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Abstract

The consistent specification of reactive, context-aware systems is dtidlliemging and error-
prone task. One reason for this observation is, that those systemsiagdlyyipvolved in com-
plex user interactions and support multi-variant work flows of humans#ret technical sys-
tems. On the one hand, it is necessary to capture all system functiotiredefgu each supported
activity of the work flow. On the other hand, interrelations between systeatibns such as their
order of execution or mutual influences have to be considered as well.

The idea of modeling data and control flows occurring within a softwarewsite system and
its environment by means of a common and precise graphical notation haptesent for a
couple of years now. Most modeling techniques in practice ékg, UML's Activity Diagrams
merely offer an ‘appealing’ graphical syntax without including a premsghematical interpre-
tation for the behavioral modules — denomdcessedn the following — exhibiting these data
and control flows. This causes ambiguous model interpretations, whigtothe readily re-
solved. On the other hand, formally founded description techniquesligePetri Nets can not
express aspects like communication, which are relevant for the faithégtigéon of the pro-
cesses of the sorts arising in computer science. Methodically relevasgmtsrsuch as hierarchy
and refinement are often not supported by such description technitheepresented modeling
approach incorporates the advantages of both worlds: a graphprakentation supporting a
modular, hierarchical description in terms of processes, and a fornmarges accurately re-
flecting the execution of these processes — thus laying the foundationtéomatic verification
and tool support.

Furthermore, we sketch an elementary development approach to the nasdel-tesign of
system behavior, which uses different views to structure its design raadglsés. It starts with
a formal, structured description of a user’'s work flows to be supponethd system. This
structure is exploited for the construction of two complementary views: oneltzacterizes
the relevant usage conditions of the user’s work flow in terms of contextt,amother view
describing the required system behavior in that context.
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1 Introduction

Due to their inherent complexity, the consistent specification of many reagtstems is a chal-
lenging and error-prone task. Building concurrent, multi-functional @mext-aware systems
complicates the specification and reasoning about those systems eve@moreay to manage
this complexity is the usage of formal, structured models for their specificatidranalysis.
Such models describe the considered system characteristics with mathengurcahd enable

a hierarchical decomposition of the system descriptions into smaller patts&gonally to this
hierarchy,viewsstructure the specification according to a few selected aspects of thensyste
Both hierarchies and views can be exploited to structure the specificaticamnafysis. A crucial
view we emphasize in this paper focuses onwtioek flowsto be supported by the system.

The work flows which humans accomplish in their daily business are typictihgtaoints for
the development of reactive systems. Consider a complex work flowdigea surgery. Such
a work flow can be described by a structured specification whose buildous we denote
processesEach process models an exemplary, finite part of the overall work flowhich
surgeons and nurses cooperate in order to achieve a certain objeagivéhe removal of a
patient’s gallbladder. Such work flows essentially influence how a sysipposting these work
flows needs to interact with its environment. A useful description technmuailding systems
on basis of work flows must fulfill several requirements. Among other #iinghould be able to
accurately refledbothkinds of processes inaniformfashion:(i) the work flows accomplished
by humans in the real world, ar(d) the data and control flows of the system supporting the
real-world work flows.

Even more important, a useful modeling approach smoothly integrates tHengsystem
specifications, such as,g, the partially defined processes presented here and the totally de-
fined components of a component-based system design, in order to atntoba integrated,
consistent specification of the developed system.

1.1 Contribution

We introduce processes as a formal, structured model for the modutaipdies of concurrent,
reactive systems and their environment. The model is formal in that it dedipescess as a
mathematical object, which can be analyzed. The model is structured in tieatriitp the hier-
archical definition of a process, and that hierarchy can be exploitettriacturing the analysis.
We formally define the syntax of process descriptions and provide a fantegpretation for
process behavior. Processes form the basic building blocks foriloiegcthe data and control
flows within systems and their environment. They are capsules of behaataah be composed
sequentially, alternatively, and in parallel — arbitrarily nested.

A mathematical semantics for process descriptions not only enables theibiguesmus in-
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terpretation. It also provides the basis for tool support, thus enablirgffiaient development
process. Tools can verify requirements on specifications that are topleo to be verified

manually by a person. Moreover, they can support the synthesisighdesdels from process
specifications, thus avoiding error-prone, manual translations.

Moreover, we propose an elementary, model-based approach to tiicgpien of (partial)
system behavior, which exploits the work flows of users in order to elicitsaructure its func-
tional requirements in terms oflabeled transition systerfLTS. Our approach structures the
specification of system behavior into three complementary viewswilk flow viewdescribes
the work flows to be supported by the system in terms of a formal, structurddinitis model
reflects the execution order and the communication between the work flésvigjameans of
control and data flows, resp. The work flow view structures the ddesmripnd analysis of two
complementary system views, namely tantextual view- which describes the characteristic,
observable usage conditions of each work flow part in ternt@pfext and thefunctional view
—that represents the system functionalities supporting each part of tkdlow. By this, we in-
troduce a process-orientedview for the development of reactive systems, which complements
service-oriente@dpproaches by concentrating on execution order and communicationtrethe
on functional dependencies.

1.2 Scope

Our approach addresses the late analysis phase within the developowsspin which func-
tional requirements are formalized in terms of a LTS. We assume an inforreatijgkion of

the exemplary usage scenarios / user work flows to be ge&gn,in terms of Use Cases [1].
We formalize those descriptions by the model described in Sec. 3. Theid wark flow de-
scriptions, denoteprocessesare used to derive the intended system behavior with the aid of two
complementary views. The result is a formal, structured specification @mayanctions, which

is build up in accordance with the views describing a user’s work flowsitarmbrresponding
usage conditions in terms of context.

1.3 Related Approaches

A variety of description techniques and formalism for describing work Slalveady exists,
which differ in many aspects such as communication, formal foundatioparaén between
control and data flow, process composition, refinement conceptsidhigra structuring, and so
on. We mention just a few formal approaches which influenced the defimtioar description

technique the most.

The concept of activating and deactivating processes by means wblcpoints goes back
to the control tokens introduced Retri Nets[2] and variants thereof [3JActivity Diagramsas
used in the Unified Modeling Language [1] constitute an informal descripgicimique, which
also supports the specification of control flow in terms of choice, iteratiod,cancurrency.
Approaches like [4] emerged since their introduction, which formalize thiviyc Diagram
semantics in terms of existing formalisms such as Petri Nets or by introducingpnaalisms.
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In contrast to the above approaches, we support process commumigatiaterface variables,
since we aim at the construction of reactive systems, for which data flaméamental.

The idea of defining process behavior mathematically and structuringgsesierarchically
is inspired by thédusiness process netdroduced in [5]. However, the specification of behavior
in business process nets is restricted to ‘conventional’ mathematical fusiclibis appears to
be very limiting when describing complex system behavior, since this apgpiogmnses some
kind of ‘one step per processemantics. In addition, we wanted a specification technique that
explicitly captures the notion of control flow for enabling a proper compasitfqprocesses — a
concept not supported in business process nets.

An explicit separation of data and control flow enables such a compositipartitioning the
overall system behavior according ¢ontrol points More precisely, control points structure a
complex labeled transition system into modular behavioral parts. Indeedpptpach is essen-
tially inspired by Henzinger'somponent$6] and Schatz'functions[7, 8]. Both approaches
focus on the construction of reactive systems, thereby providing dasigvthdisjunctiveand
conjunctive compositionf behavioral modules, which cover sequential executions by handing
over activation and parallel executions by exchanging messagesveigiveorder to cope with
the specification of work flows, some design decisions within the aboveagpes had to be
reconsidered. As opposed to the strict black-box view of functiors;gsses support the in-
ternal communication via shared variables which emphasizes their coritenta (system)
executions. In order to reflect their exemplary nature, the proceseas approach areot input
enabledas opposed to the components in [6] and the functions in [8]. Accorditigdyynderly-
ing system model, the definition of behavioral composition, and the comedsppappearance
of processes differ.

1.4 Qutline

This paper is organized as follows. In Sec. 2, we introduce the notionrdéxt and present
a medical case study of a minimal-invasive surgery, denoted laparostupacystectomy. In
Sec. 3, we informally introduce our description technique for modeling datacantrol flows
by means of the case study mentioned before. In Sec. 4, we formally iordda syntax and
semantics of processes and process composition, as well as the notimeeggphierarchy. In
Sec. 5, by means of a running example, we outline an elementary, praoested approach
for designing context-aware systems on basis of user work flows arextoal information. In
Sec. 6, we summarize our work and outline further promising researattidirs.



2 Preliminaries

In this section, we introduce the notion of context and present a casgwhich serves as a
running example throughout this paper.

2.1 Context

Informally, thecontextof a system constitutes the sufficiently exact characterization of all infor-
mation in the system environment. An early work considering the role of comtesoftware-
intensive systems is provided by Schilit et. al in [9]. More recent wor&alf to the systematic
elicitation of context, and the question which context is relevant for a syshel®@r construction.
This consideration manifests in an explicit model of a system'’s context @aeged in [10], in
which context is basically categorized into three dimensions characterizisgpe situation(i)
theuser, (ii) heractivities and(iii) the operational environment

Eventually, the notion of context is exploited to unburden the user from sdrher direct
interactions with the system. More precisely, the system adapts its obsebediaieior auto-
matically on basis of contexténtext adaptation A formally founded discussion afdaptive
system behavior behavior that not only depends on explicit user inputs, but also orotitext
of use and the work flows of users as one part of that context — céoubd in [11]. Essen-
tially, Broy et al. propose to use the notion of adaptive system behawiayalwith respect to
a user interacting with the system. Then, depending on her perspectee kihds of adaptive
system behavior can be distinguished, denotadtransparent adaptiveéransparent adaptive
anddiverted adaptivesystem behavior.

2.2 Case Study: Laparoscopic Cholecystectomy

We already mentioned in the previous section that we illustrate the applicaticur ohadel-
ing approach using a running example from the medical domain. We destphets the work
flow of a highly standardized, minimal invasive surgery, denotelh@aaroscopic cholecystec-
tomy (lapCHE)[12], within which a patient’s gallbladder is removed in case of inflammations.
The medical case study demonstrates the approach’s capabilities to mokidloms within a
system'’s environment.

We shortly sketch the execution of the considered surgery. The lap@HhEoaghly be par-
titioned into eight individual phases. For illustrating the modeling capabilitiesiofpproach,
we concentrate on the fifth phase of the surgery in which the gallbladdessisotied.

Cholecystectomy is performed under general anesthesia. Initially, a sedlenis in-
serted into the peritoneal cavity for inflating the abdomen with carbon dioxXIdhes
provides room for easier viewing and for the surgical manipulations to béorpeed.
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At the same point, a small incision is made and a thin tube, caltedar, is in-
serted (T1) afterwards. Via this first port, the telescope is introduced isoalze
the interior of the abdomen. After a test insertion with a hypodermic needleg thr
other trocars are inserted under view of the laparoscopic camera (32and T4).

To get access to the gallbladder, first a retraction device is insertegt
in T3. The right liver lobe is elevated. The laparoscopic camera ig
changed from trocar T1 to T2, to provide sufficient view of the sur- e}
gical field. Finally, a grasping forceps is inserted into T4 and the "
dissection device in T1. The primary step of the surgical procedure o
is to dissect the area which includes the bile duct and the cystiq
artery (Calot’s triangle). This is done by blunt dissection with a for- w
ceps and cutting current. In case of bleedings, coagulation curre
is used. If both structures are clearly visible, each of them is cIippelgI 2 1: Trocar Points
with three clips, followed by cutting both structures between the 9. 2%
clips with laparoscopic scissors. The following step is dissection of
the gallbladder. In minimally invasive surgery, this is done by touching thesdretween gall-
bladder and liver and applying cutting current.

To remove the dissected gall bladder a sal-
vage bag is inserted into the abdomen, the gall-
bladder packed up into the bag and the bag ex-
tracted together with trocar T1. In case of big
stones, the bag cannot be extracted through the
trocar incision. In that case, the calculi are ex-
tracted extracorporeally out of the salvage bag.
Thus, the content of the bag is adequately re-
duced to pull it out. Finally, the surgical area is
explored again to detect and take care of bleed-
ings. A drainage is inserted through a trocar hole
and all instruments are removed. The trocars are
extracted under visual control and the incisions

=

Chirurg

Saug-Spul-

Automat are closed by sutures. During the procedure, in
o case of bleedings in the operation field, a device
e which allows flushing and suction is used. Also
Lol controlling for bleedings after extraction of the

gallbladder is done with this device.

Fig. 2.2: Operating Team Lineup



3 Describing Processes

We informally introduce the syntax and semantics of processes in this seatidipresent our
description technique by giving a work flow specification for a surgidakirention, the lapCHE.

3.1 Process Interface and Behavior

Processes are the building blocks of the approach presented heiealjaprocesses are cap-
sules of behavior, defined by their syntactic interface in terms of dataartcotflow as well

as their semantic interface. The semantic interface describes a prdmfssgor in terms of a
constructive specification,e. the behavior is defined in a state-transition manner. The control
flow between the process and its environment is defined in terms of two Kirdsitwol points;

one for accepting control from the process’s environment and ametiarning control back to

its environment, thus allowing the process to be activated and deactivesed, r

illp iQIF igiH i4ZS
\/
dissect_

strt O Gallbladder :
surgeon,nurse

stp

11:P/ 12:F/ 135H/13:S/
Fig. 3.1: Compound Proceséi'ssect_Gallbladder’

Fig. 3.1 shows the graphical representation of a compound processbdes a work flow
within the surgery mentioned above. Each capsuled behavior is refrddsna box, and identi-
fied by a process nameissect_Gallbladder). Optionally, a set of role names indicating the
process’s executing entities may be appended to the process sargedn, nurse). Interface
elements such as I/O variablesd, i, :P) and control pointsgtrt, stp) are attached to the
border of each process; the process’s internal structure may pkicaily depicted inside the
box, or it may be completely abstracted by only exposing a process narevainsFig. 3.1.

The processlissect_Gallbladder observes different signals via the typed input variables
i; throughi4, and controls different signals via the corresponding output variablésrough
1,. More precisely, the process accesses four surgical instrumenteJi®tkariables, namely
the pe — forceps P via variablesi,, 11, the seizing — forceps F via variablesi,, 1,, the
surgical aspirator Hvia variablesis, 13 and thesurgical rinser S via variablesi,, 14.
The input and output signals accessed by a process are indicated tyyasrdfilled triangles at
the process’s border.

To control the activation and deactivation of a process, it can be entexehe control point
strt and exited via the control poirttp. As shown in Fig. 3.1, entry points are indicated by
hollow circles, while exit points are indicated by filled circles.
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To that end, we sketched how to define a procesgiactic interfacgi.e. we specified how a
process can be accessed from the environment. However, we haxet specified the process’s
I/0O behavior i.e. how the process handles signals received on input variables andcesod
signals sent along output variables. We follow a constructive applinaghich the behavior of
a process is described in a state-transition manner.

Fig. 3.2 shows an elementary process typically occurring within a usagarscef an Auto-
mated Teller Machine (ATM), namely the processty_PIN, verifying the personal identifica-
tion number (Pin) entered by a bank customer. pitogess’s control flows described via control
pointsstrt, scc, erry, err, andlck as well as labeled transitions between these control points.
strt constitutes the process’s ongntry point whereas all other control points may pass the
control back to the process’s environment. Transitions are influencsigibals observed via in-
put variables and influence signals controlled via output variables., Thiilscontrol is passed
to control pointstrt, the Pin valuep is received via the user input varial#en (Pin7p), and
(iii) the same Pin valup is received via the card reader input variabtel (Crd?p), then(iv)
valueok is sent via the output variableck (Ack!ok) for acknowledging a correctly entered pin
to the user, an@v) control is transferred to exit poiricc, which passes the control back to the

environment.
Pin Crd

( Crd?p,Pin’p/  _ Crd?’p,Pin’p) sce
Acklok Acklok
Crd?p,Pin?p/
Acklbp - ®1ck
Strt O ----
_______ err,
Crd?p,Pin?p/
| Acklbp T Acklbp™ ™~~~ TTTC erry

Ack
Fig. 3.2: State-Transition Specification of ATM’s Processf'y_PIN’

3.2 Composing Processes

Although at some point in the development process edementaryprocess should have an
internal implementation as depicted in Fig. 3.2, it is not furtf@romposehto sub-processes.
On the other hand, to decompose a process into further sub-practesesncept of @om-
pound processs introduced, which is graphically indicated by a gray box as shown in Flg. 3
Compound processes introduce a hierarchical structure, relating eocoachprocess with its
sub-processed his hierarchy is especially useful for modeling complex behaviorsestrin-
troduces an additional level of abstraction by allowing to fold/unfold a vitark description.
Thus, it is possible to abstract from irrelevant details and to enhancesddability of large
process descriptions.

Moreover, formally defined hierarchies lead to more consistent prapessfications, since
the sub-process relation imposes additi@yaitactic constraintsn the related processes which,
e.g, can be statically checked by a CASE tool. A typical constraint is, that th@stjc interface
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of a compound process must exposhierarchical interfaceconcerning its sub-processes as
defined in Sec. 4.1.6. Informally, this relation implies that the compound @wdse®t allowed

to provide any access in terms of 1/O variables and control points, whiatt supported by its
sub-processes.

We describe how to compose and structure work flows for our runniagnple from the
medical domain, in which we completely model one phase of the lapCHE sufyeistailed
description of the abstract syntax of process models and the diffavesityities for composing
processes is given in Sec. 4.

illpiglFigiHi4IS 111P125F133H14IS
\/ % \/ Y

Y 7
check_
BloodDryness ::
surgeon,nurse

dissect_
Gallbladder ::
surgeon,nurse

1,:P15:F13:H14:S o041:Po0og:Fo3:Ho4:S
Fig. 3.3: Most Abstract Level of Execution of Surgery Phase 5

Fig. 3.3 depicts the most abstract modeling level of the surgeryall compound pro-
cesses are folded and abstract from their internal structure and impgioariblack-box view).
The most abstract view of this surgery phase contains the four compgmondsseghase 4,
dissect_Gallbladder, check BloodDryness, andphase 6, which are allcomposed in se-
quel The execution order of the depicted processes is expressed asanretethe processes’s
control points — graphically depicted as arrows from exit points to entigtpdE.g, when
phase 4 terminates, it immediately transfers the control to processsect_Gallbladder,
which — after finishing its own execution — transfers control to proc&ssk BloodDryness,
and so on.

Processes communicate asynchronously eharedvariables, which are identified via co-
incidence of variable names. Graphically, this data flow is not represdnteah explicit
communication link. As depicted in Fig. 3.3, procesisssect_Gallbladder and process
check BloodDryness communicate via the four shared variablgghroughl,.

[no bleeding]

O— : b m s
ig:P j1:Pig:Fiz:Hi4:S
[bleeding] , NV
receive_ staunc
OPE — forceps :: O Bleedings :
nurse surgeon,nurse

j12P kilpkgiFkgin4ZS
Fig. 3.4: First Phase of Procesii ssect_Gallbladder’ of Fig. 3.3

Fig. 3.4 unfolds the compound proces8issect_Gallbladder and thus exposes its
internal structure. The diamond and the triangle delimitatguarded process sequence
consisting of the elementary processceive PE — forceps and its compound successor
staunch Bleedings, i.e. both processes are only executed in case the condition guarding
their corresponding control relation evaluates to trfs@deding]); otherwise the control flow
is forwarded along the alternative path guarded by conditierbleeding] without execut-
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ing the both process. Note theéceive PE — forceps andstaunch Bleedings communi-
cate over thdocal variable j1, which is not accessible via the syntactic interface of process
dissect_Gallbladder. On the other hand, the variablesthroughi, depicted in Fig. 3.4 are
contained withidissect_Gallbladder’s i[nterf?ce.
else

kllp

[~ pe-forceps
inducted]

i1 :P
Fig. 3.5: Second Phase of Processssect_Gallbladder’ of Fig. 3.3

Fig. 3.5 depicts another guarded process calledi PE — forceps which sequentially fol-
lows the process excerpt depicted in Fig. 3.4 (graphically indicated byuhwered cutting
points). Fig. 3.6 depicts the continuation of procésssect_Gallbladder, in which twoal-
ternative process sequencase depicted, which are guarded by the condifies] and [cut],
indicating whether theurgeon demands the application of cuttingu) or coagulation ¢o)
current for preparing the patient’s gallbladder. Alternative compositioti@sthateitherof the
involved processes are executed, tott both

i&;P n:Co m :P n:oC
start_ st¥p_

activate_

but:Dn my:P n:oC

n:Cu

activate_

surgeon

surgeon
m;:P n:Cu but:Dn my:P n:uC but:Up
Fig. 3.6: Third Phase of Proceshissect_Gallbladder’ of Fig. 3.3

Note that input variablei; of processstart_Coagulation in Fig. 3.6 is connected
with two other I/O variables, namely with the eponymous input variable of supeepso
dissect_Gallbladder and the output variable of the preceding prodessi PE — forceps.

This setting reflects the circumstance that — depending on whether phae@S8E — forceps

was executed — thesurgeon receives the pe-forceps at the beginning of process
dissect_Gallbladder Vvia input variablei; or not before thewurse has handed this instru-
ment viahand PE — forceps’s output variablei;. Thus, for modeling processes we not
impose the disjointness of output variabl&his is in contrast to component-oriented specifi-
cation techniques like &cus[13], which impose syntactic restrictions such as disjointness of
output interfaces to ensure that the composition of components resultsrimp@eent with input
total behavior.

If the gallbladder was successfully released from the liver-bed {tondgf] in Fig. 3.6)
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the nurse concurrentlyreceives the seizing-forceps and the pe-forceps fromsthgeon as
depicted in Fig. 3.7. This expresses, tlipboth processeseceive_Seizing — Forceps and
receive PE — forceps are simultaneously active, arfij the exact order of their execution
may be irrelevantOn the other hand, if the gallbladder could not be released (conditigfi

in Fig. 3.6), the control flow is forwarded to the beginning of procksssect_Gallbladder

in a guarded iteration Graphically, concurrent processes are delimited by two parallels split-
ting and merging the corresponding control flow of the concurrentlygrecprocesses. Note
that concurrent process composition, just as any other form of cotigmois the presented ap-
proach, can be arbitrarily nestesf; Fig. 3.8 in which two sequences of processes are composed
concurrently.

iQZF

</
receive_
(Seiz. — Forc. ::
nurse

11 P
Fig. 3.7: Forth Phase of Procegd §sect_Gallbladder’ of Fig. 3.3

Fig. 3.8 through 3.10 depict the refining processes of the compoundegsoc
check BloodDryness. However, since no new syntactic constructs are introduced within that
phase of the surgery, we just present the corresponding proceles foosake of completeness.

iz:H pi:H

p2:S
hahd_ inddct_
O Rinser : O Rinser :
nurse surgeon
p2:S q2:S

Fig. 3.8: First Phase of Processieck BloodDryness’ of Fig. 3.3
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q2:5 qi:H n:Co
rinsé7draw, req&ést, acti;ate,
Liverbed : Coagulat. ::
surgeon

Coagulat. ::
surgeon

nurse

IQIH

ro:H
sfgp,

Coagulat. ::

surgeon

n:oC sq1:H

Fig. 3.9: Second Phase of Procedaséck BloodDryness’ of Fig. 3.3

but:Up

q:1:H

V.
receive_

O Aspirator ::
ri:S

——
rinse/draw_

({—O Liverbed :

Vi
receive_

Rinser ::

nurse

04:S
Fig. 3.10: Third Phase of Proceskissect_Gallbladder’ of Fig. 3.3
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In this section we present a formal description technique for the speiaficE work flows. We
introduce its abstract syntax together with a graphical representation.id.$ebefore giving a
denotational semantics for interpreting process behavior in Sec. 4.2.

4.1 Process Syntax

We use the abstract syntax format to define @ygpearanceof our description technique in
terms of a BNF notation. A work flow description is constructed in accorgavith the syn-
tactic equations in Fig. 4.1. Non-terminals are enclosed)bthe symbol| separates any two
alternatives. The syntactic domdiproc) denotes a general process.

(proc) = empty
| havoc
|  (procid) = (eproc)
| [{procid) =] {proc); {proc)
| [ (procid)=] {proc) ® {proc)
| [(procid) =] (proc) || (proc)
| [ (procid) :] <proc>o(lpspec)

Fig. 4.1: Abstract Process Syntax in BNF

The terminal symbolempty andhavoc represent the absence and any form of work flow,
resp. They are only of theoretical relevance, not for describingweek flows. Each of the
syntactic domains listed above is explained within the next sections.

4.1.1 Elementary Process

The syntactic domaifeproc) in Fig. 4.1 denotes an elementary procéss,a process that is
not decomposed into further sub-processes (black-box). Eackswds identified by a name
(procid) and interacts with its environment via itgerface We explicitly differentiate between
the exchange of data and control flow between a process and its eneinbrData flow models
procescommunicatiorwhile control flow models procegde)activation

DEFINITION 1 (SYNTACTIC INTERFACE) Formally, aninterfaceof a process P is a tuple
(1,0, S E), denoted Ini, containing interface variables O C Var and control points & C

Ctrl. In order to emphasize the direction of the data flow, we distinguishdmatvthe set of input
variables | observed by a process, and the set of output variablesn@otled by a process.

12
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Analogously, to emphasize the direction of the control flow, we disting@ishelen the set of
entry points S and exit points E, by which control enters and exits the ggp@Esp. O

A variable has a name V and atype € V — TYPE whereV is a set of variable identifiers
andTYPEis the set of all types, which in our setting are simple datasets. Analogousigfralc
point has a name C, whereC is a set of control point identifiers. Each process holds at least
oneentry pointby which the process may be activated and start executing. By meamdt of
pointsthe process deactivates and returns the control back to its environmeateiit point
exists, the process maintains the control forever.

A process is understood as an observable activity executed by omegerakactors which
might be persons, components, technical systems or combinations tHeras$ociate a process
with its executing actors, we use the concepiodés. A role has a name R, whereR is the set
of role identifiersE.g, the role of a process is used to indicate on which component the process
is executed. In other words, roles are used to relate logical systerteatares with a set of
processes describing their behavior.

To represent the concrete syntax of our description technique, welurtieaa graphical nota-
tion as illustrated in Fig. 4.2. A process is represented by a rectangularaattol flow node
with rounded corners. The data flow interface is indicated by labeled leisegnnected to the
process border. Hollow triangles pointing to the process denote inpiatles § : L, n : M),
filled triangles pointing to the environment denote output varialedj. Similarly, the control
flow interface is described by labeled circles connected to the procedsrbwhereby hollow
and filled circles are used to distinguish between enigy€) and exit €nd) points, resp. A
process is annotated by a naredc) and an optional roleRple).

i:L n:M

\V/ \V/

k:L
Fig. 4.2: Interface of Elementary Process

strt

4.1.2 Sequential Process Composition

The sequential composition operatoin Fig. 4.1 takes two processes and composes them in
sequel, if at least one of their control point labels coincide. Moreakdre sequentially com-
posed processes are supposed to communicatesbasrdvariables, these variables have to be
consistentThis means that the considered variable names and their correspondisgrygst
coincide. The exit points of the first process are connected with theidoigentry points of
the second process. In this sense, control points constitutgltng for composing processes,
that determines the order in which the corresponding processes execute

The graphical notation for composing two processes in sequel is illusirakgd. 4.3. Note,
that we connect the control points and shared variables in accorddéthd@eir identifiers. Since
the identifiers of linked control points must coincide, we occasionally omitdafech asloc
of connected control points. Similarly, we occasionally omit to draw an exglicitimunication
link between shared variables {N). Such a link is always assumedplicitly.
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u:V m:N o:T
Fig. 4.3: Sequential Process Composition

4.1.3 Alternative Process Composition

The choice operatop in Fig. 4.1 takes two processes as operands and alternatively combines
them in accordance with a guard associated to their common entry pointsidarhendl and
the triangle symbols in Fig. 4.4 illustrate the branching of control flow. Werassihat the
control flow isnot splitby the diamondi.e. the control always flows along at most one outgoing
edge whose guard evaluates to true. If several guards evaluate toneief them is chosen
non-deterministically

When several processes are alternatively composed we assume #Heapthoesses do not
depend on each other in the sense of control flow. To ensure this, wetddlow to connect
control points between any of the alternative processes. This leadsnuaéite processes that
execute in gairwise exclusivéashion. In other words, it is impossible that any two alternative
processes execute simultaneously. In Fig. 4.4, the common entrygmirdf each alternative
process are linked to the control flow branch (diamond) while the commorpeiit ext is
linked to the optional merging node (triangle).

Note that the interface variables of alternative processes suéh @sandn : N need not
be disjoint. However, the alternative compaosition of two processes is ddfimg if the input
variables of one process and the output variables of the other doinotdmi.e.

|pﬂOQ:|QﬂOp:@.

n:N
Fig. 4.4: Alternative Processes Composition

The alternative composition can be generalized to more than two proces$esahvious
manner. In particular, the diamond can be extended to connect sexgabiats as incoming
edges as depicted in Fig. 4.5.
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Fig. 4.5: Choice with Several Inputs

4.1.4 Parallel Process Composition

We introduce the parallel composition operalfon Fig. 4.1 to express that several processes
executesimultaneouslyWhen entered through their common entry pofatk), the control flow
splits and simultaneously activates the concurrent processes, whil®ogptional end points
(join) ‘synchronizes’ their deactivation and returns control to the envirenndes in the case of
alternative composition, no control points are related between any of toeigent processes.
Instead, the entry points of each concurrent process are linked tontm@Icflow fork (opening
parallels) while the exit points may be linked to the optional join (closing parallels)

Interface variables may be shared between concurrent procEgseks illustrates the graph-
ical notation for composing two processes in parallel, whereby both ggeseommunicate over
the shared variable : N. The composition can be generalized to more than two processes in the
obvious manner.

v:R
Fig. 4.6: Parallel Process Composition

4.1.5 Repetitive Process Composition

Onpspec) IN Fig. 4.1 represents a repetition operator for processesiepending on the evalu-
ation of a loop specifielpspec, the work flow is consecutively executedassibly indefinite
number of times. The loop specifier determines the number of repetitions.gedsfisd as a
natural numbee N U oo or in form of a guard. Fig. 4.7 illustrates the graphical representation
of the repetition operator associated with a process.

Note that we understand a work flow as somethingquewhich occurs at most once — like
an execution trace of an automaton. However, for convenience we ongistwilde each (part of
the) work flow by a unique process. Consequently, we use the repetierator as a shorthand
for specifying a possibly infinite number of sequentially composed presess
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k:L
Fig. 4.7: Repetitive Process Composition

4.1.6 Process Hierarchies

We structure processes hierarchically and exploit this hierarchy factating the analysis of
complex work flow descriptions. For the interface of a hierarchically sired process, certain
syntactic constraints must hold which we formally define in the following. Ireptd relate the

interface of a hierarchically structured process with the interfaces diilitosocesses, we first
introduce the notion of anion interface

DEFINITION 2 (UNION INTERFACE) Given a set of processes with syntactic interfaces
Intf, = (1;,0;,S,E) fori = 1,...,n with n € N. We construct theirunion interface
(I*, 0%, S*, E*) by unifying all constituents (variables, control points) contained in Elefment
wise, i.e.

n n n n
'*:U'i A o*:Uoi A s*:Us A E*:UEi
i=1 i=1 i=1 i=1

def

n

We denote the union interfa@lntfi = (I*,0*, S E"). O
i=1

However, to construct the interfadetfy of a hierarchically structured procebl we are

interested in exactly those variables and control pointd’'sfsub-process interfaces, which are
not ‘bound by coincidence of names. The notion ohierarchal interfacformalizes this idea.

DEFINITION 3 (HIERARCHICAL INTERFACE) ~ Given a union interfaceJ’_, Intf; constructed
from interfaceql;, O, S, E;) fori,j = 1,...,n with n € N. We call an interfacél, O, S E) a
hierarchical interfacgaff

="\ {inQ}, 0=0"\{inO}
S=S\{SnEg}, E=E"\{SNnE}

n
We denote the hierarchical interfa@lntfi =(1,0,S,E). O
i=1

Fig. 4.8 illustrates the hierarchical interface of a compound prosegsProc, which is con-
structed from the interfaces of its two sub-processasroc; andsubProc,. We omitted the
type declarations of variables for clarity. Note that the common control peinaind the shared
variablel are not part okompProc’s hierarchical interface — both have beiddenfrom the
environment as defined in Def. 3.
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compProc /

ent

Fig. 4.8: Hierarchical Interface @fompProc

4.2 Process Semantics

To that end, we introduced the syntactic aspects of process specificaittout defining how

to describe it9ehaviorand its interpretation in terms of mathematical objects like sets, func-
tions, relations, etc. We use the concept tdlzeled transition systeifl. TS in order to specify

the behavior of a process. Moreover, we give a formal, mathematicapiatation for process
behavior based on the setafservationsnduced by such a LTS.

4.2.1 Basic Semantic Concepts

Along the lines of [6, 7, 8], we use well-known concepts for interpretingcesses in terms
of states observationsandbehaviors We use these concepts to declare the meaning)of
an elementary proces§ij) sequential compositior{jii ) alternative composition(iv) parallel
composition, andv) repetitive composition of processes.

State A states € Var — Val maps variables to their current values, wherdas= L Ul U O
with local variabled., input variables and output variable®.

Observation An observation is either a triplg, (t), b) consisting of a finite sequeng® of
states corresponding to an execution starting at control p@nd ending at control point
b, changing variables according {D; or it is a pair(a, (t)) consisting of a finite sequence
(t) of states, corresponding tgpartial execution, starting at control poiat

Behavior The behavior of a process is the €disof all its observationd,e. we consider finite
behavior only.

4.2.2 Interpretations
System Model

We use processes to specify concurrent and distributed discretesggéams as found in soft-
ware intensive systems and their operational environment. We reasahthbdehavior of a
processP by considering the observations induced Big automaton (LTS). This automaton
communicates with its environment via its interface. In contrast to a componeregtavior of
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a process needs not be totally defined. For a partial specification, gsiy®to have a behavior
of the environment where no behavior of the process is defined by #uifisption. By this,
process behavior is inherently defined in an assumption/guarantee sdseithe environment
violates this assumption and produces illegal inputs, the reaction of thesprisoadefinedli.e.
the process exhibits the empty set of outputs (input disabled). In corgrdsactivated process
does not constrain any variables whatsoever. This interpretationtseffeexemplarynature
of a process: a component is composed from partial process spimificantil a totally de-
fined component specification emerges, which defines a reaction to&sible input of the
environment.

With this in mind, we describe how to interpret the behavior of an elementacggsand the
different forms of process composition, whereby composition is nothirgytekn structuring
the resulting automaton into modular behavioral descriptions (sub-pesjess

Throughout this section, we illustrate all concepts by means of a prominanpte of a
reactive system: the Automated Teller Machine, ATM.

Elementary Process

The ‘structural’ aspects of a process are defined by its syntactic icgditfzO, S E) containing

a set of interface variables | U O, with Var = 1 U O U L, and a set of interface control points
C SUE. The corresponding process behavior is specified in terms of a labatesition system.
Transitions are influenced by local and input variables and influeneédod output variables.
A single transition can be understood as the most basic form of a prétgs4.9 depicts such
an elementary process for verifying the Pin provided to an ATM — covdhiagcase in which
a bad Pin is entered once. When entered through its entry gotnE S, proces reads the
current values of its input variablés= {Crd, Pin}. ThenP changes the variable state by writing
a new value to its controlled variabl€ = {Ack}. When reaching its exit poirdrr € E, the
process terminates and passes the control to its environment.

Crd Pin
P

Crd?p,Pin?p/

err

ent

A4
Ack

Fig. 4.9: Behavior of Elementary Process

P’s behavior is specified via a labeled transition fremt to err. We use the notation de-
scribed in [14] for labeling transitions, whereByand! denote theaccessand modificationof
variablesc Var. The transition has a label consistingtafd?p, Pin?p/Ack!bp. The pre-part of
the label (before th¢) states that, whenever messages received via variabl€rd and the
differing messagg is received via variablin, then the transition isnabled If no transition is
enabled for a given input, the behavioris undefinedn the sense of our system model. The
post-part of the label states that, whenever the transition is executed niexttstatei.e. strictly
causal[15], valuebp is written toAck. Fig. 4.9 shows that the transition is depicted by an arrow
linking the corresponding control poinéat anderr.
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We interpret each transition label as the logical conjunction of its pre- astipart,i.e.
Crd”p A Pin?p A Acklbp for the transition label in Fig. 4.9. This constitutes @omic step
i.e. a non-interruptible pair of statds, p), whereby observatioa andp are called thesource
and thesinkof the step, resp. The st&pis successivéo the stepu if the sink ofuis equal to the
source ofw.

We use a primed version of variables and states to argue about thet@detie next state
within such a stepi.e. we use variables € Var for values ofv prior to the execution of the
transition, and variableg for values ofv after its execution. Priming of states yields a mapping
of equally valued primed variableise. for a giveno € Var — Val, ¢’ is defined byv v € Var :
o(v) = o’(V). A step is not allowed to constrain primed input variables and unprimed output
variables. By this, we disallow a process to constrain its future inputs adtssown outputs,
resp.

For a states € Var — Val with Var* C Var we use the notatios©Var* for restrictions
(s©Var*)(v) = s(v) for all v € Var*, i.e. valuations of variableg Var* are ignored.

We extend this restriction to sequences of states through element wise tppli€ar se-

quences(s) and (t) we use the notatiors) o (t) to describe their concatenation. Formally,
def

<Sl’...7S1> o <t1,...,tm> = <Sl,...,Sq,t1,...,tm>.
DEFINITION 4 Thebehavior of an elementary procdsshe set containing all observations
(a, (t),b) and (a, (s)) with entry point a, exit point b, ands) being any prefix of the finite
sequencet) of successive steps. The behavior of a processprefix-closedo ensure that an
observation can be operationally generated in a stepwise manner:

(a,(t),b) € Obs = (a,(t)) € Obs = (a,(s)) € Obs

O
Consequently, the behavior of proc@ss Fig. 4.9 is the set consisting of all observatigis

(ent, ((a, p)), err), (i) (ent, ((a,p))), and(iii) (ent,()), such that(Crd) = p, o(Pin) # p,
andp’(Ack’) = bp.

Sequential Composition

We interpret thesequential composition P Q in an end-to-start mannex.r.t. control flow,i.e.
after procesd terminates via one of its exit points, the contimimediatelytransfers to the
coinciding entry point and activates proc€gs

DEFINITION 5 The sequential composition of two processes P and Q results in a cothpoun
process P, Q

() whose hierarchical interface i@izpr Intf;, and

(i) exhibits the behavior of either process, with the restriction that Q is ntvated before P,
i.e. 3b, such that
(a,(sot),c) € Obs, g « (a, (s©Varp,b) € Obs A (b, (t)(©Varg, c) € Obsy;
(a,(sot)) € Obs. g & (a, (s)©Varp,b) € Obs A (b, (t)©Varg) € Obsy;
(a,(s)) € Obs. g < (a, (s)©Varp) € Obs.
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In other words, the sequential composition acts concatenatively on trblogs that(s) and (t)
denote sequences of successive steps. Consequently, the last &asmdhthe first state irt)
coincide. O

If processP within the sequential compositioR ; Q does not terminateQ is never
activated. Fig. 4.10 depicts the sequential composition of prokeasd Q — representing
a negative Pin evaluation of the ATM followed by a positive one — resulting é dbm-
pound proces® ; Q. The behavior ofP; Q is the set consisting of all observatiofig
(ent, (0, p). (p, #)), scc), (i) (ent, (7, p), (p,9))), (iii) (ent,{(s,p))), and (iv) (ent, ()),
such thatr(Crd) = p,o(Pin) # p, p/(Ack’) = bp, p(Cxd) = p(Pin) = p, ¢'(Ack’) = ok.

Note that the control poindérr does not occur within any of the above observatioesit is
hiddenby the sequential compositiomandQq are allowed to communicate over shared variables.
If those variables should also be hidden from the process environkeaigble hidingcan be
used as described next.

Crd Pin Crd Pin

P

Crd?p,Pin7p/ Q Crd?p,Pin’7p/

ent SccC

v v
Ack Ack

Fig. 4.10: Behavior of Sequential Processes

Variable Hiding

Hiding an interface variable of a process renders the variable indgleeem the outside. By
hiding a variables of a proces$ we obtain a process describedPyyv, that accesses the same
control points a® and uses the input and output variable®axcluding v

Varp,, = Varp \ {v}.
Moreover,P \ v exhibits the same behavior Bsi.e.

(a, () ©Vare\ {v},b) € Obss\, < (@, (t),b) € Obs,
and

(a ()©Varp\{v}) € Obs, < (&, (t)) € Obs.

Alternative Composition

By alternativelycomposing two process&andQ, we express thatither P or Qis executed,
but not both Hence, we interpret the alternative compositio® Q as an eéxclusive orrelation
between processes. More precisely, when control resides in their comniy pointa, either
processP or Q is activated depending on tlggiarding conditionsf a, but not both. A guard
is simply a predicatee S — B over the process’s state spa&g& Var — Val, i.e. ds guards
evaluateP & Q’s observed variables and either activRter Q. In case several guards evaluate
to true, one process is activated non-deterministically.
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DEFINITION 6 Thealternative compositionf two processes P and Q results in a compound
process Rp Q

(i) whose hierarchical interface ibei:P,Q Intf;, and

(i) exhibits either the behavior of process P or Q, i.e.
(a, (t),b) € Obsgq < (a, (t)©Varp, b) € Obs V (a, (t)©Varg, b) € Obsy;
(a, (t)) € Obsgg < (a, (t)©Varp) € Obs V (a, (t)(©Varg) € Obs,.

In other words, the alternative composition acts disjunctively on traces. O

Fig. 4.11 depicts the alternative composition of processasdQ from above — representing
the alternative execution of a positive and negative Pin evaluation of tMe-Aflesulting in the
compound procesB @ Q. Its behavior contains all observatio(i} (ent, ((op, pp)), err), (ii)

(ent’ <(UP7 PP)>)1 (”I) (entv <(UQ7 PQ)>7 SCC), (IV) (entv <(0Q’ pQ)>)’ and(V) (ent’ <>)’ such that
op(Crd) = p, op(Pin) # p, pp(Ack’) = bp, 0q(Crd) = oq(Pin) = p, andpp(Ack’) = ok.

Crd Pin

err

[grds]

[grdg

Acklok

A4
Ack

Fig. 4.11: Behavior of Alternative Processes

Note that alternative processes do not need to have a common exit pditiadithe guards
of alternative processes artherentlycontained in the observations in Def.lb.g, the guards
of process @ Q's common entry poinent are defined by the corresponding pre-parts of the
transition labels witkent as starting pointe.g,

grdp = (op(Crd) = p A 0p(Pin) # p).

For methodical reasons, we allow to annotate the diamond with gigardg with i € {P,Q}
in the graphical representation, even though they actually denote thgagref the transition
label leaving the related entry poiatt.

Parallel Composition

By composing two process€andQ in parallel, we express thdioth P and Qexecute simulta-
neously. When entered through their common entry paittie control flow is split so that both
processe® andQ exhibit their joint behavior.
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DEFINITION 7 The parallel composition of two processes P and Q results in a compound
process P| Q

(i) whose hierarchical interface i@i:RQ Intf;, and

(i) exhibits the combined behavior of each process, i.e.
(a, (t),b) € Obgy g < (& (t)©Varp, b) € Obs A (&, (t)©Varg, b) € Obsy;
(& (t)) € Obsq & (&, ()©Varp) € Obs A (&, (t)©Varg).

In other words, the parallel composition acts conjunctively on tracesattiqular, each step of
P corresponds to a concurrent step of Q. a

To terminate the compound procd3g Q, bothP andQ need to terminate via their common
exit point. Note that the parallel compositiorsisict in the sense that undefined behavior of one
process ‘knocks out’ defined behavior of the other process. Thistisaited from a methodical
point of view, since we can not rely on undefined behavior. Moreipe¢ unless we require
P andQ to have disjoint output variables, the parallel composition may lead to confliesing
uations of output variables and the introduction of additional undefinbevi@. Moreover, if
eitherP or Q receives illegal inputs, the behavior®f| Q is undefined.

Msg

Msg?w/

Out!Wait

v
Out

R

ent ScCcC

Crd Pin

Q Crd?p,Pin’p/

v
Ack

Fig. 4.12: Behavior of Parallel Composition

Fig. 4.12 depicts the parallel composition of procedsom above and another process-
representing an output to the ATM'’s user interface — resulting in the contpyaocess || Q. Its
behavior contains all observatiofis (ent, ((0, p)), scc), (ii) (ent, ((o, p)}), and(iii) (ent, ()),
such thatr (Msg) = w, 0(Crd) = p, o(Pin) = p, p/(Out’) = Wait, p'(Ack’) = ok.

Repetitive Composition

By composing a processesrepetitively we express tha® is executedsequentiallya possibly
indefinite number of times. This number is either determined by a constant @rdimgg con-
dition of P's entry point. Consequently, repetitive composition is just a shorthane peatedly
applying sequential composition. Hence we do not give an explicit betzdviterpretation,
since composition can be arbitrarily nested anyhow.



4.2. Process Semantics 23

Note that in our approach a process describes exemplary behavidr isHigpically finite.
This is reflected in the corresponding definitions of process behaviatiich all observations
denote finite sequences of variable valuations. By introducing the repetiperator©,,, we
extend this view in the sense that a work flow may be described by a prBce€gs which
induces a possibly infinite behavior. However, the behavior of eacipmdess oP O, isfinite
andstrictly causal[15]. As well-known, unique fixed points for strictly causal behavidvgags
exist.



5 Application: Surgery Assistance

This section outlines a model-based approach for the formal, structueedisgtion of system
behavior on basis of user work flows and context information. We illustregepplication of
our modeling approach using the lapCHE case study. The approactustsithe development
along the lines of three views, which capture all aspects necessargfdesign of the system’s
behavior. We describe in parts thverk flow; contextual andfunctional viewof a model specify-
ing a context-awar8urgery Assistance Syst¢BA3J. The SAS assists an operating team during
the surgical intervention.

In a nutshell, the SAS ‘observes’ an ongoing lapCHE by means of semstalled within the
operating room (OR)e.g, sensors for currently used instruments, table position, room lights,
etc. Additionally, it accesses a data model of the lapCHE comprising its waviaita context
view. On basis of both information, itacksthe actual surgery progress and adapts its behavior
accordingly,e.g, by providing the estimated remaining surgery duration, recommending the
instruments needed for the next surgery step, or indicating critical susgfaations by means
of an early warning system.

The model of the lapCHE case study serves as a running example thubuglsosection
and illustrates how a concrete work flow, contextual and functional vieancactual system
looks like. Fig. 5.1 illustrates the involved system views which are presentér ifollowing
three sections. In Sec. 5.4, we relate our approach to a requiremeiriseagy methodology
[10] with a similar purpose, namely the integrated elaboration of functiomglirements ¢f.
functional viewy and contextual informatiorcf{. work flowandcontextual view

5.1 Work Flow View

In our approach, processes form the building blocks for specifyatg dnd control flows in the
environment (work flow view) and within the system (functional view). @pproach starts with
the specification of (abstract) user work flows in terms of processes8.dixes an example for a
work flow view, whereby the used description technique has beenildedgreviously in Sec. 4.
Although not presented in the work flow view depicted in Fig. 5.1, work flehdvior can also
be modeled in terms of labeled transition systems. However, in our runningpéxave abstract
from the exact behavior of user work flows and only provide a namaeaand an interface for
each process describing the work flow parts of the lapCHE.

ExAamMPLE 8 Thework flow viewin Fig. 5.1 contains three processes describing an extract of
the lapCHE surgery. The depicted work flow represents a scenaridiamthesurgeon (role)

in a first step cuts the patient’s navel — indicated by fglecessnamedcut_navel. After the
surgeon has finished this activity, he hands the scalpel (vari&blE) to anurse in process

24
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Cmd

Ins
V%

Functional View

Ins Lt Ins Lt
v Y% % v
Ins?sc,Lt?on/ Ins?—,Lt7on/
A Cmd!Sc B Cmd!{cp,né}

Cmd Cmd

Contextual View

lights = on lights = on
tablepos = b tablepos = b
instr = scalp instr =9

Work Flow View
4 hand clip ::
SCl SCll nurse

lights = on
O tablepos =b
instr =9

lights = on
O tablepos =b
instr = &

cut_navel : rcv_scalpel :: Clp
surgeon nurse
S chk needle :
nurse
Nd1l

Fig. 5.1: Integrated System Views of LapCHE Extract

rcv_scalpel. Subsequently, theurse either hands the clip to the surgedirfd clip) or
alternatively checks the neediehk needle). a

5.2 Contextual View

The contextual viewdescribes for each process contained in the work flow view, how this pro
cess can be characterized by context information observable withingtensgnvironment. As
indicated in the contextual view in Fig. 5.1, several processes may extalsathe context val-
ues. The context is represented in terms of a Data Type Definition (Dfgpade of the context

in Fig. 5.1 denoted ights, basic data types likBool are sufficient to express that the lights in
the OR are switcheon or of f. Other context information require more complex types: consider
thedurationof a process, that is specified by an interval ranging over the natunabarsN to
express thak.g, processut_navel takes between 30 and 60 seconds to execute. If operations
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over these data types are required, one can also consider to introdalgehraic specification
[16] for each context type.

In case of the lapCHE's contextual view, we use eight context informatitnsimple data
types such aBool, enumerations and (intervals ovéf) Each context information corresponds
to one sensor installed within the OR. The context determines the nominal wlthessensor
within each process of the lapCHE’s work flow view and statistically basessonvey of approx.
200 surgeries with patients of different gender, age, and medicabi®co

EXAMPLE 9 The associated context of process_navel in Fig. 5.1 is interpreted as fol-
lows: When cutting the patient’s navel, we suppose that (i)ltghts in the OR areon, (ii)
thetableposition of the operating table isalanced, and (iii) thesurgeon’s currently used
instrument iS ascalpel. O

We use these nominal context values to determine the (de)activation anid¢iesitrg condi-
tions of each process’s LTS contained in the functional view. The fme¢al notion of the first
two views is the following: given a context-aware system that gets as {i)phe work flow of
the user in terms of work flow view (ii) the nominal context values of each process in the work
flow view in terms of acontextual viewand(iii) thecurrent contextnformation measured by an
appropriate set of sensors. Then, the system is ableatohthe nominal against the currently
measured context values, and — on basis of this information — is albvéeckdhe current position
within a user work flow like the lapCHE surgery.

5.3 Functional View

The work flow and the contextual view enable a system like the SAS to traccthal position
within the user’s work flow. On the other hand, fla@ctional viewdescribes which functionality
the system provides for each of the user’s activities contained in theflaarkin other words, if
the system successfully tracks the user’s current actaigy, by recognizing that the surgeon is
currently cutting the patient’s navel, the functional view determines how stesyshould react
to thatsituationin the most appropriate wag,g, by activating a certain system function needed
in that situation. The system behavior required in each part of the wserisflow is specified

in the same description technique as the work flow itsedfin terms of a LTS. Note, that we
abstracted from this behavior in the work flow view in Fig. 5.1. The hietieatlilecomposition
given by the work flow view imposes the basic structure of this LTS in termsanfgsses.

ExAMPLE 10 Proces® in Fig. 5.1 specifies that the system recommends the nurse to keep
the clips and the needle on hand after the surgeon finished cutting the paterels When
activated through its entry point, no instrument is uskts{—) and the lights are orL.¢?on),

then the process displays the surgery cligs) @nd the needleng) as the next instruments to
hand over {+) on the monitor within the ORCnd!{cp, né}), and terminates via its exit point.

Note that the context information defined in the contextual view can be ugethtalate the
triggering conditions for the LTS in the functional view. In particular, we gsntext values
to (de)activate a system functioB.g, processs in Fig. 5.1 is activated exclusively on basis
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of contextual informationinstrument, room 1ights). In this connection, we also speak of
context-triggeregrocesses / transitions. The possibility to group together states within modules
can also be found in other description techniques like Statecharts [1&tewlich hierarchical
states, denotedhodesare used to express alternative, sequential behavior. Thus spescand

their context-triggered (de)activation are a convenient form to speeifgnfigurable behavior
occurring,e.g, in context-aware systems like the SAS.

5.4 Contextual Requirement Chunks

Since the specification of the functional view contains all information reldeanhe functional
design of the system, the contextual and work flow view are only relevant & methodical
point of view. They structure the construction and analysis of the desyistdm behavior.

Similar to the proposed model-based approach, [10] introduces an infappiapach for the
integrated elicitation of a system’s functional requirements and usage tohkéx approach
results in a concise, text-based table containing the relevant contextmmahatfon characteriz-
ing a usage situation together with the associated functional requiremeatsow$ within this
table are denote@ontextual Requirement ChunfGRCs). Such a chunk is a tuple

CRCe Regx Sit x Sce

consisting of a functional requiremelReq a context instanc8it characterizing the usage situ-
ation, and an illustrating scenar@ce By means of CRCs, functional requirements are related
to the context in which they are valid. Basically, a CRC expresses the folowina certain
usage situatioi®it is presentthenthe associated requiremereqis valid, which is illustrated

by scenaridsce.

The experience gathered since the introduction of CRCs in [10] and itEaim in sev-
eral case studies motivated the model-based approach presentedidheatly, it can be under-
stood as the formalization of this idea. Due to its formal semantics in terms of |aiatesition
systems, the model-based approach facilitates the specificatlunatofy-dependenbehavior,
which can be encoded in the LTS. Moreover, interesting propertiesasicbnformancev.r.t.

a reference model, consistency and completeness of the involved systeifications can be
verified. By this, the model-based approach enables an efficient gevefd process with (au-
tomatic) support for verification.



6 Conclusion

We conclude this paper with a short summary. Furthermore, we discussmgaing work, and
outline further promising research directions.

6.1 Summary & Evaluation

We formally defined a class of entities callgcessesThe intended use of processes is to pro-
vide a formal, structured model for describing the control and data floasrdng in software-
intensive systems and their environment. The model is formal in that it defipescess as a
mathematical object, which can be analyzed. The model is structured in tletiite the hi-
erarchical definition of a process. This hierarchy can be exploitedtfacturing the analysis.
Processes constitute the basic building blocks for describing data atrdldtows, that can
be composed sequentially, alternatively, and in parallel — arbitrarily nestedmathematical
semantics of a process is given by its interface and its set of observations

We evaluated the practicalness of our description technique in terms of atcay from the
medical domain, in which we specified the work flow of a minimal invasive syrgkenoted
laparoscopic cholecystectomy (lapCHE) [12]. The surgery is a highhdataized work flow
in which the patient’s gallbladder is removed under general anesthegiavEhall process de-
scribing the lapCHE contains about 270 elementary sub-processesaristiuctured into four
hierarchy levels with eight hierarchical processes on the most ablsvatt

6.2 Outlook

Process-Based Development The work presented in this paper only constitutes the first
steps towards a process-based, integrated development approdeh design of reactive sys-
tems, which is outlined in the following.

(i) Starting with the formalization of exemplary user work flows and the assodiatetonal
requirements in terms of structured labeled transition systems, denotedgescee specify
the interaction between the system and its environment.

(i) Due to the underlying formalism, these specifications can be automaticallyechémk
interesting properties such asg, conformance, consistency and completeness.

(iii) On basis of these specifications and a predefined mapping of protessdéisvare com-
ponents viaoles we synthesize component behavior. More precisely, we synthesizallg to
defined component specification for each role within the process speicificsuch that each of
these component LTSs respects the behavioral restrictions imposed bgdéeying process
specification.

28
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To put it in a nutshell, we transform a complex process LTS into a beh&wqravalent /
refined set of component LTSs, which can then be implemented indegbndég. 6.1 illus-
trates the fundamental idea behind the process-based developmeittvafaaystem, whereby
solid and dotted lines represent data and control flow, resp. We corppadssd process behavior
until the behavior of each component in the logical architecture is completéiyed. In this
light, component depicted in Fig. 6.1 implements the behavior of prog®ssQ) O, whereas
componenB implements the behavior of proce@s® S) ©.

Fig. 6.1: Process-Based Development of Component Architectures

To enable an integrated development process, it is necessary to estabiigiiementation re-
lation between the specifications created during the different stagestefisgevelopment. Our
current work addresses the definition of such an implementation relatioi wéiates concrete
and abstract processes as well as partially defined processes diyddigfiaed components,
resp. Obviously, simple implementation relations based on trace inclusion aprdpaiate for
partial specifications, since they do not reflect the reduction of uretefirhavior required for
the refinement [18]. Moreover, to effectively use such an implementadiation in a sound
development process, (automatic) support for its verification is nagessa

Tool Support We are currently integrating our process-based approach into an gxistin
CASE tool. Autofocust is a tool for the component-based development of reactive systems. It
supports the graphical description of the system using different ineshdiagram types.

Our current work includes the extension of this tool by a perspectiaidewith the process-
based specification of the system and its environment. This perspedciivie slifer three differ-
ent views. In theProject Explorerview, processes are hierarchically structured. InRhecess
Structure Diagranview, syntactic interfaces are defined. T3tate Transition Diagramiew de-
scribes the behavior of each process in terms of a LTS. The existing sinnudatibverification
environments of AutoBcusshould be adapted to cope with the presented process semantics.
An additional synthesizing functionality should automatically constfy@n AutoFocus Sys-
tem Structure Diagraniby combining the syntactic process interfaces to component interface
via roles, andii) a State Transition Diagranfor each component by composing the underlying
process LTSs with coinciding roles. Then, this component LTS can lfeedgior completeness.

"http : //af3.in.tum.de/
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