Add address
F4.2 Update address

F4.3 Delete address

F5 Route planing: Is used to plan waypoints of a route. May be stored and
loaded in order to guide navigation.

F6 Recording: Records a taken route which may be loaded by the system and
used for navigation.

F7 Driver’s logbook: Can be used to automatically register any movement of
the vehicle.

F8 Customize: Functions used to adapt the system to the users preferences.

F8.1 Display street names in GUI

F8.2 Voice configuration (loudness level, male/female voice, ...)
F8.3 Display colours

F8.4 Face north / face driving direction

F8.5 Speed profile

F8.6 Shortcuts

F8.7 Unit representation (configuration of representation of date, time,
and distance)

F8.8 Automatically enable driver’s loghook
F9 Administrate: Provides the possibility to perform administration tasks.

F9.1 GPS hardware configuration
F9.2 Which maps to use
F9.3 Map update

Domain model: Fig. 3 shows the environment of the system with all users
and interacting systems. The purpose of a domain model is to give all stake-
holders an intuitive overview over the system context. With NAVI, we have the
advantage that everybody knows more or less exactly what this kind of system is
about and what other systems are interacting in the environment of the system.
Still the stakeholders involved in system development tend to make assumptions
about a system’s surroundings, the more expertise stakeholders have in a cer-
tain application domain, the more assumptions they make. This complicates
the communication with other stakeholders who have less knowledge about the
application domain. So the domain model serves mainly to give all stakeholders
the same rough scope of the system’s environment. The domain model shown
in Fig. 3 is modelled from the perspective of the system to be developed (NAVT)
at one point in time. Analogous to the modelling of systems, other models are
also possible and for some applications also necessary.

Driver 1 Satellite

1 0..*
transmits
1| uses uses | 1 1 positioning data
Vehicle 1 has| NAVI 1 1 | Satellite receiver
1 has|
1
1| isin
Environment
street 1 Point of interest
-geographical location . » |-category
s in

Figure 3: A simplyfied domain model for the NAVI system

Quality requirements: Quality requirements concern properties such as ro-
bustness (“How does the system react when it loses the satellite connection?”)
or efficiency (available resources, performance, electricity consumption, ...).
For further demonstration purposes we will define a security quality require-
ment for NAVI. The customization, recent location or POI functions will be
required to be user specific and assumed to contain sensible data. Thus, leading
to the privacy requirement that these data only be available to the user who
produced them or introduced them into the system. This means that a different
driver would not be able to see the recent destinations of other drivers. Fig. 4
illustrates a use case demonstrating this requirement.

To be able to use this example in following sections, it is necessary to express
this quality requirement as a scenario as defined by [3]. We define the following
scenario which we will refer to as Q1:

e Source of stimulus: Driver
e Stimulus: Display information about recent destinations
e Artefact: The list of recent destinations

o Environment: The list of recent destinations contains destinations inserted
by a different driver

e Response: The system displays recent information of the current driver
and does not display information about the recent destinations of any
other drivers

e Response Measure: The response is true.

Acceptance criteria: These are derived from the system success factors.
The success factor “be first on the market” can hardly be transformed into an
acceptance criterion, but the “privacy feature” can be an acceptance criterion.
The acceptance criteria will subsequently serve as input for the derivation of
test cases within the System Specification.

— POI search "medic"
ownsthe LN
car I

NAVI

driver1

select "psychiatrist"
for navigation

driver1 would not
employee of want driver2 to know
driver1, makes | listrecent N\ about his visit to a
regular [TT7777 psychiatrist, therefore
deliveries the system shall list

driver2 recent destinations for
this driver only.

Figure 4: Use case that illustrates the privacy problem of the navigation system

2.3 System Specification

The System Specification includes the functional system concept (first blueprint
of the design), external interfaces and UI, user documentation, design con-
straints and system test criteria. The functional system concept contains differ-
ent views onto the system — a structural view, a behavioural view and a data
view. These three also define the interface.

The System Specification and how to develop it will be explained in detail
in Sec. 3.

2.4 Project Plan and Management

The Project Plan and the Project Management are based on an artefact-oriented
process with milestones and quality gates. They are based on levels of comple-
tion of the artefacts. The development of the artefacts is processed in iterative
modelling cycles that consist of the activities analysis, refinement, classification,
and modelling.

10

3 Designing an Architecture

There are a lot of influences on and requirements that have to be taken into ac-
count when designing a system’s architecture. When reviewing them according
to their sources and impact, we distinguish four general categories: Directive
Criteria, Functional Criteria, Quality Criteria, and Architectural Criteria. The
categories and their correlation are depicted in Figure 5 and each of the cat-
egories is described in the following (see Sec. 3.1, 3.2, 3.3, 3.4) including the
sources where to find the respective information in the REM artefact model
(see Fig. 1) and illustrating them with examples from the navigation system
introduced in Sec. 2.

Subsequently, Sec. 3.5 describes the process for the decomposition and the
dependencies in between the categories and Sec. 3.6 gives hints for further guid-
ance.

Directive Criteria

influence on//, \\\influence on
instance,.~” \\instance
e influence N
Either primarily, or ,// \\\
after Arch.Criteria e .
. o derivate (2) influence - —
Functional Criteria Structured Quality Criteria
Sgrwce Secondarily,
nfi Hierarchy changes structure
!n tuence on or brings additional
Instance derivate functionality
A\ influence
Y derivate (1) _|| Conceptual
Architectural Criteria [» Design
- - - Blueprint encapsules abstraction levels
Either primary requirement of the design process

or additional constraint

Figure 5: Influences on the Architecture

3.1 Directive Criteria

The directive criteria comprise management issues and constraints from the
“business world”. They arise from organization, legislature, and economics.
The difficulty concerning the directive criteria is that in practise, they are not
always documented sufficiently or even consciously present in the minds of the
developers.

e Organizational issues are for example the company’s infrastructure
(confirm Conway’s Law [18] and derivations [25]), supplier relationships
and business rules as well as design or programming standards. Another
important aspect are social issues like internal communication structures
(see also [17]) although the often go unaware. Additionally, there are some
company-specific heuristics that reflect best practice experiences, either
the company’s own experiences or best practice in their special business
domain.

11

e Legislative influences may e.g. come from the data protection act, the
road traffic act (see example below), or certified standards.

e Economic influences come from the Marketing and Sales department.
They have an advertising strategy for certain features of the product, so
they add their analyses and calculations for the features and set the budget
constraints.

As is already visible in the picture, the influence of the directive criteria on
the architecture is mainly indirect over functional and quality criteria. In other
cases it may be hardly perceptible at all, e.g. when influenced by social factors.

Information sources: Within the REM model, some of the organizational
issues will be reflected in the General Conditions and in the Business Objectives.
It is probable that the company’s business culture itself (social aspects and
communication structures) are not documented explicitly. Legislative issues are
also documented within the General Conditions and Limitations. Economic
influences are captured in the ROI and Business Risk artefacts.

Example: An example for directive constraints from the navigation system
for legislative influences is adequate usability (“handling without looking”) ac-
cording to road traffic regulations (in Germany: StVO). Concerning the question
whether and how this would influence the architecture, the answer is that the
impact is only indirect in this case via derived functional and quality criteria,
but it is however important to be aware of the relations between the criteria
and to give some rationale for the derived functional and quality requirements.

3.2 Functional Criteria

The functional criteria are the functional requirements and interaction and de-
pendencies in between functionalities. According to [3], functionality is largely
independent of structure. We perceive this as true for only certain types of
functionality but not in general. A counter example is any kind of functionality
that is strongly dependent on and determined by a certain quality character-
istic like, e.g., security or performance. However, it is advisable to decompose
the system according to the characteristic functions to enable cooperative and
parallel development and to increase reuse potential.

Information sources: The REM model provides the information for the
functional criteria in form of the System Vision, the Domain Model and the
Functional Analysis Model, probably in the notation form of use cases and sce-
narios.

Example: For the navigation system, examples for functional requirements
are standard navigation and points-of-interest as listed and detailed in Sec. 2.2.

12

3.3 Quality Criteria

The quality criteria are the system quality requirements defining the constraints
with respect to the characteristics and subcharacteristics defined in ISO 9126

[27]:

e Functionality: A set of attributes that bear on the existence of a set of
functionalities. These are Suitability, Accuracy, Interoperability, Compli-
ance, and Security.

e Reliability: A set of attributes that bear on the capability of the system
to maintain its level of performance under stated conditions for a certain
period of time. These are Maturity, Recoverability, and Fault Tolerance.

e Usability: A set of attributes that bear on the effort needed for use, and
on the individual assessment of such use, by a stated or implied set of
users. These are Learnability, Understandability, and Operability.

e Efficiency: A set of attributes that bear on the relationship between the
level of performance of the software and the amount of resources used,
under stated conditions. These are Time Behaviour and Resource Be-
haviour.

e Maintainability: A set of attributes that bear on the effort needed to make
specified modifications. These are Stability, Analyzability, Changeability,
and Testability.

e Portability: A set of attributes that bear on the ability of software to
be transferred from one environment to another. These are Installability,
Replaceability, and Adaptability.

These quality characteristics contain both architectural and nonarchitectural
aspects, for example performance depends on an adequate component allocation
(architectural) as well as on the choice of algorithm (nonarchitectural). Some
attributes are potentially in conflict with each other, e.g. security and reliability,
so that tradeoffs have to be made between them.

Information sources: The relevant artefacts for these criteria in the REM
model are the quality requirements. It is important to capture them in a way
that includes concrete metrics of how to measure the quality and what rating
has to be achieved.

Example: For embedded systems in general, security is a major concern.
Some examples for quality requirements from the navigation system are 7r0-
bustness (“How does the system react when it loses the satellite connection?”)
and efficiency is a driving concern as the driver wants to use the system while
already on his way and get the resulting route as fast as possible, therefore
we have requirements according to available resources, performance, electricity
consumption, ...).

13

3.4 Architectural Criteria

The architectural criteria contain communication requirements regarding the
interaction with the environment and technical constraints. This type of con-
straints usually arises bottom-up either from parts of the architecture already
defined or from constraints that directly influence the architecture from the
technical side (the realization or implementation of the system). These com-
prise for example certain hardware that is used and cooperating systems that
interact with the system to be developed.

Information sources: The information regarding the relevant architectural
constraints can be found within artefacts from all three content categories of
the REM model, according to how early during the process they are assessed
and where they arise from. Constraints or conditions from ealier systems or
the environment the system has to interact with are included over the different
stages of the requirements engineering process and are refined along the way.
The General Conditions from the Business Needs will usually be known earlier
than the Dependencies from the Requirements Specification. The Design Con-
straints in the System Specification are either developed bottom-up , or the are
refined from the Requirements Specification.

Example: For the navigation system, examples for architectural constraints
arising from the environment are the given human machine interface (with
graphical display and input button), and that the system requires satellite con-
nection.

3.5 Decomposing the system according to the criteria

The procedure for decomposing the system according to the introduced criteria
can be performed in the following major steps:

1. Identify architecturally significant requirements.
2. Analyse and assign them to the given categories.

3. Consider and apply the criteria according to the order depicted in Fig. 5.
There are two general possibilities for the first blueprint:

e A logical blueprint on the basis of features.

e A technical blueprint on the basis of architectural constraints.
4. Assure quality of the blueprint.

These steps are explained in more detail to allow for concrete guidance during
systems development:

14

1. The preparation for the decomposition is to identify the requirements that
qualify as architecturally significant in each category. Jazayeri, Ran and van
der Linden give suggestions for detecting them [29, p. 11]:

e “Requirements that cannot be satisfied by one (or a small set of) system
components without dependence on the rest of the system. (...)”

e “Requirements that address properties of different categories of compo-
nents (...).”

e “Requirements that address processes of manipulating multiple compo-
nents (...). ”

2. After their identification, the architecturally significant requirements have
to be analysed and assigned to the adequate criteria categories directive (Sec. 3.1),
functional (Sec. 3.2), quality(Sec. 3.3), and architectural(Sec. 3.4). Within each
category, they have to be ordered according to their impact or priority.

3. The order of the criterias’ consideration and application during the design
process is depicted in Fig. 5. There are two alternatives depending on whether
there are architectural constraints that in fact predetermine the architecture or
not.

(a) If there are, the architecture is already predefined and the functional
and quality criteria can only be considered secondarily. This directly imposes
or at least restricts the logical design, a coarse-grained blueprint of the system’s
architecture, leading to solution (1) in the figure.

(b) In the alternative case, when there is no such predetermination, the
architecture is organized according to the functionality of the system. This
allows us to derive a structured service hierarchy with user-perceptible functions
decomposed into realizable subfunctions, depicted by solution (2) in the figure.
An analysis identifies parts of functionality that are alike within the different
use cases and functional requirements of the system. Those common or alike
parts are then abstracted to and grouped and realized as logical components.

We are aware that (a) leads to a less abstract decomposition than (b), be-
cause it has a stronger connection to technical constraints, but both solutions
primarily lead to a logical blueprint of the architecture.

4. After an initial decomposition, either according to architectural or func-
tional criteria, the quality criteria are introduced and evaluated (see also [4]).
They can influence the architecture of the resulting system in two ways: Either
the structure is modified according to a certain principle, e.g. maintainability.
Or some functionality is added to fulfil the requirement, e.g. a component for
user identification to satisfy a security requirement.

Although it is possible that a coarse-grained decomposition is taken primarily
according to directive critera, it is more usual that especially the organizational
criteria influence rather secondarily or in a way that is hard to detect and the
companies may even be unaware of it, but this is not depicted in the figure.

15

Example: For the NAVI system, the decision was taken to do a functional de-
composition to get a logical architecture independent from the hardware compo-
nents. This decision is documented in Tab. 2 using a template for architectural
design decisions. So we group the functionality in form of interacting logical
components as depicted in Fig. 6. The functional requirements are listed in the
Requirements Specification in Sec. 2.2.

When analyzing the common parts of functionality within the NAVI use
cases (see Fig 2) and functional requirements, we identify the following func-
tional parts:

e “Get GPS data”, independent from the data being a given address or the
current position of the system,

e “Search for a target”, where it does not matter whether the target is a
point-of-interest or a concrete address,

e “Manage address book”,
e “Manage points-of-interest”,

e “Navigate to a destination”, again, it does not matter whether the target
is a point-of-interest or a concrete address, and

e “Present information to the user”, independent from what kind of infor-
mation it is.

They are abstracted to a certain degree (e.g. from the type of information that
shall be presented to the user), grouped and realized as logical components as
is depicted in Fig. 6.

The difference to the functional grouping of the requirements in Sec. 2.2 is
that they were grouped according to user perception while here, in the logical
system specification, they are grouped according to the smaller tasks that have
to be performed according to fulfill a certain user-visible function.

3.6 Further guidance

In [3] Bass et al. list some tactics to influence quality attributes. The tactics
listed are classified into abstract categories. The quality attribute “Awvailability”
is subdivided into the categories “Fault Detection”, “Recovery-Preparation and
Repair”, “Recovery Reintroduction” and “Prevention”. These are general rules
for influencing a quality attribute. Within these categories Bass et al. list
some elements which adhere to these general rules. The elements are sometimes
also rules, heuristics or principles. For the quality attribute “Modifiability”
the principle “Hide Information” is listed under “Prevention of Ripple Effect”.
But most of the times the elements are very concrete architectural means of
influencing a quality attribute — patterns. E.g. “Heartbeat” is listed as under
“Fault Detection”. If principles and patterns are used to influence the quality
attributes of an architecture, then these should somehow be included in the
architecture evaluation process. We show how in Sec. 6.

16

Address Book Interface

<<component>>

Point-of-interest Management

<<component>>

Navigation Routing @

Search Engine Interface O

GPS Interface ?—

<<component>> gl
Search Engine \&

\@
Navi DB Interface

<<component>>
Adress Book Management

Usage Interface

GPS Information System

<<component>>

<<component>>
Navigation Database

<<component>> {l
User Interface

Figure 6: Logical Architecture of the NAVI Example

An extensive collection of patterns can be found for example in [7].
It has to be kept in mind that architecture provides the foundation to the

realization of many quality attributes, but it is not possible to achieve them

simply through architecture.

17

4 Documentation

Projects that require architecture evaluation work on complex systems !. Com-
plex systems often have a long lifetime, their service delivery may be distributed,
and they involve many developers who can also be working on different develop-
ment sites. This implies the need for documentation. Without proper documen-
tation the results are systems that cannot be understood, a design that cannot
be reconstructed, and rationale that cannot be retraced. Additionally, the soft-
ware’s quality can not be assessed without immense time expenses. Therefore,
for our evaluation method we define appropriate architecture documentation to
be a crucial prerequisite.

In Section 4.1 we explain the gaps we see in current techniques of architecture
documentation and in Section 4.2 we explain how we define architecture to be
documented for our evaluation method.

4.1 Shortcomings of Architecture Documentation

In practise the overall architecture of a system is often documented quite min-
imalistic, for example as UML component diagram or simple box-and-line di-
agram. As [9] report, “modeling of architectural designs (...) lives on white-
boards, in Microsoft PowerPoint slides, or in the developers’ heads”. Such a
diagram may or may not contain a few descriptive comments, but generally it is
scarcely traceable or motivated. So the architecture is represented graphically,
but the interpretation is missing.

Industrial partners from current research projects complain that they are
frequently missing the rationale that was behind the decisions when a system
had been designed. This leads to knowledge leaks and missing information
every time an architectural decision is questioned. When the system’s quality is
assessed, when the system shall be modified or extended, when the architecture
has to be reengineered, when a new software developer joins the team and has
to make her- or himself familiar with the system — each time the expert who
took the decision has to be consulted. This might be only inefficient and time-
consuming when the responsible expert is available, but it imposes a serious
problem once the expert leaves the company or when it is not clear who took
the decision.

Although many companies have realized this gap, no measures have been
taken yet to overcome this problem. Neither have new documentation artefacts
been introduced nor have existing standard artefacts been extended with respect
to this aspect.

In the following section, we define how to document the architecture to make
use of our evaluation method.

Heaning on [9], we refer to the term “complex system” as a shorthand for “(mainly large-
scale) development and support of software-intensive solutions in domains such as defence,
aerospace, telecommunication, banking, insurance, healthcare, retail, automotive, etc.”

18

4.2 Documenting Layers, Views, and Rationale

To avoid the shortcomings described in Section 4.1, the architecture model we
base our reasoning on promotes the ideas of abstraction layers and different
views onto those layers. We will explain these ideas in the following, but for
further detailed information about the architecture model the reader should
refer to [10]. The points we consider as crucial for appropriate architecture
documentation within the System Specification (see Sec. 2.3) are abstraction
layers, views, rationale, and patterns. Different views on the architecture allow
to focus on certain aspects while omitting the others from the representation.
However, the model lying behind those specialized representations has to be the
same and therefore the views are consistent with respect to each other. The
rationale are the causes and reasons that have lead to certain architectural de-
cisions. It is important for tracing, understanding, evaluating, changing, and
reusing the architecture or parts of it to have access to that rationale. Pat-
terns are a convenient way to capture best practises and common knowledge in
architecture.

Abstraction Layers: The architecture is described in three layers of abstrac-
tion, each of them in accordance with a certain section of the architecture model
that describes the system with a certain degree of abstraction. The degree of
abstraction is chosen in such a way that each layer represents especially well
certain aspects that are important for the development of complex software
systems. The layers are:

e The (user-)functional unit layer gives a structured specification of
the user-visible functionality. The user can be either a human or another
system. The system is seen as black box and the functionality is described
by partial services and their relationships.

e The logical component layer realizes the services from the above layer
via interacting system-internal logical components with equal behaviour.
On this layer, the architecture model is enriched by communication chan-
nels between the components.

e The technical implementation layer shows the software structure,
describes the hardware topology, and realizes the software deployment
through the realization of application clusters. This layer visualizes dif-
ferences of the system behaviour due to a certain chosen platform.

Each layer includes a number of views (see next paragraph) which offer appro-
priate models for those aspects.

Views: The IEEE standard 1471 [20] recommends an identification of stake-
holders and concerns that shall be satisfied by certain architectural views. Views
are a concept orthogonal to the notion of abstraction layers. While perceiving
the abstraction layers as zooming in on the system details top-down, the views

19

are placed horizontally next to each other on the same abstraction layer and
allow the explicit focus on a certain aspect of the system design.

The probably best-known work with respect to that topic is Kruchten’s 4+1
View Model [37] with the main views logical, process, physical, and develop-
ment. The ones that are usually present are a structural, a functional, and a
behavioural view. [15] promote module views, component-and-connector views,
and allocation views. These views can be realized either using UML diagrams
(according to [9] the most frequently used notation form), box-and-line dia-
grams, architecture description languages (ADLs), or executable models with
formal semantics.

The views we require to be documented are on the abstraction layer of the
logical components:

e Structural view: The white box view on the logical components and how
they relate, e.g. depicted by a component model, analogous to Kruchten’s
logical view, for an example from the NAVI system see Fig.6.

e Interface and border specification: We define an interface description plus
a template that captures relevant information with respect to the context
or environment of the system, constraints that imply certain restrictions
or have led to certain decisions. This view is very important if the logical
component is subject to either distributed development or reuse (see also
[13]), but it may be neglected if neither applies to the component.

e Behaviour and interaction: The behaviour of the logical components rep-
resented e.g. as i/o automata, analogous to Kruchten’s process view. The
specified behaviour has to be consistent to the behaviour described in the
use cases of the Requirements Specification (Sec. 2.2).

e Data definition: All data present in and relevant for the system needs to
be documented e.g. using a data dictionary that explains the captured
information and its representation, see Tab. 1 for an example from NAVI.
This view is closely connected to the interface view, but we emphasize
the importance of documenting the semantics and the interpretation of
the representation of the data instead of just listing parameters and data

types.

e Decision view: The decision templates document the rationale behind
decisions that are taken during the development process and can be struc-
tured hierarchically, see paragraph below.

Additionally, the documentation has to be consistent among the different
representations and shall include the rationale for the concepts selected. The
mapping onto the hardware is not within the scope of this report, therefore
we do not describe the physical views of the technical implementation layer in
detail.

20

Without prescribing a certain technique, we solely require a representation
that makes architectural decisions detectable and quality attributes assessible.
For being able to evaluate the architecture, we always demand an informal
representation of the architecture’s structure for communication purposes and
optionally a formal representation if quantitative tasks like simulation or gen-
eration shall be performed. An overview of the architecture has to be given
at least in form of a box-and-line diagram that is accompanied by an explain-
ing, meaningful caption. Another possibility are UML models, but we demand
the documentation of the exact meaning of the elements if they are used with
different semantics than the ones defined in the published UML specification.

Data dict | Data type Representation
Subject Point-of-interest (POI) | Potentially interesting locations
for driver
Name String (max. 60 char) | Individual name of the POI
Address String (max. 120 char) | Street name, city, postcode
GPS Data | Integer Coordinates of the POI
Category Enumeration Indicates the type of POI
(e.g. restaurant)
Flag Bool Indicates if POI is stored in
address book

Table 1: Data dictionary example for “Point-of-interest” in NAVI

Rationale: In order to understand why architectural decisions were taken in
a certain way, the relevant directive and architectural criteria must be docu-
mented. The choice of representation for an architecture depends on whether
the documentation shall serve “only” for communication purposes or also for
concerns like simulation or generation that can be performed automatedly. If the
latter quantitative tasks are to be performed, it is necessary to use formal meth-
ods and notations with strictly defined semantics. In other cases, too formal
representations might complicate the understanding. Instead, a rather informal
model with an adequate description and sufficient, unambiguous explanation is
more appropriate.

The decision view is the hierarchical structure of all taken decisions, each of
them documented in a standardized way with links to other related decisions.
[20] suggest an implementation as hyperlinked documentation on top of other
views.

Facing the issue of rationale documentation, [17] suggest to “demystify”
architecture by using decision description templates. The decision description
template depicted in Tab. 2 is inspired by [47] and captures the rationale around
a design decision. It records what the decision is about, the background, who
participated in taking it, alternatives and their arguments as well as related
decisions, requirements and artefacts that the decision impacts. The latter
include the architecture specification with the above mentioned views, which

21

Architecture decision

Issue

Navigation system coarse-grained decomposition

Decision Functional decomposition is dominant

Status Approved by board

Group/Stakeholder Paul Miller (software architect), Mike Shaw (product manager)

Assumptions We want to reuse parts of the functionality
in later systems.
We want to be independent of hardware details.
We need to develop in parallel to save time.

Constraints None

Positions Decomposition without hardware details;
hardware-close decomposition

Argument If we decompose the system into logical functional
units, we get a logical architecture independent
from the hardware, so it won’t be affected by
changes in the hardware and can be reused in
parts or set up the base for a product line.

Implications The functional units can be developed in parallel.

We can provide the system for different platforms.
The component “GPS Info System” is independent
of hardware details and data formats.

Related decisions

This decision is the root architectural decision,
all others relate.

Related Requirements

Business Needs (Sec. 2.1): Different platforms,
independence of supplier,
increase reuse to save money.

Related Artefacts

Logical architecture structural view (Fig. 6).

Related principles

Planned reuse improves the
quality and saves money.

Notes

None.

Table 2: Architectural decision description template

22

we document by visualizing it in form of model diagrams and by describing
used patterns.

The crucial point for architecture evaluation is to provide a representation
that allows to recognize architectural decisions and that provides the possibility
to assess these decisions’ effect on quality attributes.

23

5 Shortcomings of Common Architecture
Analysis Methods

Architecture analysis methods can be classified into quantitative and qualitative
analysis methods [14]?. While the quantitative methods produce values which
can be compared on an ordinal or even interval or ratio scale, the qualitative
methods use expertise to discover risks or misconceptions.

Although the majority of quantitative architecture analysis methods are
based on formal foundations (e.g. composition rules) and systematic, repeatable
and traceable, it is only possible to determine the expected value of a single qual-
ity attribute. E.g. FTA [48]. Moreover, alternatives are not considered. If the
result of an analysis has a satisfying value (e.g. the availability of the system
is above 95%), the overall availability quality requirement might be satisfied,
but an alternative architecture in which the availability might also be satisfied
combined with a better maintainability would never be considered. Further-
more, some quality attributes, such as maintainability, are hard to express in
numbered values. And the composition of these values is disputable (the over-
all maintainability of a system with two components is hard to determine by
combination of the maintainability vaules of each of the components).

Qualitative architecture analysis methods address these shortcomings. How-
ever, qualitative methods are heavily based on experts performing the evaluation
based on their own experience. At present, the most well known qualitative
method to evaluate architectures is ATAM [34, 16]. In the following we will
analyse the systematic guidance that ATAM provides and show that the parts
of ATAM which guide the architecture evaluation (and are not centered on re-
quirements elicitation or social engineering) are mostly based on the guidance
provided by experts conducting the ATAM evaluation (Section 5.1). We con-
clude by deriving goals for our new evaluation method in Section 5.2.

5.1 Analysis of the Systematic Guidance for Architecture
Evaluation in ATAM

ATAM is organized into four phases. Phase 0 “is a setup phase in which the
evaluation team is created and a partnership is formed between the evaluation
organization and the organization whose architecture is to be evaluated” [16,
p. 70]. The last phase “is a follow-up phase in which a final report is produced,
follow-on actions (if any) are planned, and the evaluation organization updates
its archives and experience base” [16, p. 70]. Both phases provide systematical
guidance concerning organization and social engineering. The remaining two
phases present the core of ATAM which is split up into nine steps. We will give
brief explanations for each step in the following. For more detailed descriptions
the reader should refer to [10].

1. Present the ATAM. The ATAM is explained to the participants.

2Abowd et al. use the classification terms measuring and questioning techniques corre-
spondingly [1].

24

2. Present the business drivers. The reason for the development effort is
explained to the participants.

3. Present the architecture. The architect explains the architecture and how
it addresses the business drivers.

4. Identify the architectural approaches. The evaluation team captures any
architectural approaches based on information by the architect and on the
expertise of the members of the evaluation team.

5. Generate the quality attribute utility tree. The evaluation team helps the
stakeholders to elicit, prioritize and structure the quality requirements
with the use of scenarios (as defined in [3]).

6. Analyse the architectural approaches. The scenarios of step five are corre-
lated to the architectural approaches identified in step four. If the use of
an architectural approach has or may have an influence on the response
measure of a scenario?, it will be marked as a sensitivity or (if it influences
more than one scenario) tradeoff point. Depending on the expected in-
fluence on the response measures of required scenarios the sensitivity and
tradeoff points are categorized as risks or non risks.

7. Brainstorm and prioritize scenarios. This step is a reiteration of step
five involving a lager group of stakeholders for eliciting and prioritizing
scenarios.

8. Analyse the architectural approaches. This step is a reiteration of step six
with the new scenarios of step seven.

9. Present results. The results of the conducted analysis are presented and
delivered.

Steps 1-3 and 9 are presentations. ATAM provides guidance as on how and
what to present in these steps. Again, the guidance provided is in the area
of organization and social engineering. In step 4 the architectural approaches
are identified relying exclusively on the expertise of the evaluation team and
architect. Step 5 is used to elicit quality requirements and provides method-
ical guidance in social and requirements engineering. Finally, steps 7 and 8
are reiterations of steps 5 and 6. Thus, the part of ATAM where the architec-
tural evaluation takes place is contained solely in step 6, where the correlation
between requirements and architectural specification takes place. The method-
ical guidance provided by ATAM in this step is confined to the categorization
into sensitivity and tradeoff points, risks and non-risks, and some guidance on
how to identify these through analysis questions. Hence, even though method-
ical guidance is given, this step is still heavily based on the evaluation team’s
expertise.

Srefer to [3] for further details on the meaning of response measures for scenarios

25

The guidance provided by ATAM in the areas of organization, social and
requirements engineering is crucial and probably a success factor of ATAM.
However, it is not specific to architecture evaluation and could probably be suc-
cessfully applied to other areas of software engineering in which stakeholders
have to interact and agree on decisions (e.g. requirements engineering). The
guidance provided by ATAM in architecture evaluation is helpful, but not suffi-
ciently elaborated and relies on the participation of experts. The same applies
to other well-known qualitative architecture evaluation methods [21].

5.2 Goals for a New Qualitative Architecture Evaluation
Method

From the analysis of the shortcomings of common architecture evaluation meth-
ods we have derived a set of goals for the new qualitative architecture evaluation
method which we developed. The goals were,

G1 to reduce the need for experts within the architecture evaluation method,
G2 to enhance the systematic process, repeatability and traceability,

G3 to enhance the integration of the architecture evaluation into the devel-
opment process,

G4 to define interfaces to quantitative architecture evaluation methods,

G5 to enhance the systematic reuse of the knowledge obtained when perform-
ing an architectural evaluation in order to improve further architectural
evaluations and

G6 to move the focus of architectural evaluation away from requirements elic-
itation, social engineering and retroactive architecture documentation to-
wards the actual purpose of architecture evaluation — the determination of
how architecturally significant requirements have been addressed by the
architecture and its architecturally significant decisions.

The numbering and ordering of the goals are for reference only and have no
meaning relating to prioritization.

26

6 Evaluating an Architecture Using POSAAM

According to the SARA Report “The purpose of an architecture review is to
understand the impact of every architecturally significant decision (ASD) on
every architecturally significant requirement (ASR)” [12]. Hence, to perform
any sort of evaluation it is possible to go through every ASD and try to find out
how it impacts every ASR or to go the other way around and go through every
ASR and find out how the ASDs affect these.

In our evaluation approach we decided to go from ASRs to ASDs for two
main reasons: Firstly, going from ASDs to ASRs automatically leads to checking
whether the architecture satisfies the requirements. This is exactly what quan-
titative methods do. Yet, for a qualitative architectural evaluation this is not
enough. It is necessary to find out whether all architectural alternatives have
been considered and whether the choices made lead to not just a satisfaction of
single requirements, but an optimization of the combination of all ASRs. Sec-
ondly, going through the ASDs discovered in architectural descriptions implies
having an expert evaluator who is familiar with the architectural approaches
used, since it would not be possible for a non-expert to identify architectural
approaches unknown to him. Starting off with ASRs makes it easier to perform
a systematic search for ASDs and thus reduces the need for an expert evaluator.

The main technique used by POSAAM to reduce the need for an expert
evaluator is to make use of the expertise encapsulated in patterns within the
evaluation process. [14, p. 8] define a pattern as follows:

A pattern for software architecture describes a particular recurring
design problem that arises in specific design contexts, and presents
a well-proven generic scheme for its solution. The solution scheme
is specified by describing its constituent components, their responsi-
bilities and relationships, and the ways in which they collaborate.

Presently the knowledge encapsulated in patterns can only be used by those
who are already familiar with the patterns. By associating patterns with re-
quirements the search for patterns can be narrowed, as we show in Section 6.1.
Patterns are organized into sets of interacting patterns such as for example pat-
tern languages. These can help in searching for further patterns as illustrated
in Section 6.2. After a successful search for a pattern, the knowledge in these
patterns can be used to perform checks of the architectural decisions taken. The
concepts we propose are explained in Section 6.3. Finally, in Section 6.4 some
special cases of the evaluation mechanism are laid down, such as how to proceed
if a pattern cannot be found.

Opposed to other architecture evaluation methods, we do not explain PO-
SAAM in steps. The reason for this is that POSAAM is not linear. It con-
tains several case differentiations. These in turn are very fine grained and were
conceived as procedural support to evaluators. Therefore, in the following we
provide the theoretical foundations that led our design of POSAAM.

27

6.1 Moving from Requirements to Patterns

POSAAM is based on the assumption that in software based systems quality
requirements are mostly of the same kind (as within ISO 9126) and are also im-
plemented using the same concepts in the majority of cases. Or —as Schumacher
et al. express it for general problems: “It is not often that a new development
project tackles genuinely new problems that demand truly novel solutions” [416,
p. 2].

A quality requirement can be classified into quality attributes and qual-
ity sub-attributes. Further refinements are possible. Those patterns, which
are designed to influence quality attributes, can be classified according to the
quality-attributes they are intended to influence. Through this classification
the quality requirements and the patterns which can be used to influence these
quality requirements can be linked. [16] is a collection of patterns which all be-
long to the classification “Security”. The pattern descriptions implicitly contain
information which can be used for further classifications. Using this information
an evaluator can go through the ASRs one by one and obtain a set of patterns
which could potentially be used to address the ASR being observed. An example
using patterns from [40] follows:

The quality requirement Q1 explained in our example from Sec. 2 on page 9
can be classified within a quality attribute tree (e.g. according to ISO9126 [30])
as “Quality requirement; Security; Privacy”. This node in the tree is associated
with the patterns “Authorization”, “Role Based Access Control” and “Multilevel
Security” from [16]. If the architecture, which is to be evaluated, implements one
of these patterns, we assume that an evaluator can identify it. The subsection
on “Special Issues” (6.4) shows how to proceed if the architecture does not
implement any of the patterns or if the evaluator cannot identify any of the
patterns.

6.2 Networking: Using Pattern Relations

Patterns exist in relation to other patterns [11, 13]. For our purposes we will
slightly modify the naming and definition of relations mentioned in [11, 13]. We
consider a specialization relation “is a” (1), meaning that a pattern can be a
specialized form of a more general pattern, a dependency relation “needs” (2),
meaning that the use of a pattern implies the use of another, and a generic
relation “uses” (3), meaning that the use of a pattern is often combined with
further patterns. The refinement relation means that the implementation of a
pattern is tackled using further patterns. At present the refinement relation is
only considered as a special case of the generic relation. Other forms of pattern
relations will not be considered within the scope of this paper.

The dependency relation (2) implies the use of another pattern. Hence, if
an evaluator discovers a pattern which has a dependency relation to another
pattern then the second pattern must also be part of the architecture. In our
example from above this would mean that once an “Authorization” pattern has
been identified, an “Identification and Authentication” pattern is also necessary.

28

The generic relation (3) has similar implications. The evaluator can use the
information about the generic relations to check whether related patterns have
been, could or should have been used. Naturally, the information when which
pattern is to be used must be available to the evaluator. This information is
often found implicitly in pattern languages.

If a pattern that has been identified in an architecture, which is to be eval-
uated, has one or more specializations (1), it is necessary to check whether the
decision for using the pattern itself or one of its specializations has been taken
explicitly, whether it has been documented and whether the decision was taken
correctly. Again, in order to be able to perform this check, information from pat-
tern languages can be used. In our example the patterns “User ID/Password”,
“Biometrics”, “PKI”, “Hardware Token”, and “Unregistered Users” are all spe-
cializations of a generic “Identification and Authentification” pattern. In [0,
Section 7.2 “Automated I6A Design Alternatives”] the trade offs of using these
patterns are explained. The provided information on the trade offs can be used
by an evaluator to determine whether the appropriate pattern has been chosen.

The presented relations between patterns define a strict procedure for the
evaluation process which is independent of the evaluator performing the evalua-
tion. By making use of a knowledge base containing information about pattern
relations the procedure will lead to the same results (the same patterns to be
observed in the same order) within the evaluation process.

6.3 Using Pattern Knowledge for Evaluation

Once a pattern has been identified the first check which is to be performed is
its correct implementation, including the necessary components assuming the
required responsibilities and correct communication structures. Depending on
the form of the documented architecture these checks may imply the search for
a partial graph in the graph of components. However, the responsibilities of
components are usually not modeled in the architectural decomposition. Fur-
thermore, the components of the pattern are not always in the same abstraction
layer of the hierarchical decomposition of the modeled architecture. Hence, the
search cannot be automatized and needs to be performed by a human. Never-
theless the person performing the search should be able to identify the patterns
necessary components using the architectural documentation without further
support by an architect who designed the system, because otherwise the docu-
mentation is of no use. After the check for the correct implementation of the
pattern the actual evaluation takes place.

Patterns encapsulate a lot of expertise, including an implicit description of
the sensitivity and trade off points contained within the pattern (usually in the
forces section) and information as on when which configuration of these makes
sense. The evaluator can take advantage of this information to check whether
the right decisions have been taken.

Even for such a seemingly simple pattern such as “User ID /Password” there
are a lot of decisions to take. Which characters are acceptable? What length
range is acceptable? Who can create new passwords? What is the lifetime of a

29

password? And several more (see [16, pages 219 and following]).

The knowledge contained in pattern descriptions can also be used to iden-
tify risks. Usually this is achieved through the identification of decisions that
were not taken or documented explicitly, but also if the decisions taken do not
comply with stated requirements. Furthermore the pattern descriptions aid in
refining requirements, as refinement of design will always go hand in hand with
refinement of requirements. Often the decision that has to be taken was not and
could not be taken, since the information necessary to take the decision was not
available. In this case the evaluation leads to the refinement of requirements
and design simultaneously.

We summarize the steps explained up to now in an activity diagram in
Figure 7. The activity “perform pattern specific checks” includes searching for
further patterns using pattern relations.

Classified Patterns D(?rive set of patt.erns, w'hich
possibly affect quality requirement

| Architecture Specification |% Id.er?tlfy a Qaltern from th.e s.et
within architectural description

Perform pattern
specific checks h

Figure 7: The three main steps in POSAAM

6.4 Special Issues

POSAAM is based on the identification and use of patterns as a means of
evaluation. However, we are aware of the facts that (1) patterns are not al-
ways available for every problem, (2) patterns may not always present the best
solution to a problem, (3) patterns may not always be easy to identify in archi-
tectural descriptions and (4) POSAAM can only be applied if the patterns are
structured and stored in a form that supports the evaluation. Figure 8 is an
extension of Figure 7. The numbered objects of the diagram correspond to the
issues listed above. Explanations on how to handle the issues follow.

6.4.1 Evaluating Using Principles

POSAAM addresses the first issue (1) by relying on principles. As we have
illustrated in Section 3, all forms of influencing quality attributes through archi-
tectural design rely on some sort of principles, rules or heuristics. In POSAAM
we subsume all of these under the term principles. Just like patterns, principles

30

ASRs

o one

ASR
(4)
1
Classified Patterns De.;rlve set of patFerns, \A{hlch
possibly affect quality requirement
(1)
[Yes])
set the empty [F------- 4
set?

Architecture Specification Id.er}tlfy a pattern from th§ s.et Classified Principles
within architectural description

Is the

(2; 3)

Was it possible to INo] | . .
identify patterns from the |- -< %" Identify altenative) >
pattern set? techniques th
[Yes]
Are there any further
ASRs?
Perform pattern \ /\ [Yes]
specific checks h

| [No]

(Check consistency of results rD

Figure 8: The core of the POSAAM evaluation process

used to influence quality attributes can be classified within a quality attribute
tree. Hence, if a pattern is not known / not available for an ASR, the evaluator
can check for the fulfilment of the corresponding principle. In this case some
more expertise is required from the evaluator. Still the evaluation is lead by the
conformance to principles, which makes it more systematic and traceable than
to simply “connect” requirements to design decisions.

That a pattern cannot be identified within the architectural description pro-
vided for evaluation can have two different reasons: The architect may have
chosen not to use the pattern (2) or the pattern is not visible to the evaluator
within the architectural documentation available (3). To POSAAM this does
not make a difference as in both cases the evaluator uses the knowledge provided
by principles and the patterns applicable to the requirement being processed to
proceed with the evaluation. After identifying a pattern applicable to the re-
quirement being processed, the evaluator can use the decisions that would have
to be taken when applying the pattern to perform the evaluation. If the deci-
sions that would have to be taken when applying the pattern are documented
in the architecture specification, it is irrelevant whether the architect actually

31

applied the pattern or not, as long as the necessary decisions have been made.
However, if the decisions have not been addressed and the evaluator cannot un-
derstand why, i.e. the evaluator cannot trace other decisions to the principles
that can be used to influence the requirement, then either the architectural doc-
umentation or the architecture itself have a quality deficit. Both cases present
an appropriate result for an architectural evaluation.

If the evaluator identifies an alternative technique to address an ASR, the
alternative should be analysed to find out whether the technique might be gen-
eralized for other problems. The solution used in the architecture might well be
a new pattern. But since patters represent proven solutions to a problem [13] it
would not be wise to add the identified solution as a pattern to the collection of
patterns. Therefore, POSAAM introduces the concept of a pattern candidate,
which can be used as an intermediate step towards adding a pattern to the
pattern collection.

6.4.2 Structuring Expertise Stored in Patterns

For the application of POSAAM the information implicitly stored in patterns
needs to be made explicit (4). The pattern community does not fail to point
out that patterns are written for humans and not machines. Nevertheless, we
believe that a systematic process, even though conducted by humans, has a
strong resemblance to an algorithm. And as such its data representations should
be laid out accordingly, since data representations are “...where the heart of a
program lies” [8]. This especially applies when the processing unit (in the case
of our process, a human being) is slow and tends to non-deterministic behaviour.

To this purpose Malich [10] proposes a table storing the correlations between
patterns and quality attributes (see Fig. 9). The columns of the table are
sorted according to quality attributes and the rows of the table according to
patterns. The cells contain explicit information on the influences of the pattern
on the quality attribute of the corresponding column. Such information may
be constructs of the pattern which have a positive or negative influence on the
respective quality attribute, but also constructs of the pattern which present
sensitivity or tradeoff points of the respective quality attribute.

A similar approach is used by Klein et al. in their publications about At-
tribute Based Architectural Styles (ABAS) [35, 36]. Klein et al. combine rea-
soning about quality attributes with patterns. Every ABAS provides a rea-
soning framework on how an architectural style (pattern) influences a quality
attribute. For some quality attributes the reasoning framework may even be a
formal model, such as a Markov model for the availability of a Leader-Backup
pattern (for further details on this example we refer to [30]).

POSAAM builds on both of the presented approaches. However, for the
use of POSAAM further information about patterns needs to be obtained and
stored in a structured form. The first step in restructuring the information
contained in patterns is to provide a new definition of the term “pattern”, which
is slightly different from the prevalent definition given by [14] which we quote
at the beginning of this section.

32

Quiality attributes

A q: qs Q- [

a Correlations between
patterns and quality
attributes

Patterns

ps

p:

Figure 9: A table correlating patterns to quality attributes ([10])

A pattern for software architecture defines a configurable well-proven
solution to a problem class of recurring design problems. The pattern
consists of recurring as well as variable parts. The pattern describes
which parts are recurring, which parts vary, which variations are
possible, and which effects can be accomplished by the variations.
The description of the parts of a pattern (either recurring or varying)
comprise components, their responsibilities and relationships and the
ways in which they collaborate.

A solution to a design problem belonging to the problem class of
pattern P, which includes the recurring parts of pattern P and a
variation of the varying parts as defined by pattern P is called a
configuration of pattern P.

Through the use of this definition the parts belonging to a pattern can be
described in greater precision. With the information about the recurring and
varying parts and the information about configurations of patterns the pattern
specific checks explained in Section 6.3 can be performed in more detail. Apart
from checks about the correct components, responsibilities, relationships, and
collaborations of recurring and varying parts, checks about the configurations
include whether the configuration is appropriate to the given quality require-
ments. Using this definition both the sensitivity and trade off points are always
dependent on a variation point. Storing sensitivity and tradeoff points as de-
pendent on a variation point enables evaluating an architecture by associating
the effects of each variation point of a pattern with the quality attributes of the
resulting system and the quality requirements.

The definition also allows to store information about possible risks. A risk in
a software architecture is a combination of architecturally significant decisions
which may impede the achievement of an architecturally significant requirement.
It is possible to add information about configurations of variation points which
lead to a restriction of quality attributes. These may be characterized as risks.

33

The concept of ABAS can also be combined with this definition. The reason-
ing framework given in an ABAS only needs to be correlated with the variation
points of the pattern.

The pattern itself may be correlated to one or more principles (as Bass et
al. point out in [3]). Correlating patterns to principles helps in the search for
alternative implementations to architecturally significant decisions, even when
a pattern cannot be identified in the architectural specification given.

Finally, the relationships between the patterns can be stored separately in
a graph. The graph contains information about the possible alternatives and
when which alternative is more suitable.

As POSAAM makes use of principles for evaluation, principles also need to
be stored and structured. The information necessary to be able to perform a
POSAAM evaluation is a correlation of principles to quality attributes. This
can be achieved through a table just as the one used for the storage of patterns.

Further information that should be stored is information about when to use
quantitative architecture evaluation methods and information that supports the
following steps of development. Such information may be constraints for the
implementation or even evaluation specifications which may be applied after
implementation of the pattern.

34

7 Related Work

In this section, we give a short overview over the related work in the three cate-
gories belonging to the respective chapters of this work: design, documentation,
and evaluation. An overview over the related work of patterns and extraction
of information from patterns is given in a fourth category.

Design: In [3, Chapter 5] Bass et al. dedicate a whole chapter to influ-
encing quality characteristics of software systems through architectural tactics.
Attribute-Driven Design [19] focuses mainly on satisfying quality requirements
that were identified as key performance indicators beforehand in workshops with
different stakeholders. We delineate our work by explicitly taking into consid-
eration all potential influences on the decomposition of a system and describing
their application.

Documentation: Nava et al. [41] present a prototype tool for creating and
exploiting architectural design decisions. [24] propose to combine the docu-
mentation of decisions and patterns. [26] describe the documentation rather
abstract but based on a common conceptual model of architectural description
with views and viewpoints. [15] define view types that can be instantiated to
views with the adequate degree of detail as documentation artefacts. As op-
posed to those works, our approach encompasses an artefact model based on a
combination of abstraction layers and views with interconnection via decision
rationale.

Evaluation: By now there are a whole range of qualitative architecture eval-
uation methods. Besides the most well-known ATAM [33, 34, 16], SAAM
[32, 31, 16], and ALMA [5, 38, 6] there are further qualitative evaluation meth-
ods which have been compared in the taxonomies by Babar et al. [2], Dobrica
and Niemeld [19], and Eicker et al. [21]. The SARA Report [12] is a summary of
best practices in the evaluation of software architectures. The proposed method
POSAAM differs in explicitly not relying on expert knowledge during the review
but instead identifying and analysing patterns and principles.

Patterns: There are numerous collections of patterns and pattern languages,
the most important being the Design Patterns book by the “Gang of four” (Gof)
[22] and the Pattern Oriented Architecture (POSA) series [14, 45, 28, 12, 13].
Extracting the and reorganizing the information stored in patterns for evaluation
purposes has been reasoned about in the works of Zhu et al. [50], Klein et al.
[36, 35] and Malich [40, 39]. Zhu et al. extract and reorganize general scenarios
and architectural tactics from patterns. With their concept of attribute based
architectural styles (ABAS) Klein et al. provide a reasoning framework for the
quality attributes influenced by patterns. Malich correlates patterns to quality
attributes and uses the concept of sensitivity and tradeoff points to reason about

35

pattern quality. In [51] Zimmer analyzes relationships of the design patterns
from the Gof Book.

36

8 Conclusion

Within this report we present a new supporting and extending architecture
evaluation method, which we derived from the shortcomings of presently known
architecture evaluation methods. In order to determine how to evaluate archi-
tectures we first explain our understanding of how to construct and document
architectures.

The artefact model we use to document the architecture unifies requirements
engineering and design. We are currently working on an extensive manual for
integrated requirements engineering and design for software-intensive embedded
systems in cooperation with industrial partners (automotive original equipment
manufacturers and first tier suppliers). The corresponding process described in
the manual is artefact-centric and based on an artefact model close to the one
presented in this paper.

The motivation for creating a new qualitative architecture analysis method
lies in the gap contained in known architecture analysis methods, which is el-
egantly closed by relying on experts during the evaluation process. Needless
to say that experts will always be necessary to perform qualitative evaluations,
nevertheless the need for an expert can be diminished by capturing, structuring
and referring to expert knowledge. POSAAM is a new method to evaluate the
architectures of software intensive systems using the expertise encapsulated in
patterns. Thus, making the evaluation more systematic, repeatable and trace-
able. An architect preparing for a POSAAM evaluation knows what to expect
and can prepare the architecture documentation correspondingly and will have
a better understanding of evaluation results.

POSAAM complements the existing architecture evaluation methods in that
it presents a refinement at the stage where ASRs have to be put into relation
with ASDs.

Before presenting our new architecture evaluation method, we provided an
analysis of presently known architecture evaluation methods which resulted in
a set of goals for the new evaluation method (see Sec. 5.2 on page 26). In the
following section 8.1 we describe how these goals are addressed by POSAAM.
The analysis of how the goals have been addressed by POSAAM reveals areas
for further work which will be mentioned separately in Section 8.2.

8.1 How the goals of POSAAM have been addressed

The main technique used by POSAAM to reduce the need for an expert eval-
uator (G1) is to make use of the expertise encapsulated in patterns within the
evaluation process. However, without a procedure that helps in identifying pat-
terns relevant for evaluation, the knowledge in patterns can only be used by
evaluators who are already acquainted with these patterns. The systematic
guidance in the search for patterns explained in the introduction of Section 6

37

and in Section 6.1 therefore addresses goals G1 and G2 (enhance systematic
process).

The relations between patterns and the corresponding procedure for the
evaluation process also decrease the level of dependence of an expert evaluator
(G1). By making use of a knowledge base containing information about pattern
relations the procedure will lead to the same results (the same patterns to be
observed in the same order) when performed by different evaluators. Thus,
making the evaluation process repeatable and traceable as declared in the goals
G1 and G2.

Goal G6 (shift focus away from requirements elicitation, social engineering
and retroactive architecture documentation) is mainly addressed by starting
the evaluation process with ASRs and an architectural specification which are
required to be available in a specified representation before the POSAAM evalu-
ation can begin. Naturally it is also important to correctly obtain these, but the
focus of the POSAAM process description is laid in the determination of how
architecturally significant requirements have been addressed by the architecture
specification. Since the architecture specification and requirements are required
to be available for a POSAAM evaluation, the evaluation becomes a technical
process, reducing the need for the social engineering parts of the evaluation
presented in other architecture evaluation methods.

The concept of pattern candidates introduced in Section 6.4 addresses goal
G5 (reuse of evaluation knowledge). However, a detailed description of the reuse
mechanism is still missing and will be addressed by further research.

Accordingly, goals G3 (integration of evaluation into development process)
and G4 (interfaces to quantitative architecture evaluation methods) have not
been described within this document. The idea for G3 is to integrate information
about further quality assurance methods (such as how and when a component
should be tested) into the pattern descriptions. Analogous, information concern-
ing the use of alternative architecture evaluation methods could also be included
in pattern descriptions. Both goals have not been elaborated sufficiently and
need to be reseached further.

8.2 Further work

The POSAAM process has already been detailed into more fine grained steps
and case differentiations, but further refinements are being worked on. These
refinements especially concern the systematic maintenance and enhancement of
an evaluation knowledge base (G5).

POSAAM needs to be validated on a real life project. First efforts are being
taken in this direction.

The reorganization of pattern descriptions which we propose for the use
in POSAAM also needs to be refined and cast into a semi-formal definition.
Especially patterns need to be classified according to the quality attributes
they are intended to affect, integration of further quality assurance methods
(G3) and of integration points for quantitative evaluation methods (G4).

38

The knowledge base and the evaluation process can be supported through
the use of software tools. The concepts for this purpose already exist, but a
prototypical implementation would provide further insights.

39

References

[1]

G. Abowd, L. Bass, P. Clements, R. Kazman, L. Northrop, and A. Zarem-
ski. Recommended best industrial practice for software architecture evalu-
ation. Technical Report CMU/SEI-96-TR-~025, CMU, SEI, 1997.

M. A. Babar, L. Zhu, and R. Jeffery. A framework for classifying and
comparing software architecture evaluation methods. In L. Zhu, editor,
Australian Software Engineering Conference, 2004. (ASWEC’04), pages
309-318, 2004.

L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley, second edition edition, 2003.

P. Bengtsson and J. Bosch. Scenario-based Software Architecture Reengi-
neering. In International Conference on Software Reuse. Proceedings.,
pages 308-317, 1998.

P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet. Analyzing software
architectures for modifiability. Technical Report HK/R-RES—00/11—SE,
Department of Software Engineering and Computer Science, University of
Karlskrona/Ronneby, Sweden, S-372 25 Ronneby, Sweden, 2000.

P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet. Architecture-level
modifiability analysis (ALMA). Journal of Systems and Software, 69(1-
2):129-147, 2004.

G. Booch. Handbook of software architecture. Website, 2008.
http://www.booch.com/architecture/index.jsp.

F. P. Brooks. The Mythical Man-Month, Essays on Software Engineering,
Anniversary Edition. Addison-Wesley Publishing Co, 1995.

A. W. Brown and J. A. McDermid. The art and science of software archi-
tecture. In F. Oquendo, editor, ECSA, volume 4758 of Lecture Notes in
Computer Science, pages 237-256. Springer, 2007.

M. Broy, M. Feilkas, D. Wild, J. Hartmann, J. Griinbauer, A. Gruler, and
A. Harhurin. Umfassendes Architekturmodell fiir das Engineering eingebet-
teter software-intensiver Systeme. Technical report, Technical University
of Munich, will be published in 2008.

F. Buschmann, K. Henney, and D. C. Schmidt. Past, present, and future
trends in software patterns. IEEE Software, 24(4):31-37, July-Aug. 2007.

F. Buschmann, K. Henney, and D. C. Schmidt. Pattern-Oriented Software
Architecture: A Pattern Language for Distributed Computing, volume 4.
John Wiley & Sons, Inc. New York, NY, USA, 2007.

40

[13]

F. Buschmann, K. Henney, and D. C. Schmidt. Pattern-Oriented Software
Architecture: On Patterns and Pattern Languages, volume 5. John Wiley
& Sons, Ltd, 2007.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-oriented software architecture: a system of patterns, volume 1.

John Wiley & Sons, Inc. New York, NY, USA, 1996.

P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, and R. Little.
Documenting Software Architecture. 1SBN:0201703726. Addison-Wesley,
2003.

P. Clements, R. Kazman, and M. Klein. Evaluating Software Architectures:
Methods and Case Studies. Addison-Wesley, 2002.

A. Cockburn. The interaction of social issues and software architecture.
Commun. ACM, 39(10):40-46, 1996.

M. Conway. How do committees invent? Datamation Journal, pages 28-31,
April 1968.

L. Dobrica and E. Niemeld. A survey on software architecture analysis
methods. Transactions on Software Engineering, 28(7):638-653, 2002.

J. C. Duenas and R. Capilla. The decision view of software architecture.
In R. Morrison and F. Oquendo, editors, FWSA, volume 3527 of Lecture
Notes in Computer Science, pages 222-230. Springer, 2005.

S. Eicker, C. Hegmanns, and S. Malich. Auswahl von Bewertungsmethoden
flir Softwarearchitekturen. In ICB-Research Report, number 14 in ICB-
Research Reports. Universitat Duisburg Essen, March 2007. (in German).

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: ele-
ments of reusable object-oriented software. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1995.

E. Geisberger, M. Broy, B. Berenbach, J. Kazmeier, D. Paulish, and
A. Rudorfer. Requirements Engineering Reference Model (REM). Techni-
cal report, Technische Universitat Miinchen, 2006.

N. Harrison, P. Avgeriou, and U. Zdun. Using patterns to capture archi-
tectural decisions. IEEE Software, 4:38-45, 2007.

J. D. Herbsleb and R. E. Grinter. Splitting the organization and integrating
the code: Conway’s law revisited. In ICSE ’99: Proceedings of the 21st in-
ternational conference on Software engineering, pages 85-95, Los Alamitos,
CA, USA, 1999. IEEE Computer Society Press.

41

[26]

[27]

[28]

[29]

[30]

[37]

[38]

The Institute of Electrical and Electronics Engineers, Inc. IEEE Recom-
mended Practice for Architectural Description of Software-Intensive Sys-
tems (ANSI/IEEE-Std-1471), ieee-sa standards board edition, September
2000.

International Standardization Organisation. IS0O9126 - International Stan-
dard for the Evaluation of Software Quality, 2001.

P. Jain and M. Kircher. Pattern-Oriented Software Architecture: Patterns
for Resource Management, volume 3. John Wiley & Sons, 2004.

M. Jazayeri, A. Ran, and F. van der Linden. Software Architecture for
Product Families. Addison-Wesley, 2000.

Joint Technical Committee ISO/TEC JTC 1, Information technology, Sub-
committee SC 7, Software engineering. ISO/IEC 9126-1:2001 Software en-
gineering — Product quality — Part 1: Quality model. International Organi-
zation for Standardization and International Electrotechnical Commission,
June 2001.

R. Kazman, G. Abowd, L. Bass, and P. Clements. Scenario-based analysis
of software architecture. IEEE Software, 13(6):47-55, 1996.

R. Kazman, L. Bass, M. Webb, and G. Abowd. SAAM: a method for
analyzing the properties of software architectures. In Proceedings of the
16th international conference on Software engineering, pages 81-90. IEEE
Computer Society Press Los Alamitos, CA, USA, 1994.

R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Car-
riere. The architecture tradeoff analysis method. In Fourth IEEFE Interna-
tional Conference on Engineering of Complex Computer Systems. ICECCS
’98. Proceedings., pages 68—78, 1998.

R. Kazman, M. Klein, and P. Clements. ATAM: Method for Architecture
Evaluation. Technical Report CMU/SEI-2000-TR-004, CMU, SEI, 2000.

M. Klein and R. Kazman. Attribute-based architectural styles. Technical
Report CMU/SEI-99-TR-~022, CMU, SEI, 1999.

M. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci, and H. Lipson.
Attribute-Based Architecture Styles. In Proceedings of the First Working
IFIP Conference on Software Architecture (WICSA1), San Antonio, TX,
225, volume 243, 1999.

P. Kruchten. Architectural blueprints—The “44+1” view model of software
architecture. IEEE Software, 12(6):42-50, Nov. 1995.

N. Lassing, P. Bengtsson, H. van Vliet, and J. Bosch. Experiences with
ALMA: Architecture-Level Modifiability Analysis. Journal of Systems and
Software, 61(1):47-57, Mar. 2002.

42

[39]

[46]

[47]

[48]

[49]

S. Malich. Fin pattern-basiertes Wissensmodell zur Unterstiitzung des En-
twurfs und der Bewertung von Softwarearchitekturen. PhD thesis, Univer-
sitat Duisburg-Essen, Oct. 2007.

S. Malich. Qualitat von Softwaresystemen: FEin pattern-basiertes Wis-
sensmodell zur Unterstutzung des Entwurfs und der Bewertung von Soft-
warearchitekturen. Gabler Edition Wissenschaft, May 2008.

F. Nava, R. Capilla, and J. C. Duenas. Processes for creating and exploiting
architectural design decisions with tool support. In F. Oquendo, editor,
ECSA, volume 4758 of Lecture Notes in Computer Science, pages 321-324.
Springer, 2007.

H. Obbink, P. Kruchten, W. Kozaczynski, R. Hilliard, A. Ran, H. Postema,
L. Dominick, R. Kazman, W. Tracz, and E. Kahane. Report on Software
Architecture Review and Assessment (SARA), Feb. 2002. Version 1.0.

B. Penzenstadler and D. Koss. High confidence subsystem modelling for
reuse. In Intl. Conf. for Software Reuse, 2008.

R. Reussner and W. Hasselbring, editors. Handbuch der Software-Archi-
tektur. dpunkt.verlag, 2006. (in German).

D. C. Schmidt, H. Rohnert, M. Stal, and F. Buschmann. Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects,
volume 2. John Wiley & Sons, Inc. New York, NY, USA, 2000.

M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and
P. Sommerlad. Security Patterns: Integrating Security and Systems Engi-
neering. John Wiley & Sons, Ltd, 2005.

J. Tyree and A. Akerman. Architecture decisions: demystifying architec-
ture. Software, IEEE, 22(2):19-27, March-April 2005.

W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl. Fault
tree handbook. Technical Report NUREG-0492, United States Nuclear
Regulatory Commission, Washington, D.C. 20555, Jan. 1981.

R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and
B. Wood. Attribute-driven design (add). Technical Report CMU/SEI-
2006-TR-023, CMU, SEI, 2006.

L. Zhu, M. A. Babar, and R. Jeffery. Mining patterns to support software
architecture evaluation. In Proceedings of the Fourth Working IEEE/IFIP
Conference on Software Architecture (WICSA’04), pages 25-34, June 2004.

W. Zimmer. Relationships between design patterns. In Pattern languages
of program design, pages 345-364. ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 1995.

43

	Contents
	Introduction
	Running example: Navigation system
	Business Needs
	Requirements Specification
	System Specification
	Project Plan and Management

	Designing an Architecture
	Directive Criteria
	Functional Criteria
	Quality Criteria
	Architectural Criteria
	Decomposing the system according to the criteria
	Further guidance

	Documentation
	Shortcomings of Architecture Documentation
	Documenting Layers, Views, and Rationale

	Shortcomings of Common ArchitectureAnalysis Methods
	Analysis of the Systematic Guidance for Architecture Evaluation in ATAM
	Goals for a New Qualitative Architecture Evaluation Method

	Evaluating an Architecture Using POSAAM
	Moving from Requirements to Patterns
	Networking: Using Pattern Relations
	Using Pattern Knowledge for Evaluation
	Special Issues
	Evaluating Using Principles
	Structuring Expertise Stored in Patterns

	Related Work
	Conclusion
	How the goals of POSAAM have been addressed
	Further work

	References

